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1. Introduction* In the attempt to solve certain problems in mathe-
matical physics, such as diffraction of an arbitrary pulse by a wedge as
considered by Irvin Kay [1], one encounters a hyperbolic differential
equation of the type

(a) uxx - q(x)u=uxt - p(x)ut

where u(x, t) must satisfy the boundary conditions ιι(l, t)=u(0, t)=0 and
u(x, 0)=F(x). In attempting to solve equation (a) by separation of
variables, one is led to the consideration of expanding an arbitrary
function F(x) in terms of the eigenfunctions un(x) of the equation

u" 4- q(x)ιι 4- λ{p{x)u ~u') = 0

satisfying the boundary conditions u(0)=ιt(l)=0.
In the previous paper [2] by B. Friedman and L. I. Mishoe, it was

proved that a function F(x) of bounded variation for O^x^Λ. could be
expanded in terms of the eigenfunctions un(x) of the system u"-hqιι-h

λ(pu-u')=Q, u(0)=u(l) = 0, provided i^(0+) + F ( l - ) e x p ( - ί W ) = 0 . How-

ever, the question of uniform convergence of the series ^anun(x) to F(x)
— oo

was not considered. In this paper we establish sufficient conditions for

the series ^anun(x) to converge uniformly to F(x) for 0<C#<Cl

The following theorem has already been proved [2]:

THEOREM 1. Let F{x) be a function of bounded, variation for 0 <Lx <I1.
Let ιιn(x) be the eigenfunctions of the system

ivhere A is the operator dildx1Λ-q(x), and where B is the operator —djdx

Let q(x) be continuous and p(x) have a continuous second derivative.
Furthermore, let vn(x) be the eigenfunctions of the system adjoint to

(1). If
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(2) F(0+) + F(l-) exp ( -

then the series

( 3) Σ anun(x) ,
— CO

where

( 4 ) an

and where the Wronskian ω(x) of the two independent solutions uλ(x)
and u2(x) has the form

( 5 )

with

(6) C(λ)=λ-τexp ( -

converges to i<X#) at every point where F(x) is continuous in
At all other points, the series converges to i(F(x+ O) + F(x — 0)). If F(x)
does not satisfy the boundary conditions (2), then the series (3) con-
verges to

(7) | [ i ^ + 0 ) ^

In this paper, we prove:

THEOREM 2. // Ff(x) exists and is of bounded variation for 0 < f f < l ,
oo

then a sufficient condition for the series X anun(x) to converge uniformly
— oo

to F(x) for 0 < > < l is that F(0)=F(l) = 0.

2. An asymptotic form for C'(λn). Using (5) and the boundary
conditions u(0)=u(l) = 0 and %'(0)=?^(l)=l, we have

(8)

Then it follows that

( 9) C'{λ)= f C(Λ)= -C(ί) + J e - % ( 1 , ί) + e-λ/a-f-w1(α?, ί) at α?=

where

(10) ih^e^'hux .
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Now (10) transforms the equation (A-hλB)u=0 into w" Λ-yq + λp — — )w1==0.

It can be verified [2] that wλ satisfies the equation

(11) Wl=™&M>A-Ϋ s inh^(f- <) g(ξ)wί{ξ)dξ
K ' τ [/-(a )r(O)]1'1 Jo [φOKf)]1'1

where

(12) f/OsHί* + Γ

? ~ + n

S ζ γ2 + 9
λ — 2p (λ—2pY

and

(13) φ ; ) = l—p(x) , R{ξ, x)= \Xr(t)dt .

We note that gf(a?) and gf(x)= g(x) are bounded for |Λ| sufficiently large.

Also, if in (11) we make the substitution

(14) w1=λ

where σ=&λ, we note that Zλ{x) is bounded [2] for \λ\ sufficiently large.
Differentiating (11) with respect to Λ, we obtain

(15) w'=-
1 2[

4

If we substitute

(16)

we obtain that

(17) p(x) = --.

_ ;[r(a?)4-r(0)] exp (_—_̂ |tτ|a?) sinhi?(0, x)
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[r(«)r(ί)]1/2

-
Jo 2

exp [-j\σ\(χ-ξy] sinhi?(g, a?)

where gχξ)^-g(ξ). Now Λ[r(z)r(f)]-1/2 and hence

are both bounded by some constant C as |Λ|->oo. Also, exp [—h\σ\{x — ξ)~]
x cosh R(ξ, x), and exp [ — i\<y\(x — ξ)] sinh R(ξ, a?) are both bounded by some
constant C as |Λ|->oo and 0<Lξ<Lx. Using these results we obtain from
equation (17) that

(18) \p(x)I^2C2 + P- \*\g(ξ)P(ξ)\dξ4- ^\*\g\ξ)Zι{ξ)\dξ
\λ\ Jo |/| Jo

|/!| Jo 2 Ml Jo

If we set //(̂ ) equal to the maximum of |jt>(α?)| in 0 ^ a ; < I l , then we
certainly have that

„< 2Ci_ J^IJ
/ ^ 2 Γa; ^ 2 Γx

|Λ| Jo μ | Jo

Therefore, μ, and consequently p(a ) are bounded as |>ί|—> oo. Rewrite
equation (15) as follows :

) __[r(a?) + r(0)]sinhig(0,a?)

