FLOWS AND NONCOMMUTING PROJECTIONS ON HILBERT SPACE

F. H. BROWNELL

1. Introduction. Let {E(A4)} over A € B,, the Borel subsets of the real
line R,, be a resolution of the identity for the Hilbert space X, and consider
the flow

Lf .
u; = Usug = / e”)‘dE (M) ug,

over ¢ real for fixed ug € X. Let P be an orthogonal projection in X. Our problem
is to study the asymptotic behavior of ||Pu;||? as t — + ¢ or t — —c0. If P
commutes with all £(4), then

PU:=UtP and ”PutH2= IIPuOHZ,

a constant, so we are interested only in the case where P fails to commute.

It is easy to see that this asymptotic behavior depends upon the nature of
y through the equation

12u 117 = e ay ()

2

integrated in a Riemann sense over the plane K,, where

‘y(A XB)=(PE(A)U,0, E(B)UQ).

If y admits a o-additive and bounded extension over 13,, the Borel sets of R,
standard procedures enable us to say that || Pu;||? converges densely to C as
t—+0 or t — —q if and only if y(Dg) =0 for s £0 and y(Dy) = C, where
the diagonal

Dg ={(x,y) ERy | x —y =s}.
The interesting fact here is, as we shall see by example, that y need not in
general be either o-additive or bounded, although it is always both if P is

Received July 23, 1953,
Pacific J. Math. 5 (1955), 1-16



2 F. H. BROWNELL

compact. Also if y is not both o-additive and bounded, it can happen that
|| Puy||> — C densely as t — + o and —» C”* densely as t — — ¢ with C # C",

Tliese results, particularly the last, seem to be of some interest in quantum
physics. Here the vector u; = Uy uy represents the state of the physical system
at time ¢ for the initial state ug; and, for ||ug||? =1, we can take ||Pu;||* to
the probability of the system at time ¢ being in the situation which corresponds
to the range space of P.

2. Principal results. As above, let £(A4) be a spectral measure [4, p. 58]
over A € B, for the Hilbert space X, Thus

L .
f N E (V) ug
Ry

exists as the X norm limit of the Lebesgue sums for every u, € X, and we de-

fine
L .
uy=Ugug = ./; e”’\dE()t)uo,
1

so U is a unitary operator on X. Also since each term in a Lebesgue sum for

tA

e’*? corresponds to a countable disjoint union of equal intervals equally spaced

L . R .
f A IE (N g = / P NGE (W) ug
Ry Ry

for the latter defined as the X norm limit of Riemann sums. Thus for P an or-

thogonal projection,
R . R it
HPu,t“Z:(Pu;,u;)=(./):e e dPE (x) ug , ‘/; e’ydE(y)uo),
1 1

although PE(A) is generally not a projection. Define for a given uy €X the

complex-valued set function y by

y(A xB) =(PE(A)ug, E(B)uoy),

so that y clearly has a unique, finitely additive extension over the {inite algebra
generated by product Borel sets, which includes the finite algebra 3 of finite
unions of intervals of Ry, (I3, p.149, (8)]. Using the continuity of the inner

product we thus see that
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R .
(2.1) || Pug || = ‘/; e”(x'y)dy(x,y),
2

where the integral on the right is of the Riemann type defined as the limit as
hy L — 0%, AN, IM — +  of the Riemann sums

N
Z z eit(x"'ym)y(Aanm),
n=-N m

with
A, =((n=1)h, nh] and B, =((m 1)1, ml]

and x, €4, and y,, € B, arbitrarily chosen. We shall call a complex-valued

set function over J tractable if it is both o-additive and bounded over J, and
thus also of bounded variation over 3. For tractable y we have the Jordan de-

composition of y into its four nonnegative variations, each one of which is
clearly o-additive over J. Thus, applying the well-known Borel-Hopf extension
theorem [ 3, p.49-54], we see that y possesses a unique, o-additive, and
bounded extension at least over B,, the Borel subsets of R, = Ry x R;. Thus

applying dominated convergence to the Riemann sums, for tractable y we have
R . L .
f ett(x-y)dy(x’y):__ f ew(x'y)dy(x,y),
Ry Ry

defined in the ordinary Lebesgue sense. Hence letting

Dy ={(x,y) ERy |x~y =51,

the diagonal in R, having x intercept s, and

7(/1):}/( U Ds)1

sEA

we see that y is bounded and o-additive over B3, and (2.1) becomes
L o
(2.2) || Pug 1|2 = fR e'tsdy (s)
1

for tractable y.

