ON HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS WITH
ARBITRARY CONSTANT COEFFICIENTS

A. SEIDENBERG

Let K be an arbitrary ordinary differential field=for our purposes it is suf-
ficient to consider an arbitrary (algebraic) field K which is converted into a
differential field by setting ¢’=0 for every ¢ € K. Let u be a differential in-
determinate over K and let u = ug, uy, ++ - represent the successive derivatives
of u. Further, let ¢, +++,c,, be arbitrary constants over the field K (u) =
K(ug,uy,+++), that is, m + 1 further indeterminates with which we compute in
the usual way, setting ¢/=0. In addition to the ring R = K{u}=Klugyuy, -],
we will also be interested in the rings R;4,, = Klug,uyy +++, ug4m I« Theorems
referring to some one of these rings R;+, may, if convenient, be regarded as
belonging to ordinary, rather than differential, algebra, but we will still apply
the operation of differentiation to elements of Ry+, (not involving uz+, ). This

then amounts to a convenience in writing formulas.

Let lop=coup +++++cpuy. This element generates a prime differential
ideal [lo1=(lg,l1,+++) in S=K(c){u}l, where [; =cou;+++++cpuj+py We
are interested in having explicitly a basis for [lo1n K{ul If A(u) is the de-
terminant of coefficients of any m + 1 of the I; regarded as linear forms in the
cjs then clearly A(u) € [lo]n K{u} and Theorem 2 below asserts that the

A(u) obtained from all choices of the I; form the required basis.

Let us confine ourselves to the rings R4, and Sg4y, = K(c)lup, oo yugap b

In St+m’ let p= (lo,' ",lt).
LeEmMA 1. p =(lgy+++,1;) is an m-dimensional prime ideal in S+ .

Proof. Let G(ugy +++ yuz+m) € St+m. Eliminating successively uz+m,
Ugtme1s*** sty mod (lgy+ve,l;), we may write G(ugy+++yupty) =Girlugy e,
Um-1) mod (g, +++,1;), where G; € S;+,, is a polynomial in the indicated vari-
ables. Moreover, starting with indeterminate values 'fi for uj, i =0,+0¢,m—1,we

can build up a zero (fo,---, t+m) of p by defining fm from the condition
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1o(£) =0, and defining ¢ .. successively from the condition [;,(¢) =0. Then
(&5 v+ &44ypy) is clearly a general point of p, whence p is prime and m-dimen-

sional.

LEMMA 2. Letpn Ry+p, =P; and let ¢t > m ~ 1. Then P is a 2m-dimensional
prime ideal in R 44,

Proof. Consider the equations:

cofo+---+cmfm=0

cofl+---+cm§l+m=0

cofm_‘+---+cm§2m_l=0.

From these we are going to solve successively for the c¢; i=0,+¢¢,m—1.
Since ‘fo #0, we can solve for ¢ and find cq € K(cyy++vycm, ’fo’ cee, zfm).

Suppose in this way, solving successively for the c;, we find

) i <m-1.

Corrrrsci EK(citrserrscms {:09“‘1 m+i’?

In fact, assume we have found inductively that
(4;) Corernnci €K(Eene, Epnt) + ey

+K(§o""’ 2i+2) ‘Ci+2+"‘+K(-fo,“',~fi+m) ‘Cm e

Since
dt K(cos+sssems &g revs &)/ K(cosrtesen) =m and
dt K(coyererem)/Kem+1,
we have
dt K(coyeesyem §porees m+i)/K=2’"+1
=dtK(ci+1,'--,cm,rfO,-u, m+i)/K’

where dt stands for ‘“‘degree of transcendency’’. From this we see that &, ..,

4

m

+; are algebraically independent over K (since the set cj+pye+y has

mti
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2m +1 members), in particular they are not zero. The coefficient of ¢;+; in
li+1 (&) is gz(iﬂ) plus a term in K(rfo, ceey, 'fziﬂ) arising from c, fiﬂ +oeee
Cifziﬂ’ and since {+1 <m, we have 2({+1) <m+i+1 and fz(iﬂ)g
K(&peee, 2;+1): Hence ¢+, EK(cj4gsveey +i+1)5 also 4;4y holds. Con-
tinuing, we have cqy++ycm-1 € K(cp, fo, sy ). Hence fo, e, §2m-l
are algebraically independent over K. Thus P is at least 2m-dimensional.

Let A;(&), i > m, be the determinant of the coefficients of the forms

1o(E)yeeeylp1 (&), 1;(E) regarded as linear forms in cq,e++,cp; that is,

AE=|
l”'§2m-1

Y-

i itm

Then one finds ¢; A;(€) =0, so that A;(£) =0. The coefficient of fi‘rm in
this equation is a polynomial in the indeterminates ‘fo"""fzm-ﬁ this coef-
ficient contains the term (fo ‘fz vee :me_z and hence is not zero (therefore also
1oCE)yeeeylpm1 (&) are linearly independent over K(&)). Thus P is at most

2m-dimensional, and hence exactly 2m-dimensional, Q.E.D,
LEMMA 3. Let M =M (u) be the matrix:

uol.lum
up *ctUidm
cee ,[Zm,

Um ***U2m

Ugss o Uptm

Let A be the ideal generated in R;+,, by the (m + 1) x (m + 1) subdeterminants
of M(u). Then 4 C P.

