POWER-TYPE ENDOMORPHISMS OF SOME CLASS 2 GROUPS

FrankLIN Hamvo

1. Introduction. Abelian groups possess endomorphisms of the form x — x™
for each integer n. In general, however, non-abelian groups do not possess such
power endomorphisms. In an earlier note, it was possible to show [1] for a
nilpotent group G with a uniform bound on the size of the classes of conjugates
that there exists an integer n > 2 for which the mapping x — x™ is an endo-
morphism of G into its center. We shall consider endomorphisms of some groups
of class 2 which induce power endomorphisms on the factor-commutator groups.
In particular, we shall show, under suitable uniform torsion conditions for the
group of inner automorphisms, that such power-type endomorphisms form a ring-
like structure. Let G be a group of class 2 for which (), the commutator sub-
group, has an exponent [2]. Then the relation {2] (xy,u) = (x,u) (y, u) shows
that x — (%, ) is an endomorphism of G into Q for fixed u €G. Let n be any
integer such that n(n —1)/2 is a multiple of the exponent of ). Then the map-
ping x — x™(x, u) is a trivial example of a power-type endomorphism. If G/Q
has an exponent m, we shall show that the number of distinct endomorphisms of
the form x —» %/, where %/ is in the center Z of G, divides m. In particular,
a non-abelian group G of class 2 has 1 or p distinct central power endomorphisms
if G/Q is an elementary p-group (an abelian group with a prime p as its ex-

ponent [2D.

2. Power-type endomorphisms, Let G be a group with center Z and com-
mutator subgroup . We assume that Q CZ so that [2] G is a group of class 2.
Further, suppose that there exists a least positive integer N for which x € G
implies xN €Z. This means that G/Z, a group isomorphic to the group of inner
automorphisms of G, is a torsion abelian group with exponent N. An endomor-
phism o of G will be called a power-type endomorphism if there exists an
integer n =n(a) for which (%) =x" mod Q for every x €G. « induces the

power endomorphism
O (40) = x"Q
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on G/Q; and conversely, any extension of a power endomorphism of G/Q to an
endomorphism of G must be a power-type endomorphism of G. For «, above,

there exist elements

g(x)=q(x; ) €Q

such that «(x) =x"g(x). It is easy to show that if m and n are two possible
values for n () then m = n mod N. We note that if N is taken to be the exponent
for G/Q rather than for G/Z, then n(a) can be chosen least nonnegative, in
fact, so that 0 < n(«) < N. We let P denote the class of all power-type endo-
morphisms of a fixed group G of class 2. Let t(x) =x for every x €G be the
identity map on G. We have ¢ € P with n(¢) = 1. If e is the identity element of
G, let v(x) =e for every x €G be the trivial map of G. We have v € P, in fact,
any endomorphism of G which carries G into Q lies in . Let the set of all
such endomorphisms into the commutator subgroup be denoted by M. We have
veN. If « €1 then n(at) =0, and conversely (for o € P),

Suppose that ¢ and 8 are in °, Then

aB(x) = alx™B g(x; B)1 = [o(x) 1Bl (x; B)]

= [ (x; ) 1" B[ g (23 B) 1.

Since Q C Z, we have
wB(x) =™ B g (x; 0)17B) g (23 B)].

This shows that & 8 € P so that P is closed under endomorphism composition.
In fact,

n(aB)=n(ax)n(B)mod N.

This multiplication is associative. Suppose that o € P and that y € Il. Then it
is easy to see that Gy and yo €11, since Q is admissible under every endo-
morphism of G.

Let R be the set of all elements of ° with the property that o € R if and
only if N | n(a). For endomorphisms ot and 8 of G, we define a mapping & + f3,

(not necessarily an endomorphism), by

(o +B)x)=alx)B(x)
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for every x € G. Then we have the following,

THEOREM 1. If a0 €P, then o + B €P for every B €P if and only if o € R,
If .+ B EP, then

n(a) +n(B)=n(ot + B) mod N,

and
g(x; 0+ B)=qlx; ) q(x;B).
Proof. Suppose that o + B EP for every B € P, Choosing B =, we have

(o0 + ) (xy) =l + (=) ax + I(y) ] = x(x)xct(y)y.

On the other hand,
(o + ) (xy) = alxy)wy = alx) aly)xy,

so that & (y)x =xc(y) for every %,y €G. This places a(y) € Z; but

n(a)

aly) =y™%q(y; &)

where ¢ (y; o) €Q CZ. Thus, y"(a) € Z, for every y €G, and N | n(a), placing

o € R, Remaining details are immediate.