LEmMmA 1. If P is compact (that is, the range space of P has some finite
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dimension k), then y is tractable, and in fact (var y) < k ||uo||%

Proof. Clearly the orthogonal projection P is compact if and only if the
unit sphere of the range space is compact, or thus equivalently the range space
has some finite dimension k. Hence taking {v,} a complete orthonormal system

in the range space of P, we see that

k
Pu = Z (u,vp)vp,
p=1
so
k ————————— e e e
y(A xB) = Z (E(4) ug, vp) (E(B)ug, vp)
p=1

for A, BeB,. But E(4) being a spectral measure over 4 € Bl,
np(A) =(E(A4) uo, vp)

has 7, @ o-additive, complex-valued set function over 1B, which is bounded,

(var n) < |luo [| lvp |l = [luo Il
Thus
k -—
v= 2_: p > p
p=1

is a finite sum of product measures of this sort, and hence is o-additive and
bounded over B, > 3,

k
(var y) < Zl (var np)2 <k {luoll?;
p=

this completes the proof.

As usual we say that a complex-valued, measurable function f (¢) converges

densely to C as t —> + o if, for every p > 0,

1
0= lim 7 p, (L0, TInfe| |[f(e)-C| > p}),

T—ooo
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where p is ordinary Lebesgue measure on R;, and similarly as ¢ — -« if

1
0= lim =p ([-T,01nfc||f(e)-C|>pD.

T — 00

We collect some well-known results [2, p. 25, Theorem 8] in the following lem-

mas.,

LEMMA 2. 4 bounded, measurable f (t) converges densely to C as t —+

if and only if
0= lim (}T-foT lf(t)—Clzdt),

T 500

and similarly as t — — « if and only if

1 ro
- i . _ 2
0= lim T[T |f(t) = C)2ds.

T — 00

LeEmMmaA 3. [If
L .
- its
f(e) = lee dé(s),

where ¢ is a bounded and o-additive complex-valued set function over By,
then f(t) converges densely to C as t — +  if and only if ¢({s}) =0 for
s #0 and ¢(10}) = C, and the same is true as t — — .

Proofs. For L.emma 2, if we let
Ar,p=00,T)nte | |f(e)-C| > p 1,

and

[f(e)] <M <+

for the bound of f(¢), we clearly get the result from the following inequalities:
1 1 fr 1
pz(zr- pzl(AT’p)) < -T_/:> |f () =C|%dt < p* +(M + ICI)Z('T'; Fl(AT.p))'

For Lemma 3, we note that the Fubini theorem applies. Thus if we define
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() =f(e)=C= Lle et dg () for ¢,(4) = ¢(4) ~C5,(4),

and,
5,(4)=1if 0€d, 8,=0if 0¢4),
and
h(y) = eiy,"l if y£0,8(0)=1,
iy
we get

17 _cirgH *t [}_Tu(s-v)] )
= [T cldt_le le = [T eitte = arkag, (o) a1
L L -
- /Rl /;lh(T(s-—v))d¢l(v)d¢l(s).

But limy_, 4+ o h(y) =0, so that, by dominated convergence, |A(y)| < 2 and
¢ bounded, we have

1 T L -
lim = [ |f(s)=-C|%de = ¢, ({sDdp (s)= 22 | ({sD]?,
T oo T/:’ /;‘l l L sdshAo

which shows that L.emma 3 follows for t — + @ from Lemma 2. As t — —
the same argument holds except that then

1-¢%Y

h(y) = fory #£0,

iy

We can now state our main affirmative result for tractable y, (that is, y o-

additive and bounded over J, the finite algebra generated by the intervals of
R;.)

THEOREM 1. If y as defined by E(A) and uo, and P is tractable, then
each of the following three statements implies every other one:

(a) || Pug ||> — C densely as ¢ — + cc;



FLOWS AND NONCOMMUTING PROJECTIONS ON HILBERT SPACE 7

(b) [|Pu; ||*— C densely as t —> — co;

(c) y(Us ) =y(Dg)=0 for s £0 and Y (10} =y(Dy) =C.

