ON DISTORTION IN PSEUDO-CONFORMAL MAPPING
J. M. STARK

1. Introduction ; the method of the minimum integral. One aim
of the theory of functions of several complex variables is to reformulate
methods of the theory of conformal mappings in such a way that these
methods can be successfully applied to obtain results in the theory of
pseudo-conformal mappings, that is, in mappings of domains of the
(2, «++,2,)-space by n analytic functions of the » complex variables
2, +++,2,.0 The determination of bounds for the distortion of Euclidean
measures under pseudo-conformal transformation is one of the main topies
of this branch of the theory.

An important tool in investigations of this kind is Bergman’s method
of the minimum integral [3, p. 48]. The basic idea is as follows. After
an invariant* (non-Euclidean) metric is introduced in a domain B, the
ratios of the non-Euclidean and the FEuclidean measures of geometric
objects in B are expressed in terms of quantities 1 which are solutions of
the minimum problems :

(1.1) i~ min SB' Fldw .

Here f is an analytic function, regular in B and is subjected to certain
auxiliary conditions®, and dw is the element of volume (the element of
area in the case of one complex variable). Because of the specific choice
of the auxiliary conditions, these 1, possess the property that they are
monotone functions of the domain B, that is if B,D B then 1, =2;. As
a rule 1; can be expressed in terms of Bergman’s kernel functions of B
and its derivatives and thus can be calculated for special domains. These
4z are of much interest because they can be easily applied to obtain
distortion theorems ; for instance, if I B C A, where I and A are domains
for which the kernel functions K’(z,z) and K4(z,7) can be expressed in
a closed form!, then 1, <<2,<1, and %, 1, are known quantities. With
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1 In the present paper we consider only the case of two complex variables, n=2.
However, it should be stressed that the methods used here can be easily generalized to
the case of » variables, »>2. The additional difficulties which arise are of a purely
technical nature.

2 Invariant with respect to pseudo-conformal transformation.

3 By varying the auxiliary conditions, one obtains different 2z’s. As a rule upper
indices on Az indicate the auxiliary conditions. For details see § 2.

¢ In such case we refer to I and 4 as “ domains of comparison ”,
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the aid of such inequalities one can obtain bouuds for the ratio R of a
Euclidean and a non-Euclidean measure of an object j located in B (since
R is a known function of 2;). If B is mapped onto a domain B* by a
pseudo-conformal transformation and there exist domains of comparison
I, A**, such that I** CB* C A** then one can obtain also bounds for
R*—the ratio of the Euclidean and non-Euclidean measures of the object
7* which is the image of 5. It is clear that the bounds which one obtains
for R*/R are actually bounds for the ratio of the Euclidean measures
of j and 5* because the non-Euclidean measure is, by definition, invariant
under pseudo-conformal transformation. See [3, pp. 49, 56] and [4, p. 140],
where also special results are described in detail.

The more information one has about the various A, the more dis-
tortion theorems one can obtain. In §2 we derive relations between
the various 1. These relations involve sometimes the volume of the
domain B. In many cases it is even of interest to obtain bounds for
the 2; in one direction; in §3 we derive such bounds in terms of the
volume of B and the domains of comparison I and 4; ICBCA. We
apply these results (§ 4) to obtain bounds for the ratios of the Euclidean
and non-Euclidean measures of objects such as arc-length and analytic
angle, from which distortions under pseudo-conformal mappings of the
Euclidean measures follow.

The function

(12) JB(zlr zz)zK(B)(zu Zy3 21 Ez)/DB ,
where K ®=K(z,z,;2,2,) is the Bergman kernel of B, and
(1.3) Dy=TT5 — TP, Ty =[0" log K*®[0z,22,] ,

is known to be invariant under pseudo-conformal transformation [2, p.
55.]. Bounds for J(z,2,) were applied to obtain various distortion theo-
rems [5]. We conclude the paper in deriving bounds for this function.