Jo

Jo
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The above four integrals are all at least O(/!~2exp [i|σ|α]). Also,

and

So it follows that

(20) w[(l, λ) = λ-1 cosh ([r(t)dtj + O(λ~2 exp [||σ|]) -—-sinh ([r(t)dt\

Using this result for w[(l, λ) in equation (9), we have, for

(21) C"(/l)=Λ-1

and for .

(22)

3. Distribution of the eigenvalues. Since by [2]

=λ-1 exp [-ta](exp Γ- Γp(ί>ftj -exp ϊ-kφ-a)+ ? p(t)dt\ +O(λ-ι)λ

=λ-1exv[-to]C1(λ) for ,^/i^0,

= ^ 2 exp [-;.δ](exp Γ — Λ(α — 6) — JV(ί)dίl — exp Γ j V ί O ^ l + Oμ-1))

for . ^ / ! ^ 0 ,

and where a and 6 equal 0 and 1 respectively.
The condition that λ be an eigenvalue is that C(λ) and hence either CΊ(Λ)
or C2(-ί) be zero. Equating CΊ(Λ) to zero we obtain

(23) expΓ-;(6-α)+ Γp(<¥<l=expΓ- [" p(t)dt\



276 L. I. MISHOE AND G. C. FORD

By taking the logarithm of both sides of the above equation (23) and
expanding the term log (1 + O^"1)) we obtain that the large eigenvalues
satisfy the equation

— = _ 2 \ p(t)dt + 2nπi-hθ(λ~1)9 n = ± N , ± N + 1 , ••• .
Jo

Hence the eigenvalues with positive real parts, if they exist, are given

by

(24)
Jo \n

The equation Cz(λ)=0 leads to the same result for those eigenvalues with
negative real parts. Consequently, all the eigenvalues are represented
by equation (24).

4 On the uniform convergence of series (3)* Consider equation
(4). In [2] it was shown that

(25) B

where

(O(λ~2) -h Oiλ'1 exp [ — λx]) for

Similarly,

(26) E

where

- λxj) for

Also from [2], we have that

(27) u1(x)=λ

and

(28) ^)=^" 1{exp U{x-1)- ("p(ί)dίl- exp

Using equations (26) and (27), for J $ ? Λ > 0 , we have
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(λn)

U c(4)

where 4 is bounded.

By equation (22), C'Q»)=O(tf), therefore -A =0(4) .
k (4)

Hence

(29) αn%1=5njV(f) exp ( - 4

where Bn=λ~ΊO(λn)A is also bounded. Using equation (26) for
and observing that 0(^~1 exp ( — 46)) is the indefinite integral of a bounded
function, it can be easily shown that

(30)

Consider now the first integral in equation (29). Setting H(ξ)=

p(t)dt) and integrating by parts, we obtain

(31) [H(ξ)
Jo

exp (~4f)
Jo

exp

Since jfΓ(l)=2Γ(0) = 0, then i?(l)=iί(0)=0, and the first term on the right
hand side of equation (31) vanishes.

Now

(32) H'(ξ)= p(ξ)F(ξ) exp (^p(t)dή + F'(ξ) exp

F'(ξ) is of bounded variation on (0, 1) and p'(ξ) is continuous on (0, 1).
Therefore, H'(ξ) is of bounded variation on (0, 1). Hence,
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where φ^ξ) and ψ2(ξ) are two bounded, positive, monotone functions,
either both nonincreasing or both nondecreasing. Now Λ'1 exiρ( — λnξ) is
bounded and integrable for 0<If <I1. Assume φ^ξ) to be a monotone
decreasing function, then

(33) [
Jo

[ δ V exp (-J»)eZ£-

where ξQ and & are on the interval (0,1).
Combining the results of (30) and (33) we have

J V - 1

where Σ f t A W is finite for 0 < # < l . From (24) it is clear that

λn=O{n) for n=±N, ±N+1, ••• Therefore

V a v (Ά— V
2u u'ntt'n\ *'J ZJ

where O(l) is a bounded function.

Since 0(1)
and the series Λf Σ converges, it is

nΔ
 N n*

clear that ^anun{x) converges uniformly to F{x) for 0 < ^ < l And

our theorem is proved.
We note, however, that while Theorem 2 is sufficient, it is not a

necessary condition for uniform convergence. For suppose F(0) and
F(l) differ from zero, then by equations (31) and (33) we have

00 °° ί Λ \
Σ α Λ = Σ O which may or may not converge uniformly.

-00 \ n J

In fact, a necessary and sufficient condition for the uniform con-
vergence of this series does not seem to be known.

The authors wish to thank Professor Bernard Friedman and Mr.
Bertram Levy of New York University, and Miss Noel Cousins of Morgan
State College for their assistance in preparing this paper for publication.
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