For elements of P, addition is commutative whenever one of the sums in-
volved is in P, and if all the sums involved are in I, then addition is associa-
tive. A like statement can be made for the distributive law of multiplication
over addition. R is a ring with the two-sided ideal property in ° in that if
o« €P, BeR, then uB and Bat € R. 1 likewise can be shown to be a ring which
has the two-sided ideal property in P, therefore in R.

THEOREM 2. Let G be a non-abelian group of class 2 for which the group
of inner automorphisms | has the exponent N. If G/Q is aperiodic, then | is a

prime ideal in R.

Proof. Suppose that o, 8 € R and that «B € l. If G = Q, then Q C Z implies
that G is abelian. Hence we can find x € G, x £ Q so that

O(.ﬁ(x) =xn(a)n(ﬁ)q,

where both ¢ and aB(x) € Q. Since G/Q is aperiodic, n(a)n(B) =0. We have
really proved the prime ideal property of Il in P, The exponent on J, (isomorphic
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to G/Z) is required only to guarantee the existence of K. A related result is the
following,

THEOREM 3. Let G be a non-abelian group of class 2 for which G/Q is a
p-group with exponent p/. Then | is a primary ideal in R. In particular, if G/Q
is an elementary p-group [ 2], then 1\ is a prime ideal in R.

Proof. The proof begins as for Theorem 2. Since G/Q has exponent p/, the
latter is a divisor of n(«)n(B). If o 11, at least the first power of p would
have to divide n(B). For, G/Z has an exponent p* where 1 < k < j. Since
n(B7) =[n(B)Y we have pi | n(B7) whence B €N, The ring R exists since
G/Z has an exponent. If G/Q is elementary, then j =k =1 so that Il is a prime
ideal.

3. Additive inverses. An element ¢ of P is said to have an additive inverse

a’€ P if o+ o’ = If such an additive inverse exists, it is unique, and

(%) =x'”(“)q(x; )t

A mapping with the structure of 0" always exists, but it need not be, in general,
an endomorphism, ergo not an additive inverse. If & is an additive inverse of

o, then « is the additive inverse of o’. We first prove the following.

LEMMA 1. o has an additive inverse if and only if the n(o)-powers of G

form a commutative set.

Proof. Whether the mapping &” is an endomorphism or not, we have

a(x) =la(x)]t,
so that
a’(xy) = (y) o’ (%)
for every x,y € G. Since Q C Z, the conclusion follows at once.
Let ¥ be the set of all € P with the property that kern D Q.

LEMMA 2.
(a) ¥ has the ideal property in P.
(b) ¥>R(ON).

(¢) «€P has an additive inverse if and only if o € ¥.
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(d) o« €8 and B €X implies that o + B € ¥,

Proof. (a) and (d) are trivial. For « € P, we have
alxty lay) =y Ry

where n =n(ot). If, further, ot € R, then x" €Z so that o(x,y) =e, and (b)
is established, since (x,y) =x"'y 'xy is typical of the generators of Q. We
have « € ¥ if and only if «(x,y) =e, that is, if and only if x"y" =y"x", Lemma

1 now enables us to prove (c).

For fixed y € X, we have yo € ¥ for every « € P. Write —yo for the additive
inverse of yo; then —yo € ¥, Let j; be 0 or 1, and suppose that o; € P,
i=1,2,+++,m. A mapping

S (-1Yiy =0

i=1

is defined on G into G by
m i i
o(x) = [T #0760 in(a) g (4 ) JetVintan),
i=1

Call such a map a y — % map. It is clear that the sum of two y — X maps is a
y — 2 map in the obvious way. The set of y — X maps is denoted by (y) and
will be called the right principal ideal generated by y in P,

THEOREM 4. If y € ¥ then (y) is a ring, and (y) C ¥.

Proof. As we saw above, (y) is closed under addition. yv = v so that (y)

has the zero element v. If o is defined as above, then

> Uy a=—oe ().

i=1

By its effect on x € G we see that o € P, Since —o exists, (y) C ¥ by Lemma
2(c). Now (ya)(yB) =y(xyB), so that (y) is closed under multiplication,
once we recall that the distributive law is valid whenever the sums involved
are in °. A similar statement can be made for the associative laws, and we have

proved that (y) is a ring included in ¥,



206 FRANKLIN HAIMO

THEOREM 5. Let G be a non-abelian group of class 2, and let y be in ¥.
If the ring (y) has a right multiplicative identity or a left multiplicative identity,
then it has a (unique) two-sided multiplicative identity.