As was mentioned before, the 1, are minimal values of (1.1) for
different families of analytic functions. The fact that there exist relations
which connect these 2, (see Theorem 1) is of interest because it throws
some light on the interconnection between the various families under
consideration. This, in turn, yields application to obtain distortion
theorems.

2. Relations between some minima 1;. Let B be a domain in the
2, 2,-space, and ¢t a fixed point, te B.

We shall consider certain minimum values defined as follows: Denote
by (1)-(8) the auxiliary conditions
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M fO-1 @ FO-0 @) LO-1 @ FH=0
6) fu0=1  © £ =0 @ | fdo=0

(8) u(df/0z), +udf[02,),=1, %, u, complex numbers ;
and let

(a) % (b) 4 (c) A3 (d) 4"

(e) 3™ (£) 4" (g) 2™ (h) &%

(i) %° (i) ¢ (k) (1) 4

(m) 2% ; (Aa=4;5(%), te B),

be the minima of integral:

@1 [, 1rrao=([{, 17, wrandydzdy. S+ i
k=1, 2.

for functions f € .Z*(B)° which are normalized at ¢t e B by the respective
auxiliary conditions

(a) (1); (b) (2)and (3); (c¢) (2), (4) and (5);
(d) 3); (e) (5); (f) (2) and (5);

(g) (4) and (5);  (h) (1) and (6); (i) (2), (3) and (6);
(i) (3) and (6); (k) (1) and (4); (1) (2) and (8);

(m) (8).

Let G be a domain containing a domain B, BCG. We denote by

(n) s (0) 1% (p) 45 (q) 2%
(r) oz (s) 2635 (=1,(t),teB),

the minima of the integral

(2.2) gg| Flde BCG

for functions f e .2%G) and normalized at ¢ e B by the conditions

(n) (1) and (7); (o) (2), 3) and (7);
(p) (2), (4), (5) and (7); () (@), (5) and (7);
(r) (2), (3), (6) and (7); (s) (2), (7) and (3).

5 That is, functions f such that (2.1) is finite. All integrations in this paper are in
the Lebesgue sense.
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THEOREM 1. Let B be any domain with finite Euclidean volume,
vol B< oo. Then

(2.3) (1/23)=(1/455) + (1/vol B)

(2-4) (1/25)=(1/255) + (As/vol B)- {(1/23") — (1/A3s)}
(2.5) (L/25")=(1/253) + (25 [vol B) - {(1/25™) — (1/455)}
(2.6) (57 = (1255 + (Z/vol B)- {(1/25™) — (1/235)}
(2.7 (/25 =(1/255) + (45 [vol B) - {(1/25") — (1/A55)}
(2.8) (1 22)=(1/252) + (A/vol B)- {(1/45") — (1/453)} -

(See [2, p. 30])

Proof. Since (1/24)=K®, (2.8) is given in [1]. To establish (2.4)-
(2.8) we first consider the following general minimum problem. Let
{¢()}, v=1,2,---, be a system of functions orthonormal in B° and
complete for <*B). Let ag,, p=1,2,---, ¢=1,2,---,n, be a system

of complex numbers such that ilaqvlz<oo for ¢=1,2, ---,n, and let
v=1

X, -+, X, be complex numbers. Finally, let 1 represent the minimum
of the integral

2.9) | irrao= 547, 4| revdo,
B y=1 B
for functions f e .<7*B) and satisfying
(2.10) S A, =X, , q=1,2,+--,n.