This theorem is an obvious consequence of Lemma 3 applied to equation
(2.2). Because this answer for tractable y lies so close to the surface, it is
desirable to see what can happen if y is not tractable. This appears of parti-
cular importance for quantum physics in studying transitions, for if y is tractable
then (a) <=> (b) in our theorem shows in a certain sense that no change can
take place in the probability of the system being in the situation of which P is
the projection. Unfortunately, as one might suspect, if y is not tractable there
seems to be no general procedure applicable to all possible cases. We shall
content ourselves by giving in the next section a few examples of what can

happen.

3. Examples. The first example is constructed for the Hilbert space X =
L,(—m, n), using Fourier series, and here we get a nontractable y, being neither
o-additive nor bounded over 3. We also have ||Pu;||? — 0 densely as t — ~
and ||Pu;||*> — 1 =||uo ||* densely as ¢t —> + o here, so that (a) no longer
is equivalent to (b) as in Theorem 1. The second example gives a nontractable
y for X = Ly(~ o0, ), but here this y ‘“‘blows up at o«o,”” whereas in the first
example it is only in the neighborhood of the main diagonal Dy that y behaves
badly. The different behavior of y in these two examples illustrates the diffi-
culty of getting any general result like Theorem 1 for nontractable y.

ExaMPLE 1. Let

X=L,(-mm), vp(x) =

so that {vy } is a complete orthonormal system for X, and let the projection P

be defined by

Py = z (u,vp)vp,
p=1

convergent in X norm. Also let

E(D)ul(x) =x,(x)ulx) for 4 €8y,
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X 4 being the characteristic function of A, so E(A) is a spectral measure.
Finally let ug = vo. The y which E(A),P, and uo define is not tractable, being
neither o-additive nor bounded over J; y is given for subintervals A and B of
[" M, 77] b)’

1
(3.1) y(AxB)==-— p(AnB)
4n

1 1 +cos(y —x)
- AxB)+| 22270 4 (s,
PYRY [;12( x )+J’ ey o po(x y)]

where p, is ordinary Lebesgue measure on R, and the integral ranges over

AxB-(AnB)x(4nB);

(3.2) || Pug ||* = 1/2

T L 1 - i —
. 1 /' /‘ [~cos t(y—-x)+[ +cos(.y %) ]sin t(y x)]dydx;
2(27)% J-TI-T sin(y—-x)

and in the ordinary sense, which implies dense convergence,

|Pus||2— 0 as t—» —0 and —>1 =|uo||* as t— + .

To prove these assertions we shall first establish (3.1). Here

y(4 xB) =(PE (A)uo, E(B)ug) = 3_ (./4. uo(x)vp(x)dx) (_/; uo(y)vp(y)dy)

p=1

1 noo.
T / by -2\ gy (x,
im AxB(ze ) y(%y)

n— oo (277)2 p=1

1 eily=-2)_ Liln+t1)(y-x)
= lim /
AXB

dp,(x,y).
n—.oc(27r)2 llzxy

1__ei(y-x)

Now if A and B are subintervals of [~ 7, 7] having 4 n B = ¢ (or actually con-

taining at most one point ), then
(1-e!0-%))teL,(4 xB, )

is easily verified. Ilence rotating coordinates and applying the Riemann-
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Lebesgue lemma to evaluate the previous limit for y, we get

RACEED)
./‘; e dpt, (2, y)

y{d xB)= % B l_ei(y-x)

(27)2

1 f eily-2) _q o )
- (27)? JaxB Il__ei(y-x)|2 ot %

d#g(xsy)'

o1 / cos (y —x) =1+ sin (y —x)
—(277)2 AXB 2(1 ~cos(y-x))

Thus for disjoint intervals 4 and B we have

1 1+ cos(y —x)
14+ ——}dp, (x,5).
2(27)? ‘Z‘I‘XB{ i i sin (y —x) ] k(2 y)

At the other extreme, for interval 4 = B, using the fact that y(4 x 4) is real,

(3.3) y(A xB) =~

we can verify

1 / eily-x) _ ila+1)(y-x)
AX A

y(A xA4) = lim
1—eily-=)

n—o (97)2

) 1
= lim (-2(2”)2) ‘A‘XAll—cos nly —x)

n— oo

dp, (x,5)

sin (n(y —x))

~[1+cos(y -x)] Ja’,uz(x,y).

sin (y —x)

Rotating coordinates and using the Riemann-Lebesgue lemma and known proper-
ties of the Dirichlet kernel to evaluate this limit, we get

1 1
(3.4) )/(AXA)=—2—(2——”)2#2(AXA)+E[H(A).