Proof. (y) has a left (right) identity o € (y) if and only if 0 €(y) is a
left (right) identity for the set of elements of () of the form yB. More, specifi-
cally, o is a left identity if and only if 0y =y. A routine investigation shows
that

oy(x) =x["(7)]2 b (—l)jin(oci)q"(y)z (—l)jin(o{i)

=1 i=1

where g = q(x; y). Let

uw=n(y) 3 (=1Vin(;) - 1.

i=1
Then oy = y if and only if

xn(’y)u u

e

q

for every x € G. Hence (1) y(x") =e for every x €G, (2) G/kerny has an
exponent dividing u and (3) y(G) has an exponent dividing u are conditions
each equivalent to (4) o is a left identity of (y). If (5) o is a right identity
of (y), (6) yo =y. But one can readily verify that (6) and (1) are equivalent,
so that if o is a right identity, it is also a left identity, whence (y) would then

have a unique two-sided identity.

If o is a left identity, then o0y = y and

yBo (%) = [y(x) 1" ) = yB(x)

for every x € G. Thus ¢ is also a right identity, and we have proved that every

left identity is a right identity.

COROLLARY. Let G be a non-abelian group of class 2 for which G/Q is
an elementary p-group for an odd prime p. Let y € have the properties (a)
that p ¥n(y) =n and (b) that there exists an integer m such that (by) mn =1
mod p and (b)) m — 1 and n — 1 are relatively prime. Then (y) has an identity.

Proof. (m=1, n~1)=1 implies that ((m~1)n, n—=1)=1 and that

(mn-=1,n-1)=1 since mn—1=(m -1)n+(n~1). Hence we can find an
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integer r such that

(7) n(n=Vr=m(m=1)mod (mn ~1).

Form the mapping
T(x) =x"[q(x5y) 1.

Since G is a group of class 2, we have [2] the identity

(xy)t =xtytzv(t)’

where

z=(y,x) =y 'xtyx and v(¢)=t(t-1)/2.
Since y is an endomorphism, we have

v(n)

q(xy;y)z =q(x;y)q(y;y).

Hence

(xy) =x™y™ 2% ™) (g (x5 9) 1 (g (ys y) 200,

Let us write the exponent of z as h/2 where A =m(m —1) =rn(n —1). By the
choice of r we have & =0 mod (mn ~1). But mn ~1=0 mod p, so that A =0
mod p. Since p is odd we obtain 4/2 = 0 mod p.

Since G/Q has the exponent p, Q CZ implies that G/Z has an exponent ¢
where ¢ | p. Since G is non-abelian we have ¢ =p. In [1], we proved that if
G/Z has the exponent p then the mutual commutator group (G,Z,) has an ex-
ponent t’ which divides p. Here Z, is the second member of the ascending
central series of G. Since G is of class 2 we have Z, =G, and (G,Z;) =0Q.
If t”=1, then G is abelian, a contradiction with hypothesis. Hlence t”=p and
"% = ¢, since 2 €Q and p | (/2). As a result, 7(xy) reduces to 7(x) 7(y),

so that 7 is a power-type endomorphism with n(7) = m and
q(x;7) =gz 7.
Then

u=n(y)n(7) -1 =mn-1.
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Since p is the exponent of G/Q we have x" € for every x €G. But y € ¥ so
that y(x"*) =e. Using the theorem and (1) and (4) above, we see that yT is
the required identity of (y).

4. Some mappings into (). Let € be the set of all & € P which are exten-
sions both of the identity map on  and of the identity map on G/Q. That is,
o €€ if and only if &(x) =xq(x; ) for every x €G and a(q) =gq for every
q €Q. It can readily be verified that the elements of € are automorphisms of
G and that, under automorphism composition, they form an abelian group with
unity ¢. For o, B € € and x,y € G, it follows at once that

q(xy; &) =q (x5 ) g (y; )
and that

q(x; aB) =qlx;a)qlx;B).

Let 6, be a mapping defined on € into Q such that 6,(«) = q(x; ) for
every o € €, It is immediate that the 6, are homomorphisms. We can define an

addition in the set O of mappings 0, by
(6 + 6y) (&) = O(cx) Oy (1)

for every « € €. Likewise define mappings ¢, on G into Q by ¢, (x) =q(x; o
Here, too, in the set d of mappings ¢,, mappings which are also homomorphisms,

an addition is given by
(b, + ¢/3)(x) = ¢a(x)¢'8(x)

for every x €G. Let F be the set of elements of G which are the fixed points

held in common by the elements of €. Then we obtain the following.

THEOREM 6.
(a) S = G/F.
(b) Z&=nandn,§8.

