QUOTIENT ALGEBRA OF A FINITE AW*-ALGEBRA

T1 YEN

1. Introduction. In a recent paper [5] Wright proves that ¢f A
is an AW*-algebra [2] having o trace and iff M is a maximal ideal of
A, then AI/M is an AW*-factor (that is, an AW™*-algebra whose center
consists of complex numbers) having a trace. The trace enters into his
argument in the characterization [5, Theorem 3.1] of the one-to-one cor-
respondence between maximal ideals of 4 and those of its center Z.
This is, in turn, used to verify that A/M satisfies the countable chain
condition, namely : every set of mutually orthogonal projections is at
most countable, which is crucial to prove that every set of mutually
orthogonal projections has a least upper bound (LUB). It is the purpose
of this paper to prove the following.

THEOREM. Let A be a finite AW*-algebra, and M « mazimal ideul
of A. Then A/M is a finite AW*-factor.

It is not known whether a finite A W*-factor always has a trace.
Since [3] a finite AW*-algebra of type I always has a trace, our result
adds nothing new in this case, and we shall be solely concerned with
algebras of type [I,.

Our terminology is that of [2]. We assume familiarity with [2]
and [1] (especially [1, pp. 234-242]).

2. Maximal ideal M. We begin with a slightly sharpened version

of [5, Theorem 2.5] on p-ideals. A set P of projections is called a p-ideal
if

(1) P contains ¢\/f whenever it contains ¢ and f
(2) P contains f whenever it contains an e)-f.

It follows from (1) that e,\/ -+ \/e, is in P if ¢, ---, ¢, are in P. For
any set S of A let S, denote the set of projections contained in S.

LEMMA 1. Let A be an AW*-algebra. The closed linear subspace
M generated by a p-ideal P is an ideal with M,=P. Conversely an ideal
M of A is the closed linear subspace generated by the p-ideal M,.

Proof. Let P be a p-ideal and M the closed linear subspace gene-
rated by P. For M to be an ideal we need to prove that M contains
xe for any xe¢ A and ee P. The left projection [2, p. 244] f of xe, be-
ing <(e, is contained in 1. Hence £ conlains g=¢\' /. wee ydy M,
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as gAg is the closed linear subspace generated by all projections <g.

Let M, denote the linear subspace algebraically generated by P; the
elements of M, are of the form x=>)".e; (1, complex numbers, e¢; € P).
As P contains e,\/ --- \/e,, the left and right projections of = are in
P. Take an f in M,, and an ¢>0. There is an xe M, with || f—=]l|
< e. The left projection 2 of fz, being < the right projection of z,
is in P. We have << and |[f—hl|=||(f —B)(f = f) | <l f — Farl|e.
Hence f=h. This proves that M,=P.

Assume now that M is an ideal. M, is [5, Lemma 2.1] a p-ideal.
Let M’ denote the closed linear subspace generated by M,. We wish
to prove that M=M'. Take xe M and ¢>0. There is' [2, Lemma 2.1]
a projection ¢, which is a multiple of x, such that ||[x—ex||<e. Since
exe M and M’ is closed, xe M.

Let now A be an AW*-algebra of type II,, Z its center. Then [2,
p. 247] A admits a dimension function D defined on A, with values in
Z. D has the following properties :

(1) 0<D(e)<1 for every e,

(2) D(e)=e if ec Z,

(8) D(e)=D(f) if and and only if e~f,

(4) D(Se;)=S\D(e) if the e;’s are mutually orthogonal [1,
Lemma 6.13].

Moreover, D is uniquely determined by these properties. It is an im-
mediate consequence of (4) that given 0< 2<(1 there is a projection ¢
with D(e)=1.

Let C be a commutative A W*-subalgebra [3] of A. C is the closed
linear subspace generated by C,. We shall extend D to a linear trans-
formation 7, of C into Z. First define T, on the linear combinations
of projections by setting

Tu(ﬁj 2e;)= 5:"4 2i(e;) .
i=1 =1

We must show that 7', is uniquely defined, i.e., if x=y then 7'.(x)=
To(y). If =37 e, there are orthogonal projections f,, ---, f, such
that each ¢; is a sum of the f’s:

U 1 if eiszfj
=X, a,f; where a=1
” 0 if e f;=0.

=N 20 =SS k)

Jj=11i=1

U To use {2, Lemma 2.1] we first imbed 22* in a maximal commutative self-adjoint
subalgebra of 1. Working in this subalgebra we get a projection e with fax? - caa® || Zet.
Then {|a—cal| = (@ —cu)(@—ex)* | V2= ax® ~ caa* |12 e,
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It follows from l)((ﬂ,):ﬁn’,‘,l)(,f',) that
Jeel

To(i}: 2595):1’0(2 2. f)
=1 )

Hence to prove the uniqueness of 7, we may restrict ourselves to the
linear combinations of mutually orthogonal projection, 3.1,e,. More-
=1

over, as D is additive on orthogonal projections, we may assume that
all the coefficients 2, are unequal. Suppose therefore

m

95'=i; xiei:f; ®Ss,

where the ¢’s and f’s are mutually orthogonal and the ’s and ¢’s are
all different. Then mf,z/zjsz(iz,-ei)fj. Since the 2’s are all diffe-
=1

rent, to each j there is exactly one 4 such that e,f,=f, and 2,=p,.