Finally, (3.3), (3.4), and the finite additivity of y over & imply (3.1) as de-

sired.

Using (3.1) in (2.1) and noting the obvious cancellations we readily see
that (3.2) results, with the integrand now bounded, unlike (3.1). But from (3.2)
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by the same evaluation leading to (3.4), we get

HPUtHZ—*-z- +§=1=Hu0H2 as t— +c

and
|| Puy ||2— 5" 5:0 as t— —co,

as desired.
It only remains to show from (3.1) that y is neither bounded nor o-additive
over J. To see this, bisect

[-malx[-m7l=C,

into four equal closed squares, bisect those of these squares whose diagonals
are segments of Dy, and continue the operation to get a sequence of squares

F; p above the main diagonal, explicitly

2(j-1) 2 -1 2j -1 2j
F]”p=[(2ﬂ)——§)———ﬂ,(2ﬂ) 5P —ﬂ]x[(zﬂ) 5 —17,(277)5_”]

for 1 <j < 2P"'and 1 < p. The open subset

V=§(x,y)€co |y>x}

of Cy clearly has [1 + cos(y —x)1/sin(y — x) integrable Lebesgue over V,
with

1+ cos(y—x)
./;/————Z—--d#2(x,y)=+oo.

sin(y — x)

Thus (3.1) and the o-additivity of the Lebesgue integral, since
0o P!

Ve U U F

JsP?
p=1 j=1

show that
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so y is not bounded over J.

It is only slightly more complicated to see that y is also not o-additive over

3. For this, define the upper right corner square

o5

of Cy and also

2m
Kp =[—-77,77]><[—77’,77-—— .
P

Define f (p) as the least integer & > p + 1 having
o, 000
F C L
qSk

such % existing from (3.1) since

1+cos(y~x)
[ el )

vaL, sin(y-x)

Now define the sequence of sets W, € 3 by taking Wo ={ (=, #)}, a point inter-

val, and

flp) 297!
sz-1= u u F]"q, W2P=KP’ forp Zl.
g=1 j=1

These in turn define the disjoint sequence W’ € J by

n-1
W =W -W H(U W),
n n n m

m=0
and we clearly see that

UW =UW=C,=l-mn,nlxl-n,n].

Also clearly f(p) < f(p +1) and K, C K+, so we see that



12 F. H. BROWNELL

2p 2p flp) 2771
UW' = U Wy=FouK,u| U U F,

n=0 n=o0

q=1 j=1

=W0U(C0—LP)U( U F],q\)’

Fj’ Q_C_Lp
g<f(p)
and similarly
2p+l
U Wn’_—. WOU(CO —Lp)u U Fi,q
n=e ﬂ’qC Ly
qﬁf(pﬂ)

But hence y(W,) =0; and & [y(Cp - LP)] =0 from (3.1) makes

2p
&[Z y(Wn')]=c&{y( U F]-,q)] > (10)P
n=0 F; ,CL

Isq—="P
q<f(p)

and likewise

2p+l
3 (W) Uu F > 3 U F; > (10)P*1,
[,,2;:6 ’ ] [ ( .aS Lp ]’q)l - [Y(FMC Lps1 ]’q)l -

g< f(p“) g< f(p+1)

Thus we see that

N
lim d [Z y(Wn’)] =+ cc,

N - oo n=0

although disjointly U™ W' =C, € S and 4 [y(Cy)1=0 by (3.1), so y is not

o-additive over O.

This completes our discussion of Example 1.
EXAMPLE 2. Let

X=L(RY, [EM)ul(x)=x,(x)ulx)
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foru € X and A € B, as in Example 1,

A 1 L .
u(w) = X norm limit / e'™* u(x)dx,
Lo Ven -L

A
the Fourier transform of u, and u <> u is a Hilbert space isomorphism of X onto

X. Let

(Pul(w) = X[y l](w)ﬁ(w)

define the orthogonal projection P in X, and consider ug € X. Then || Pu;||> —0
densely as |t| —> + w for every initial ug € X; y defined by E(A), P, and u, is
tractable for ug € L1(R;)n Ly(Ry);

1 in(x — -
(3.5) )Am=_fﬂﬂli49%u)%wu%uﬂ)

7 x -y

for all C €3 for ug € Ly(Ry)n Li(Ry), or for all bounded C € S for any uy € X;
but there exist ug € X = L,(Ry) for which y is not tractable, being unbounded
over J.