(¢) N and S are dual additive abelian groups in the sense that each can be

represented faithfully as a set of homomorphisms on the other into Q.

Proof. It is easy to verify that 0, + 6y = Oy, and it follows that J is an
additive abelian group with unity 6. Let F, be the subgroup of all x € G with
a(x) =x. For o € €, each F,, and hence F =NF,, is a normal subgroup of G.
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o € kern 0 if and only if x € Fy. 6, = 6, if and only if x =y mod F. The map-

ping 6 on G into O given by 6(x) = 6, is a homomorphism onto D with kernel
F. We have established (a).

¢, is an endomorphism of G into Q with kern ¢, = Fo. For y €1, let I" be a
mapping of G into G given by I'(x) =xy(x). Since 1l C R C ¥, we have
I'(q) =qy(q) =g for every g €0Q, so that ' € €, Also, ép =y. Hence 1l C &,
Trivially, & C{l. The unity of [l as a group is v which can be represented as
¢,- The mapping ¢ given by ¢ (&) = ¢, on € onto ® =11 turns out to be an
isomorphism, whence (b).

The mappings ¢, on [l into Q given by

ex(y) = 0,071 (y)

for every y €l are homomorphisms. y € kernc, if and only if x € kerny. We

can introduce an addition into the set C of mappings c, by
(ex +cy) (y) = ex(y) ey ()
for every y €. There is a homomorphism ¢ of G onto C with kernel equal to
U=0kern y,

where the cross-cut is taken over all y € /l; and (%) = cy. A trivial argument
shows that U = F. One can verify that the correspondence 6, <> ¢, is one-to-one
and is an isomorphism of O with C. Hence O is represented faithfully as a set

of homomorphisms on 1} into Q.

Just as there are homomorphisms c, on !l into Q, so there are homomor-
phisms b, on O into Q for each o € €, given by b,(6,) = ¢,(x). Here, kern b,
consists of all 6, with x € F,. The mapping b, is single-valued; for 6, = 0y if
and only if there exists r € F with y = xr, and ¢a(xr) =¢a(x). We can intro-
duce an addition into the set B of such by by

(ba+b/3)(9x)=q5a(x)¢>ﬁ(x).

Now bg + bg = bap, and, under this addition, B becomes an abelian group with
unity b,. The correspondence by <> ¢, is one-to-one and is an isomorphism
of B with 1, so that !l is represented faithfully as a set of homomorphisms on
O into Q, and (c¢) is established.

Further, there is an isomorphism @ on € onto B given by (&) =bg. The

mapping
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-1
Gx @ = Bx

is a homomorphism on B into  with kernel consisting of all b, with x € F,.

For every o € €, let ¢, be a mapping defined on C into Q by
() =, (2).

It is clear that { is a homomorphism with kernel consisting of all c, where
x €Ekern ¢ . We summarize these results as follows.

COROLLARY,
Oy =0, w=cy
on € into Q, and dually,
$u= Lo = b, 0
on G into Q.
5. Some enumerations of mappings.

THEOREM 7. The elements of P are in one-to-one correspondence with
the ordered pairs (n, M), where n is an integer, A is a mapping of G into Q and
n and A satisfy

(A) Ax) Aly) = Alzy) 22 (™)

for every x,y € G, where z = (y,x) and v(n) =n(n -1)/2.

Proof. If o €P, then g(x; ) = A(x) and n(a) =n. Conversely, if A and
n are given, and if (A) holds, define ¢ on G into G by «(x) =x"A(x) for
every x € G. Condition (A) and the fact that

(xy)n =x"y"zv(")

show that « is an endomorphism and is therefore in P.

COROLLARY. If Q has the exponent m, and if n is an integer for which
m | v(n), then x — x™ is a power endomorphism of G.

Proof. If we let AM(x)=e for every x €G then the pair (n, A) satisfies

(A) since, here, 2vm) e
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THEOREM 8, For o, BEP, a necessary and sufficient condition that
n(a) =n(B) is that there exists a y =7y, g € W such that & = 8 + y.

Proof. Suppose that n(a) =n (). Define a mapping y by

y(x)=q(x; ) [q(x;8)11.
We have

(B+y)(x)=B(x)y(x) =9o”(3)q(x;[3)q(x;Ot)[q(x;B)]'l

= xn(a)q(x; ) =alx),

so that 8+ y = &. Now

ylxy) = q(xy; o) g (xy; B) 1Y,

hence if we apply (A) to each of the ¢’s and simplify, it turns out that y(xy) =
y(x) y(y), so that y is an endomorphism lying in 1.