Proof. Since I[o(&)y++vylp.1(&) are linearly independent over K(¢) (and
in fact over any field containing K(&)) but [o(&)yeevylpr (&), [; (&) are
linearly dependent over K(¢), the matrix M(¢) has rank m. Hence A C P.

We want to prove 4 =P, in particular that 4 is prime. Conversely, if we
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knew that 4 were prime, we could conclude immediately that 4 = P, In fact,
suppose 4 is prime and let 7g,+++,n,, be a general point of 4. Since 4 has
a basis of forms of degree m + 1, no form of degree m vanishes at 7. Hence all
m x m subdeterminants of M(7n) differ from zero, and it follows that 4 is 2m-
dimensional, whence 4 = P.

In proving 4 = P, we proceed by induction on m, the assertion being clearly
true for m = 0. For given m, we proceed by induction on ¢(¢ > m). For ¢t =m,

we have to prove the following lemma.

LEMMA 4. Let D be the determinant

Upg** Uy
UgsetUi+m

o« e

um‘--uzm

Then D is different from zero and is irreducible in R,,,.

Proof. By induction on m, being trivial for m = 0. D is linear in ug, the
coefficient & of ug¢ being different from zero and irreducible by induction: in
particular, therefore, D #0. Also D is linear in uj, and the coefficient 6 of
uzm is irreducible. D is reducible if and only if & is a factor of D — 16, hence
of D. Similarly for 6% Now & and &’ are not associates, since they are of dif-
ferent degree in ug. So D is reducible if and only if it is divisible by 667 For
m =1, this means if and only if uqu, —-uf is divisible by uguy. This is not
the case. For m > 1, D is reducible only if it is of degree at least 2m, whereas

it is of degree m + 1. Hence for every m, D is irreducible.

DEFINITION. An ideal is called homogeneous if it has a basis of forms.

Similarly we call an ideal isobaric if it has a basis of isobaric polynomials.
LEMMA 5. 4 and P are homogeneous and isobaric.

Proof. A is clearly homogeneous. Moreover consider one of the (m +1) x
(m + 1) subdeterminants of M (u), say one involving the ith and jth rows, i < j.
Then u;+j., is the element in the ith row and /kth-column and uj+;., is the
element in the jth row and /th column. Suppose & > [. The determinant in ques-
tion has together with a term 7 « u;+g-2uj+)-2 also a term 17« uj+j-2 * Uj+k-2,
which is of the same weight. Ifence if rows ig,+++,i,, are involved, each term

has the weight of the term u; u; +1uj 42+ uj +ms that is, the determinant is
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isobaric. Thus 4 is isobaric. As for P, we know that p is homogeneous, and
from this and the fact that P =pn R+, one concludes immediately that P also
is homogeneous. To see that P is isobaric, let g(u) €P and write g(u) =
gu) + g4, (u) + -+, where g.(u) is zero or isobaric of weight j. It is clearly

sufficient to prove g (u) € P, assuming g, # 0. Since g(u) € P, we have

hic)g(u) = ZAi(c,u)li(c,u),

where 4 (c) is a polynomial in the c¢; alone, and the 4; are polynomials in the
c; and uj. We assign to c; the weight m —i. Let h(c) =hs(e) + hg4y(c) ++0v,
where hi(c) is zero or isobaric of weight j and hs(c) #0. Observe that the
li{c,u) are isobaric. Comparing terms of like weight on both sides of the above

equation we see that hs(c)gr(u) = ZAi'(c,u)li(c, u). Hence g (u) €p.
THEOREM 1. A = P. In particular, therefore, form > 0, Aiug = A.

Proof. We proceed by induction on m and ¢, and first show that 4:u, = 4.

Let &yvvvs &y,
determinant occurring in Lemma 4. From D(¢{) =0 we see that £, —can be

be the general zero of P introduced above. Let D(u) be the

written as a quotient of two polynomials in the indeterminates é:o’“"fzfn-l’

with the denominator being

' §2m-2
which is irreducible by Lemma 4. Hence we see that

rfz tee ‘fm*l
#0,
é:m‘?'l ter '§2m

(for were it zero, then &

»m could be written as a quotient of two irreducible

polynomials in fl, cee, the denominator this time not being an associate

of the other denominator )fnihlance &, is algebraic over K ( »fl, cen, §t+m)' Hence
Eyrees 1+ defines a 2m-dimensional prime ideal Py in K[u,, cevyus4p, J; and
P, is generated by the (m + 1) x (m + 1) subdeterminants of M (x) which do
not involve the first row of M(u). Designating also by P,, the extension of