To obtain the A, which render (2.9) minimum, we set equal to zero the
derivative of

@1y S44-3% [L( iA,ak,—Xk>+fk( izya,ﬁ—i(k)]

v=m y=m

with respect to A4,, »r=1, 2, ---, obtaining
(2.12) A=0, v <m; Ay= 3 Lnln, v2m .
K=1

The L, are evaluated by substituting (2.12) into (2.10), and we obtain
(Cf. [2, pp. 41-43])

6 By “¢()(z) and ¢O(z) are orthonormal in 1B ” we mean that ij(”)(Z)w(W(z)dwzb‘w,

where §uy=0 for p+#v, Sw=1.
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/o)

where (X) is the column matrix of » rows having X, as element in rth

0 (XY
(X) (D)

(2.13) 1= —

row, (X) is the transpose of (X) conjugated, (D) is the square matrix
of n rows having > «,,a,, as element in rth row, sth column, and |(D)|

is the determinant of (D).
In the special case that 1 is the minimum of (2.9) for functions
fe «¥B) and satisfying at ¢{e B the auxiliary conditions f(¢)=

S 4,00 =0, f.(t)= > Ag(t)—1, and S Fdw—0, we have i—2%, with

v=1 y=1 B

G=B. Taking ¢"’=(vol B)~'? the last auxiliary condition implies A,=0,

and the auxiliary conditions may be written f} A,0™(t)=0, ZmAvgoE,:)(t)zl.
V=2 V=2

Thus 23; is given by formula (2.13) in taking m=2, n=2, X,=0, X,=1,
a,=¢™(t), and a,, =@ (t). Likewise 1, A5, 2% are computed from (2.13)
by taking m=1, n=1, X,=1, a,=¢™() for 1; m=1, n=1, X =1,
aw=cp§?(t) for 23'; and m=1, n=2, X,=0, X,=1, a,,=¢*(t), az,,x(pg:)(t)
for 2%. Equation (2.4) now follows by eliminating sums involving ¢®(¢)
and «pf,;)(t) from the expressions for A%, 1%, A%, 1%, as given by (2.13).
By use of (2.13), the other minima of the lemma are expressed in
terms of u,, u,, and sums involving ¢™(2) and its derivatives at z=t¢,
by taking for m, n, X,, «,, j=1,2,8, the values indicated by the
following table.

m‘n,Xl;erX33 a, a,, | as, ‘
S N AU S R S I
w2 3 .0 0 1 e» ¢ e
Ay 1 38 0 0 1 o ¢ e
A1 2 1 0 o o |
a1 o2 0 1 o g5 |
eh 2 2 0 1 ™ QDE«;) i |
5 1 2 0 1 o (P%) | |
i 1 1 1 ¢ i
%% 2 3 0 1 0 ™ Spg‘:) (Pg:)
A% 1 3 0 1 0 o <P§:) 905’:)
A0 1 2 1 0 s 502_:)
A0 1 2 1 0 o ¢
s 220 1 P gl uel)
AP 1 2 0 1 P wel +upl
A 1 1 1 %902)4-%2 g:)
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Equations (2.5)-(2.8) follow by combining the expressions just ob-
tained so as to eliminate u,, u., and sums involving ¢™ and its derivatives.

3. Upper bounds for the 14(¢) in terms of the volume of B and
domains of comparison.

THEOREM 2. Let B be any domain with finite Euclidean volume, in
the (=, z,)space such that vol B V< . Then iof I and A are any
domains 1B C A, we have

(3.1) (2 =1/ 2us) + (1] V)

(3.2) (1/25) = {1 — (A V)} - (1/2) + (B V I/ 2)

(3.3) 123 = (1=QG7[V)} - (1 25) + (A7) V) - (1/25™)
(3.4) N = (1= @/ V)} - (U 255) + (&) V) (1]25)
(3.5) AAE) = {1 =@V} - (1235) + (4™ V(L)
(3.6) 12 = {1 =A==/ V)}-(1/52) + (4] V)-(1/4)

at t=(¢, t)el.

Proof. Here we use the monotone properties:

(3.7a) <2<, for ICBCA
and
(8.7b) A4 =255 , ADB.

To establish (3.7b) observe that the functions competing to give 1,5 are
also admissible to the competition to give Azy.