COROLLARY. Let M be the cardinal of \. Then © decomposes into par-
tition classes, each of cardinal M, in such a way that o and 3 are in the same

partition class if and only if n(at) =n(B).

Examples of such partition classes are Il (where n = 0) and € (where n =1).
Nontrivial € and € = 1 along with an exponent on Q imply, by the Corollary of

Theorem 7, the existence of an infinite number of partition classes.

Let Iy denote the group of integers, modulo N.

THEOREM 9. Let G be a group of class 2 with exponent N on G/Z. Then
there exists a nontrivial mapping T on P into Iy which preserves addition and

multiplication (whenever they are defined on P). 1 Ckern 7.

Proof. Let j, denote the residue class, modulo N, to which the integer j
belongs. Let 7(c) = (n(a))y. Then 7(¢) =1y, so that 7 is nontrivial. The
remaining statements are apparent. Note, however, that if N is the exponent of

G/0, then kern 7 = 1l.

It should be noted that a well known lemma of Griin leads to nontrivial !l and
hence to nontrivial elements of P, For, by this lemma, the mappings of the type
x —» (x, u) for each fixed u € G, u £ Z are in 1\ for groups of class 2.

Let G/Q have exponent n, so that G/Z has exponent ¢ | n. By [1, Lemma,



212 FRANKLIN HAIMO

p. 3701, the mutual commutator group (G, G) =) has an exponent £ | ¢ If ¢ is

t

odd, then % |v(¢), and (xy)? =x"y"’, whence x —> x’ is a central endomorphism

of G. If t is even, then x —> x2’ is a central endomorphism. Since x™ € Q, and

kn _ ¢ for every x €G. Now ¢ is the

since k is the exponent of Q, we have x
exponent of G/Z, so that ¢ must generate the ideal of exponents of central
power endomorphisms of G in case ¢ is odd. The central power endomorphisms

are then all
x‘——)xjt (j=0,1,2,---(kn/t)—l).

If kn is not the exponent of G but only an integral multiple thereof, then the
number of distinct central power endomorphisms will be reduced (in proportion)

to a submultiple of kn/t.

If ¢ is even, then the generator ¢” of the ideal of exponents of central power
endomorphisms of G must have the property ¢|t’|2:. Hence ¢t =t or t” =2t
If t” =t then the kn/t mappings x —» x/® include all the central power endo-
morphisms (with possible repetitions). In fact, if k is odd, then % | ¢/2,and
t"=t If t=¢t% then k|v(t). It follows readily that k=0 mod 2" implies
t=0mod 27!, Thus £ =0 mod 2" and ¢ £0 mod 2"*! imply ¢’ = 2z. Whenever
t” =2t, there are, at most, kn/2t central power endomorphisms of G. Since, in
any event, a submultiple of kn/t or of kn/2t is a submultiple of n, we have

proved the following.

THEOREM 10. Let G be a group of class 2 for which G/Q has exponent

n. Then the number of central power endomorphisms of G divides n.

The above is a generalization of the following: Let G be an abelian group
with exponent n. Then there are precisely n power endomorphisms of G; for,
X" = ™,

COROLLARY. Let G be a non-abelian group of class 2 for which G/Q is
an elementary p-group [ 2] for an odd prime p. Let G have at least one nontrivial
element of order #p. Then G has precisely p central power endomorphisms. If

p =2, then G has only the trivial central power endomorphism.

Proof. Since G is non-abelian we have k #1, and k|n =p implies k =p,
so that k|z|n leads to ¢t =p. Likewise, kn = p®. The exponent of G is not p,
since there exists y € G with yP # e. Hence the exponent of G must be p2. If
p is odd, then there are precisely kn/t =p central power endomorphisms. The

set of these endomorphisms is generated by the endomorphism x —» xP under
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endomorphism composition. If p =2 then x —» x* is not an endomorphism; for,
if it were, (xy)?=x2y% would imply yx =xy, whence G would be abelian.

Since x* = e, G has only the one trivial central power endomorphism, x —» x* =e.

In a hon-abelian group of class 2, as in the Corollary above, we can find an
element of ¥ for which the corresponding right principal ideal does not have a
unity, Let n(x) =xP so that n(n) =p. Since k =p we have n € ¥. If () had
an identity, then there would exist mappings o; € P, i =1,2,+++,m, with

pzn(C{i) =1 mod pz,

by the proof of Theorem 5, item (3), and the fact that p? is the exponent of
G D 7(G). But the congruence p ¢ =1 mod p? has no solution ¢.
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