Py to Klugy+++sus+pl, we see that P; C A. Let now uog(u) € A. We write
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wog(u) = 2A4;(u)A;(u), where the A;(y) are the (m+1)x(m+1) sub-

determinants of M(u), and the A; are polynomials, We write 4; =A/+uo A
where 4. does not involve uo. We then have uo(g(u) - ZAi"Ai(u)) = ZAL.’Ai(u).
The right hand side here is of degree at most one in uo, hence g, =g(u) -
ZAi"Ai(u) does not involve ug: g, =g‘(u1,n-,ut+m). Now g(u) and A;(u)

vanish at '50’ cee, hence so does g,; that is, g, vanishes at £, ...

mte
Hence, g, € Py, whence g € A. Hence A: uo = 4.

’Sm+t’

As a corollary to the above we get that 4:f =4 for any polynomial
f € Rp+; containing a term dug, d €K, d #0 (m > 0). For suppose fg €4: to
prove g € A. We may suppose f and g isobaric; and also homogeneous. We then

get duj g € A, whence g € 4.

We proceed to prove that 4 is prime. Let 1i=1i/up =cov; + +++ + Cm Vi+ms
where v; =u;/ug. We pass to the rings Ry4p, = Klvgsoveyvi4pm ] and Sp4p =
K(c)[v]. Observe that v, +++,v;4, are algebraically independent over K.

Let M be the matrix of the coefficients of the —l;-, that is, the matrix:

1 vy Vg s cup
(2N v2 v3 e Ut+nm

Ut Vet1 Ut+2°** Ut+m ||

and let A be the ideal generated in R 4, by the (m +1) x (m + 1) subdeter-
minants of M (v). Each such subdeterminant is a power of u, times an (m + 1) x
(m + 1) subdeterminant of M (u); and vice-versa. It would therefore be sufficient
to prove A prime, in fact it would be sufficient to prove that the extension of
A to the quotient ring Q of Ry+y, relative to the ideal (vy, +++,vp4p) is prime.
For suppose this proved and g(u) A (u) € A, where we assume without loss of
generality that g(u), A(u) are homogeneous. Dividing by appropriate powers of

uo and setting

g(u)/ug =g(v), h(u)/u] =h(v),

we get E(v)z(v) € 4, whence by assumption ?(v)g(v) or f(v)h(v), say
fg is in A for some f(v) € Ryapy f & (vyy+++yvp ). Multiplying by a power of
uo we find ué’f(u)g(u) € 4, where f (1) contains a term dug. Hence g(u) € 4.

The ideal 4 in R—Hm has fl/fo,---,gﬁm/.fo as a zero, hence is at least
(2m — 1)-dimensional. Also 4 remains at least (2m — 1)-dimensional upon ex-

tension to Q. In fact, if & /&, -+, t+m/tf0 determines P in R 4, then
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P C (vys++svi4y), as one sees from the fact that fo, ceey, determines a

t+tm
homogeneous and isobaric ideal P and uy € P.

Subtracting v; times the first row from the (i + 1)th row of M, we get the

matrix

1 vy vy DTN
0 Vy —U V] V3 — ViU st Up+l — VL Uy
0 Vgt — VU1 Up42 —VpU2 * * * Vg4 — U Upy

Each (m +1) x{(m +1) subdeterminant of this matrix is also an (m +1) x
(m +1) subdeterminant of M. Hence one sees that every m x m subdeterminant

of the matrix

Vg V3 s Vidm

Vg+1  Ugd2 *t  Utim

is a leading-form of an element in (- 4. These m x m subdeterminants generate,
by induction, a 2(m — 1)-dimensional prime ideal in Klwvgy+++,v4,,], and
hence a (2m — 1)-dimensional prime ideal ¢ in Klvy,+++,v44,, ). The leading
form ideal of 4 contains or equals ¢. If it contained g properly, it would be of
dimension less than 2m — 1, But an ideal and its leading form ideal have the
same dimension [1; Satz 81, Hence ¢ is the leading-form ideal of 4 and 4 is

(2m ~ 1)-dimensional.

Moreover 4 is prime. For quite generally in a local ring, if an ideal A has a
prime ideal § as leading form ideal, it must itself be prime. In fact, suppose
gh€d, g A, h#A. Then the leading form ideal LFI(4,g) of (4,g) contains
7 properly, and likewise for (4, 4). But LFI(A, g) x LFI(A,h) C LFI1((4,g)x
(4,k)) C LFIA =g, a contradiction. Hence A is prime, and the proof is com-
plete.

The following theorem is an immediate consequence of Theorem 1.

THEOREM 2. 4 basis for Llg1n K{ul is given by the (m +1) x(m +1)
subdeterminants of the w x (m + 1) matrix
Ug Uy *+* Upy

Uy Uz *e*Ut+m
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