Since the integrand in (2.1) is non-negative, and since AD B, (3.7)
follows. (3.1) follows from (2.3), V=vol B, and (3.7).

To establish (3.2)-(8.6) we proceed as follows. Each equation (2.4)-
(2.8) is of the form?®

7 It is interesting to note that inequality (3.6) is a relation between two quadratic
forms in the complex quantities (i, (s:

/i) =E-HE, §), HC, D=5 TS (nka, =0,

[2, p. 46] where H(¢, ) is invariant under pseudo-conformal transformations of G. It can
be shown also that

2 —_
WP =3 URCuln,  URSEK®/0zut], @=0),

which is invariant under pseudo-conformal transformations with Jacobian having absolute
value one at each point of G.

8 To obtain (2.4)-(2.8) from (3.8) we take for (s, 4B, 253+> , 459) the values (,lgl, .

* 041 0% o
AL, L), (G, AQL, A, 1), (%R, AL, AL, ARY) . (A0, A99, A0, X0) and (AP, AQ), AL, A9,

respectively.
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(3.8) (1/25)=(1/255) + (A3 /vol B)- {(1/45") = (1) 255)}

where the auxiliary conditions associated with 1$*° are among the auxiliary
conditions associated with A;;, and the first factor in the last term is
<{1. Hence 2,;,2>25", and the brace in (3.8) is non-negative. Using in

addition V>vol B, and (3.7), from (3.8) we obtain
3.9) (1/25) = (1 2pp) + (4 VI{(1]257) — (1] Zp0)}
= {1=("IV)} (1 255) + (22 VIA[)
(1)2) = {1 =(4/V)} - (1 d) + (A7 [V ZF)

which yields (3.2)-(3.6).
In order to obtain for the 1,(¢) upper bounds which are smaller than
the 2,(¢), we make the following

(3.10)  Assumption: If A is the exterior domain of comparison for B,
there exist domains V,, v=1, 2, ---, N, such that V,CA4, V,N\B

N

=0 for v=1,2,---, N. The volume of 3V, is known and is
v=1

different from zero. With this assumption we can take V=

volA—vol(Ef] V,) in theorem 1, so that we have

(3.11) volA>V>vol B .

4. Distortion theorems using assumption (3.10). There are domains
B for which the information about B contained in assumption (3.10) can
be used with advantage in deriving distortion theorems. Preparatory
to proving this, we make some remarks about distortion of arc length.

Let B Dbe a domain in the (z,, z,)-space, I B A, where I and A
are suitably chosen domains of comparison for B at ¢e B. Denote by
dS the element of Euclidean measure and by ds the element of non-
Euclidean measure in B of arc length in the direction (u,, u,) at ¢, defined
as follows :

2 _ ) 2 N
(4.0) de= 3, TP, ,  dS= 3 juf .

It was shown by S. Bergman [3, p. 56] that
(4.1) 1, <ds’/dS* <1,

where

=5 0TIV )

11
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p=2VD/(IP +TF),  D=TP TF ~ITPF.
We make use of the fact that at z=t¢
4.2) Ti=2/4% , Ti=2/25", D=(23)*/(43 - 2™) ,

[2, p. 45; 3, p. 56].
It follows that
_2V (%) (0% - %Y
(A5/23) + (A5/25*)
or

p=2{v/25- 2 [(1/25) + (/2]

The quantity D=T% -T2 —|T"® | is invariant under change of variables,
so that in addition to D=(21,)*/(2%-7%"), we also have (when replacing z,
2, by 2, 2, respectively,

(4.3) D= (25 /(45" - 45°)

Hence A%-29'=2%%1-29°, and

b= L s 1=,

where

P=2{V/ 1%/ 2% +1/ 10 a5}~ .
Using the monotonicity of the 1’s, we obtain from (4.1) the inequality
(4.4) <

where

qlzéx}a [8+1/5A—1/1= ) ,

G LR+ T )