By symmetry e.f,—e,. Hence > p,f, is merely a rearrangement of
j=1

(=1

SiAe; . This proves the uniqueness of 7,. If x:iﬂ.iei where the ¢’s
i=1

are mutually orthogonal and 2,>>-0, then

1To@) 11 = 1| 54D | < max || S D) |
=max ;= ||zl

Hence T, is a bounded linear operator defined on a dense subset of C,
therefore can be extended to all of C. T, is positive because D is. If
xe€ A is normal, # can be imbedded in a maximal commutative self-
adjoint subalgebra C’ of A. Let C be the intersection of all such C’,
C and C’' are AW*-subalgebras of A. As x can be approximated with-
in both C and C’, T,(x)=T.(x). Let T(x) denote their common value.
T is unitarily invariant (i.e. T(uau-")=T(x) for every unitary u), be-
cause if 3 e, is an approximation of x then > 2ueu~' is one of waw~!
and D is unitarily invariant. 7 is also linear on each commutative 4 W*-
subalgebra of 4. We shall use this 7 to play the role of trace.

THEOREM 1. Let A be an AW*-algebra of type II,, Z its center.
Let N be a maximal ideal of Z. Then the unique maximal ideal M of
A contarning N is that generated by the p-ideal P consisting of all pro-
jections e with T(e)e N. Or, equivalently, M 1s the set of elements x with
T(x*x) € N.

Proof. Consider Z as functions on its structure space of maximal
ideals, Then N contains >0 whenever it contains a>b; therefore P
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satisfies (2) of a p-ideal. (1) follows [rom T'(e\//)=T(e)+T(/)=T(e/\f)
because [2, Theorem 5.4] N/ ~e~ -~ N/. Thus M is an ideal by
Lemma 1. Moreover M4 A as 1€ [P. Let M’ be a maximal ideal con-
taining M. Then M is maximal if and only if M,=M,. Take an ee M,.
If e¢P then T(e)=2 (mod N) with 71>>0. Choose an integer n and a
projection f such that T(f)=1/n< 2. f is a simple projection with
central carrier 1, that is, there exist mutually orthogonal projections
f=Ffy -, fn with f,+.--+ f,=1. Compare ¢ and f; there exists |2,
Theorem 5.6] a central projection g with ge’~¢f and (1—g)e<(1—g)f.
Then ¢f and, therefore, g are in M'. As

0=T((1-0)f)—T((A—g)e)=(1/n—2)(1-g) (mod N)

and 1/n—2<0, 1—g is also in M’'. Hence 1le M’, contradicting the
choice of M’'. Hence eeP and M=M is maximal. The uniqueness
follows from [5, Theorem 2.5].

Finally we assert that xe M if and only if T(z*x)e N. It is well
known that xe M if and only if 2*rxe M. Thus we need only to prove
that 0<7xe M if and only if T{(x)e N. Suppose 0 xe M. Given ¢ >0
there is a projection ¢, which is a multiple of z, such that ||z —ex]||<s.
T(e) e N because ec M. Then T(ex)<||z||T(e) is also in N. Therefore
T(x) e N. Conversely, assume T(x)e N, >-0. Imbed x in a maximal
communtative subalgebra C. Given ¢ >0 there are projections e, ---,
¢, in C and positive real numbers 2, ---, 2, such that

n
0<Ca—> de, < e.
i=1

T(e;))e N (i=1, ---,n) for 1,T(e,)<.T(x). Hence e¢,e M (i=1, ---,n), and
zxe M.

3. The quotient algebra A/M.

LEMMA 2. Let @, &, --- be o countable set of wmutually orthogonal
projections in A/M. There exist mutuwally orthogonal projections e, €., - - -
in A such that e,=e,+ M, (n=1, 2, ---).

Proof. By [5, Theorem 3.2] we can find a projection e, represent-
ing e,. If x is a representative of e, so is (1—e¢)x(l—e,). Hence the
proof of [5, Theorem 3.2] shows that g, admits a projection represen-
tative e, orthogonal to e,. A straight forward induction yields Lemma 2.

LEMMA 3. e=f (mod M) if and only if T(e)=T(f)=T(efe)=T(fef)
(mod N=M N\ Z). Consequently A/M satisfies the countable chain condition.