We first need to verify (3.5). Here we note that for R, intervals 4 and B,

y(4 xB) = (PE (4)uo, E (B)uo) =fl [0 1(@) [ X0 (@) da
-1

1 1 . R
=-2—-/ ‘/1;./};e‘“’(x'y)uo(x)uo(y)dxdydw
md-1

for any ug € Ly(R;)n L(A uB). The Fubini theorem now applies, yielding

1 el (x=y) _ gmilx-y)
axsr-— [ [ () dxd
y(4 x B) 5= o Js o) uo(x)ugly)dxdy

1 fsin(x—y) _
=;<Z;B—x__—y_ uo(x)uo(y)dxdy.

Thus (3.5) follows as stated, either for ug € Ly(R;)n L,(R;) and any C € 3,
or for any ug € L,(R,) and bounded C € 3.

Now from (3.5) for ug € L, (Ry)n L (R,), it is clear that y is tractable and
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|| Pug || —> O densely as |t| — a, since

yUsP =y(Dg)=0

for all real s. For general initial ug € L,(R,), consider ug € Ly(Ry)nL(Ry)
and let u; = Usug and u; = Usug, so that we have

|| Pus = Pus || <1lue —u/l| = [luo —ug ll.

Thus

1 rr 1 fr i ,
57 ) WPuellde <o [ A1Pu [lde + [luo = ug |l

But “Put'llz —> 0 densely as |t]| — + o implies the same for HPU;H%, S0

1 T
lim —

Pu||dt =0
tim o [ NPl

by Lemma 2, and hence

timsup (5 [T 1Puclde) < lluo = 1.

Thus the density of L,(R,)n L;(R,) in L,(R,) shows

1 T
lim — || Pug ||dt =0,
Too 2T JoT

so Lemma 2 shows that || Pu, Hl/2 and hence || Pu; ||*> — 0 densely as |t|— +cc
for every initial ug € Lo(R,).

It only remains to show the existence of ug € L,(R,) for which y is not
tractable. First notice that (3.5) for bounded C € J implies, for the total varia-

tion of y over O,

(3.6) vary:l/

T(R2

sin(x —y)

luo(x) | luoly) |dp,(x, y)

x=y

for up € L,(R,), so that if y is always tractable this is always finite for every

uo =u € Ly(R,). Hence
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sin(x ~y)

J

lu(x) | [v(y) |dp,(x,y)

2 x =y

<)
R,

is also finite for every u and v € L,(R,). Thus

sin(x —v)

QuCe) | + o) DHuly) |+ [oly) ) dp,(x, y)
x =y

sin (y — x)

[F(u)](y)=%/[; ulx)dx,

1 y-—x
clearly existent, has [ F(u)](y) v(y) € L(R) by the Fubini theorem for every
u and v € Ly(Ry), so F(u) € L,(R,) also. Likewise (Fu,v) = (u, Fv) follows
from the Fubini theorem, so F is a symmetric, everywhere defined, linear opera-
tor on L,(R,), and hence a bounded Hermitian operator. Now define f€ L,(R,)
uniquely by requiring

A 2 i
Flo)= 212220 i LRy,
7 ©
and note that
1 A
[F(u)](y) = 41 fly —x)ulx)dx.

Nor

Since F is bounded from L,(R,) into L,(R,), we can by using the density of
L,(Ry)n L (R,) in L,(R,) for approximation, get the usual convolution result

o A
(F(u)w) =flo)ulw).
Thus
N\
HE () || = |[F )],
and F bounded makes

esssup |f(w)|=]F]] <+,
w &Ry

s0 [€Loa(Ry)nLy(R,). But thus the easy extension of Bochner’s theorem
(1, p.20, TheoreAm 9] from L,(R,) to LP(Rl ), and p =2 in our case, requires

our nonnegative f () to have
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2 | sin @ A
- = f(«) € Li(Ry),
i 2
contradicting
sin @
# L(Ry).
@

Thus in (3.6) we must have var y=+ o and y nontractable for some uy € 7.,(R; ).

This completes our discussion of Example 2.
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