P2 {1/ T+ BT}

Using hyperspheres centered at the point under consideration as domains

of comparison, (4.4) gives the distortion theorem (23) of [3, p. 57].
Another way to find bounds for ds*/dS” is to make use of the relation

(4.5) ds'= 3 TBuH,= 21

wov=1

[2, p. 53; 4, p. 142]. Indeed,
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(23 E)(X4[2D) < X[ 2D S ds* =252 < W [27 = (A3[11)(21/257)

or
(f2L)- ﬂz T8, < ds < (2)- z T,
hence
(4.6) (/2)- § (T + )11/ 1—p2) <ds'/dS’
<@ (TP +TP)1+11=pi)
where

p=2V D TP +TE),  D=TPTL—ITLF,
p=2D,[(T§ +19) ,  D=TPTL TP .
Using relations (4.2) and the monotonicity of the 2’s, (4.6) becomes

“.7) < dsdS <7,

Tl=é—1}[(1/2?£) +(12EN = 1=p%)

r=§ A+ AEIA+VT—pi)

PA=2{V BBV IS, D=2V I T )

Since 2,< 2, for I CA, I=£A, it is clear that (4.7) is a better in-
equality than (4.4).

Hence in estimating distortion of arc length it is of distinct advantage
to first make use of the relation (4.5). This is true regardless of what
domains are used as domains of comparison.

It is interesting to know that the inequality (4.7) ean still be im-
proved in many cases by using the relations of §3.

THEOREM 3. Let B be a giwen domain, I CBC A, where I and A
are domains of comparison for B at te B. Denote by dS the element of
Euclidean measure and by ds the element of non-Euclidean measure in B
of arc length in the direction (u,, u,) at t (see (4.0)). Then

(4.8) o <ds’/dS*<e,

where
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—_ ,f 1 : 2 1 1 e
ei=max {(4-D)] 3wl S +0)(1=1/1= 7))

e LM + (I +V1— p)

(4.9) I=max {(1/2), [1— A/ V) IA/23) + (4 V) (1/2P)}
D=2 (/1 (e )+ V1 w0 )}
Pr=2{V/ 20 B+ 1/ 290 351}
h=max {(1/2), (1/Xus)+(1/V5)}, Vs =vol B
vy=max {(1/4%), [1—(4/ V)I(1/2) + (&) Va)(1/A5)}
o= max {(1/25), [1— (1 Va)J(L/25) + (B V) (L2}
wy=max {(1/47), [1— (27 VIR + (4 V) 1[25")}
wy=max {(1/23"), [1— 27"/ V)1 /2%8) + ([ Vp)(1/35°)} .
REMARK. In particular if I and A denote respectively the hyper-
spheres
il + |l <<m?
and
|2, — eMe*r[* + |2, — e Me®:[* < M*

where
oge2<;, 0<m< M-(1—/ 2¢), 0<6,<2z,  v=1,2,

then the quantities 4, are functions of m; the 2, not occurring in (4.9)
are funections of e, M; 1{ is a function of ¢, M, 0,, u,, v=1, 2; the A
not occurring in (4.9) are functions of ¢, M, 0,, ¢§”, ¢{”, ¢, =1, 2,
where

o= (e e S M- [T oy,
(4.10) ) k=0, 1,
2 — -3
2= SBSBI:Mz - Z“f €- Mei"v)(& - Me_i%)] da)s-dwg

and A2 is a function of ¢, M, 0,, u,, ¢§”, ¢{7, ¢, o=1, 2.