Proof. If e=/f (mod M) then 0<e—efeec M. Hence T(e)=T(efe)
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(mod N). Similarly T(f)==T(/ef) (mod N). But[6, Corollary to Lemma
2.1 efe=u(fe/)u" for some unitary «. Ilence 1'(e) =T(f)==T(efe) -
1(fef) (mod Ny. Conversely, if T(e) =T(f) -T(efe) =T(fef), then e
efeand f—=fef (mod M). As (e—fe)'(e—fe)=e—efe=0 (mod M) we
have, e=fe and e=f (mod M). The above result permits us to define
an ‘‘additive ”’ function D on the projections of A/M by setting D(¥)
to be the common value of T(e) at N where e+M=e. D(e)40 if 2540,
Hence A/M satisfies the countable chain condition.

LEMMA 4. Any set of mutually orthogonal projections in A/M has
a least upper bound.

Proof. By Lemma 3 such a set is countable. Let &, @, --- be
mutually orthogonal projections. We first prove a sharpened version of
Lemma 2:

(*) there exist mutually orthogonal projections e, e, -+« representing
e, @, -+, respectively, such that T(e,)=D(e,) for n=1,2, «.. .

Let f, be a projection representing & and g, a projection with 7(g,)
=D(e;). Compare f, and g,; there is a central projection 4, such that
g, >h f and (1—A)g,<(1—h,)f.. There are projections e; and e, such
that g ~e;>hf, and (1—-h)g ~e <(1—h)f,. From

Ofg_T(e;_hlfJ=T(e;)—-T(hlfl)=hl(T(gl)—T(fT)) ==0 (mOd MNZ)

it follows that e;==A.f, (mod M). Similarly e =(1—A)f, (mod M).
Hence e,—e,+¢ =f, (mod M) and T(e,)=D(g). Next let f,, 9. be pro-
jections <(1—e¢, and be such that &,=f,+ M and T(g.)=D(z). Repeat
the argument applied to f; and ¢, we can find the desired e.,=e,+¢);
(Since 1—e;>>h.g. and h,g9,, e; can be taken inside 1—e,. So is e,
therefore ee,=0). A simple induction yields (¥).

Let e=LUB,e,. We wish to prove that e=e+ M is the LUB of é,.

Or, equivalently, fe=0 if fe,—0 for all n. Choose representatives f,
fu fu +o+ of f so that f,e,=0 for all m <<n. Consider efe. We have

efe=cf.fe=g,fnfe==g,fe=g.,efe (mod M)

where g,=e¢—e;— +++ —e,. Imbed efe in a maximal commutative self-
adjoint subalgebra C and apply [2, Lemma 2.1] which states (in C):
given ¢ >0 there exists a projection %, which is a multiple of efe, such
that |lefe—hefell<e. efeis in M if all such A’s are.

h=efey=g.efey=g.h (mod M) .

Hence h=hy,h (mod M) and T(h)=T(hg,k) (mod M NZ). But T(hg,h)
=T(g9,h9,) <T(9,) and T(g,) can be made arbitrarily small when n is
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large enough. Hence T'(%):=0 (mod M N\ Z) and ~e M. This completes
the proof.

THEOREM 2. A/M is a finite AW*-factor.

Proof. To show that A/M is an AW™*-algebra we need to verify
two things: (1) every set of mutually orthogonal projections has a LUB
and (2) any maximal commutative self-adjoint subalgebra is generated
by its projections. (1) is the context of Lemma 4. (2) is equivalent to
that every element of A/M has a left and a right projection, or the
left (right) annihilator of every element is a principal left (right) ideal
generated by a projection. This last can be easily verified following the
argument used in [2, Lemmas 2.1, 2.2, and Theorem 2.3]. As A/M is
simple it must be factorial. It remains to prove the finitness. This
will be the case if we show that D(@)=D(f) if e~ f, since D is non-
zero on non-zero projections. This is a consequence of the following
lemma, a special case of [4, Proposition 2] if 4 is a W*-algebra.

LEMMA 5. Suppose e~ f. Then there ewists equivalent projections

e, [ representing e, f respectively.

Proof. Let #*z=¢ and Fx*=f. Let @, ¢ and f, respectively be

the representative of &, ¢ and f. Then
e, =uv"v=ex"ve ==ex™(xx*)rve, =™ [ \we, —=(e,x" f ) fwe) ,
and
fi=wxx® = fixa® f1=(we)(ex™ [") .

Let e be the left projection of ex*f, and f the right projection of
ex™f,. e and f are the desired projections, for

e=ee ==c(e,x” [1)(f@we)=(ex” [)(f1xe)=e
and, similarly, f=/f,.
REMARK. If an AW*-factor always possesses a trace, then any

AW=*-algebra of type II, will admit a trace, for T(x+y)—T(x)—T(y)
takes the value 0 at every maximal ideal of Z.
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