Proof. Using (4.5) we obtain :
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\ _
(4.11) S TPun,— AP —=ds? < 1P

" 1
= (YA = (1) 3% T,
Applying transformations of the type
(4.12) 2¥=e" cos 0-z,+¢"28in 0-2,
2f=e®isin 0-2,+ 6" cos 0-2,

in B and I, and using (3.6), we obtain

(4.13) max {2-1) 3P, LB+ 18 1—1 1= )}

<ds)dS*< ; BTL +TLY1+1/1— p2)

where
P=20/D, (TP +TP),  Dy=TP TP —ITPF,
or=2v'D, (T +T3), D=T% -Tp —|TP}

and [ was defined by (4.9). Using (4.2), (4.3), and (3.1)—(3.6), and taking
into account the monotonicity of 14(¢) as a function of the domain, we
deduce that (4.13) implies (4.9).

To complete the proof of the theorem, we compute the 2’s for the
case when I and 4 are hyperspheres, using formula (2.13) as explained
in the table of §2, and a similar consideration for the a,;’s.

REMARK. In the case when assumption (3.10) is satisfied, it is
sometimes better to use (4.8), instead of (4.7). To prove this, we con-
sider the following example.

Let S, S,, S;, S, denote the hyperspheres
Sit el +la—el <(21/ 2 ¢—1)
Syt P +lal<<A-v2e)
Syt |a—elt+lz—elt<1
S: o la—ef+lr—el'<(1—7)

where 1/8<¢j<1/2, and 7>>0 is sufficiently small.
Let B be a domain satisfying

SZCBCs3~Sl ’ S3_SY)CB ’
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and let p>>1 be such that (vol B)=p-(vol S,). For such a domain B we
are able to show that (4.8) is a better inequality than (4.7).

To show that such a domain B exists, we must show that S,CS,-S..
It is clear that S,CS;. To show that S, S,=0, observe that the
frontiers of S, and S; have a point in common, namely the point
[AV2)v 2e-1), (11 2)1/ 2¢,—1)], the centers of S, and S; are
the same, and

(4.14) [2:(radius of S,)]+ (radius of S,)=(radius of S).

Hence S, N\ S,=0, S,CS;—S,, and B exists.

Consider distortion of arc length at the origin in the direction
u,=1, u,=0. As exterior and interior domains of comparison at the
origin we take the eccentric hyperspheres

A Mz le,— eMet% |2 < M?

0§e=<é, M>0, 0<0,< 2z, k=1,2, and
I: élz,—&mei¢v12<m“

0g52<%, m>0, 0< g, <27, k=1, 2.

From the relation S;—S, B, it follows that any exterior domain
of comparison A contains S,. Since the quantities 4 are monotone
functionals of the domain, it is clear that the best choice for 4 is A=S;,
from which it follows ¢,=e.

To obtain the best bounds for distortion of arc length from (4.7),
I has to be chosen in such a way that the quantities

A= ; rmi(1—26%°, 20{1=Né_ *me(1 __252)5/(1 -6,

pra é (1= (1=,  Aa=(1-28)/(1-8&),

120 = (1~ 28°) (1 — &%)

are as large as possible.

From (4.14) and since BCS;—S; it follows that B contains no
hypersphere of radius greater than the radius of S,. Hence m <(radius
of S,), and if we take I=S,, we have 6=0 and a best choice for interior
domain of comparison when estimating distortion of are length by (4.7).

Repeating the above considerations, it is easily shown that A=S;
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and =S, is also a best choice for domains of comparison when estimating
distortion of arc length by using (4.8).
On comparing

4.7) 7 < ds*dS* <,

and

(4.8) ¢, < ds*ldS* e,

we find that
o (D) St a1 om
A S O )

py=2 2% since AG=25"", %'=2%" in this case.

e TM0A=2¢¢ 6 o _(1-2¢)
474 6(1—¢%) M1 -2 (1—¢) (A—-¢&)
2/ Vy=1/p where Vy=volB=p-(voll), p>>1.

(1/2P)= i azK(A_)u =KW= 6(1+2¢%)
»¥=102,02, *

=D nzMﬁ(l —-232)"’

a1, 60428 | wM(-20F (1—¢)
nT e BM(1-28F  61-) (12

or
1 (1+2¢) 1, 1
4.11 G b dhee) L .
(41D N (1-2¢) g < <2
L@ v1—m
KFS 2 ,
UML) (L1 p)
s >V d— L. m(1—2¢) ,
2___.. A..._( / B) 4 p. (VOl I) 2
W 1 2 maezy_1, (+v29
e p P(l—y/ e 2 p (1-v2¢’

12y 2)e<1y 2.

Thus our assertion is proved.
The above theorem can be used to obtain new bounds for distortion
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of other quantities depending upon arc length, as for example the
analytic angle between two vectors. For this purpose we introduced
the following concepts : (see [2, p. 8])

Let X=(X,, X.), Y=(Y,, Y,) represent two vectors with initial points
at the origin, in the (z,, 2z,)-space. If X,=a, + 040, Y=, +1b4ss, k=1, 2
(ay, b, are real, v=1, 2, 3, 4), then the Euclidean measure F of the angle
between X and Y is defined by

/) 2
(4-153) cos F'= - Zg,k*‘,f s = Z
V' Sk )b} > k=1
Using the notation H(X, Y)=H[(X,, X.), (Y, ,)|=XY. +X,Y,, S(X)==
S(X,X.,)==V H(X, X) (4.15a) can be written in the form

(4.15b) cos F'= Z# {H(X, Y)} , Where <#=real part.

S(X)-S(Y)

We define the non-Euclidean measure f of the angle between X and Y
to be the, so-called, analytic angle. [2, p. 9]. This is the Euclidean
angle between the two analytic planes which contain the vectors X and
Y, respectively. It is known that

|H(X, Y) sin f= XY= X0

THEOREM 4. Let B be a domain I CB A where I and A denote
the hyperspheres

[l + |2, <m*
and
|2, —eMet|* + |z, — eMe®* < M*

Oﬁ_<;e2<; L 0<m< M-(1—e1/ 2), 0<0,< 2z, »=1,2,
respectively. Let F denote the Euclidean measure and f the non-Euclidean
measure in B of the analytic angle between two vectors at (0, 0). Then
(4.17) re(m[M)° <sin F/sin f < (M/m)*-a-B[r
where

o= min {(1-2¢)/(1-¢), p,(1—-2¢)/(1+2¢")} ,
F=min {1-¢), p,(1+2¢")/(1+6¢")} ,
r=max {(1—2¢)~", p,-(1—2¢")"1} ,
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pr=(V/vol [} >1, p,=(vol A/V)>=1, V>=vol B.

Proof. Denote the vectors mentioned in the theorem by X=(X,, X.),
Y=(Y,, Y,). From (4.16) and analogous considerations using Bergman’s
metric we have

: XY, — X Y[ : 1/D leYz" Xzyll

4.18 XY= XY _VDiad, ™ Ay
(4.18) SIS x)-8(Y) SInS=" (xX)- A(Y)
where

X)=H(X, X)= 3 T®X,X,,

wy=1

T 5 =T =0"log K2, 7)/32,0%

and
DzTﬁTﬁ_ITﬁlz .

Thus
(4.19) sin Flsin f—=.5(X)-.(Y)[[S(X)-S(Y)- /D] .

Bounds for .&/(X)/S(X) and .&#(Y)/S(Y') can be obtained as in the
Theorem 3, which is a theorem on the distortion of arec length. Using
(4.5) first with u,=X, v=1, 2, then with u,=Y,, v=1, 2, applying to 4
a transformation of the type (4.12) and calculating the T, T.7 for A
and [ of this theorem, we obtain

(4.20) V' 8 m[[M(1-2¢Y] < S (X)/S(X) <16 25/(wm’)

and the same for <7 (Y)/S(Y).
By dropping the terms involving A’s with double subseripts in (3.1)-
(8.3) and using the monotonicity of the A’s, we obtain

(4.21) s, G <Zv, SR =Sw
where
u=min {A, v} ,  v=min {7, o, 2%},
w=min {17, p;- 23"} .
Making use of (4.2), (4.17) follows from (4.19), (4.20), and (4.21).
REMARK. As in the case of arc length (Theorem 3), an example

can be given which shows that an upper bound for the volume of B is
of advantage in estimating distortion of analytic angle.
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Another distortion theorem follows from the following considerations.

Under a pseudo-conformal mapping of a domain B* of the (zF, z)-
space onto a domain B of the (z,2)-space, the Bergman kernel
KB (z¥, z5;72F, 27) transforms as a relative invariant; that is,

Kz, 2%, 2)=K"ef, 2 35, 7) - a;é ":25‘"
1y <2

and we obtain an absolute pseudo-conformal invariant if we consider

(4.22) Ju(21, zz)EK’UB)/I)BZ'&1 _12?1/(2%)3 , D, ET(ﬁB) : Té‘;) - ‘ng) I*,

where K*=K"¥(z, 2,;%,72,) is the kernel function of B, and T'2=
[0*log K®[2#2,02,] [2, pp. 51, b5]. Since J, is a pseudo-conformal in-
variant, we can use the level surfaces of J, (when J, is not a constant)
to formulate the following type of distortion theorem®. If a domain B*
is mapped psendo-conformally onto a domain B for which ICBCA,

then
(4.23) a, gt]g*:']]g:z%‘ ,]%)1/(1}3)32112
where

G=(E AN = A2

[3, p. 48; 5].
With the aid of the relations of §38, (4.23) can be sharpened in
many cases.

THEOREM 5. Let A be an exterior domain of comparison, I an interior
domain of comparison with respect to a given domain B of (2, z.)-Space.
Then for the pseudo-conformal tnvariant

Sy=KP[T¢ T — T )
where T 2=73"log K‘®[22,9%,, we have at t € B the inequality
(4.24) d,<J,<d,
where
A= R, d,=1/[v-w-(2})7,
h=max {(1/2Y), (1/24:)+ 1/ V)} , V,=>volB,

9 A similar procedure and an analogous theorem are valid in the theory of functioas
of one variable z. For, if G is a region in the z-plane, then the quantity

¢ =(1/K®)-[62 log K& /0202], KO=K®)(z, z)
is a conformal invariant such that —2¢ is the Riemann curvature of the metric
ds2=K@(z, ). [dz|?, [4, p. 36].
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v=max {(1/2%), [1—V)IQ/2%)+ (A V)1 1D},
= max (L2, [1— G VU5 + () V(L)

The proof consists in combining relations (4.22), (4.0), (3.1), (3.2)
and (3.3).

In comparing

(4.23) a=Jp=a,
and
(4.24) d=Jy=d,

we can show that in many cases (4.24) is better than (4.23) for obtaining
distortion theorems, as follows.

Let B, I, A, be domains as described in the remark to Theorem 83,

(vol B)=p-(vol I), p>1.

Computation yields
T ___ 1 2 4 233 (8 1 2 6 2Y5 2
/14—-—27rM(1-2e) , /1;1=67TM(1—2€)/(1—5),
B L RMA=2 (A=), = Lea—aeyia2e)
o é FM(1-28) (L 28)(1462) ,  G=1= mm,

where we now have M=1, m=(1—1/2¢). Thus
hZ=1/(vol By=1/[p-(vol I)]
v [2(vol BYI(L/A5") =6(1 +2¢)/[7(1 — 26+ ]
w=[47/(vol B)]-(1/21")=6(1 + 6¢")/[z*(1 —2¢") (1 + 2¢°) - ¢]

so that
(4.25) »-(ZIE=ZE11- 2%1.?)10—\%_1;{-_»693 ’
q e
(4.26) dl__:(k.&)3> (liKzs) 18<e<1/2.

o OB E
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