
NON-RECURRENT RANDOM WALKS
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Introduction and Summary, Let {XJ i = l , 2, be a sequence of
independent and identically distributed integral valued random variables
such that 1 is the absolute value of the greatest common divisor of all
values of x for which P(Xi=x)^>0. Define

Chung and Fuchs [5] showed that if x is any integer, Sn=x infinitely
often or finitely often with probability 1 according as EXi=0 or φθ ,
provided that E\Xt\<i^ . Let 0<^EXt<^oo , and A denote a set of
integers containing an infinite number of positive integers. It will be
shown that any such set A will be visited infinitely often with proba-
bility 1 by the sequence {Sn} n=l, 2, . Conditions are given so that
similar results hold for the case where Xt has a continuous distribution
and the set A is a Lebesgue measurable set whose intersection with
the positive real numbers has infinite Lebesgue measure.

A Theorem about Markov Chains, Let {Zn}, rc=0,l, ••• denote a
Markov chain with stationary transition probabilities where each Zn takes
on values in an abstract state space X. The distribution of ZQ is given
but arbitrary. Let Ω denote the space of all possible sample sequences
w, P the probability measure over Ω and P ( | •) the conditional proba-
bility. The following theorem appears in [4].

THEOREM 1. Let A be any event in X. A sufficient condition that

(1) P(Zn e A infinitely often) = 1

is

(2) inίP(ZneA for some n\Zo=z)yθ .

Since [4] is not readily accessible, we shall prove the theorem here.

Proof? We have with probability 1 that for j^>N
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( 3 ) P(Zn e A for some n^N\ZQ=z0, , Z,=z3)

^>P(Zn e A for some n^>j\ZQ=z0, , ZJ=ZJ)

=P(ZneA for some n\Z0=zj)

using the Markovian and stationarity properties. As j—>oo the left
member of (3) approaches with probability 1 the characteristic function
b# of the event

BN={Zn e A for some n^>N}

(see Doob [8, p. 332]). The right member of (3) is bounded below by
a positive number on account of (2). Hence bN=l with probability 1;
that is, P(BW) = 1. This being true for all N we have

P(lim 5*)=lim P(BN)=1.

But limfi^ is the event that Zne A infinitely often. This proves the

theorem.
If X has only a denumerable number of states and if all the states

belong to the same class (that is, for every pair of states i and j there
exists integers nλ and n2 such that P(Zn=j\Z0=i)P(Zni=i\Z0=j)^>0) it
can be easily seen that (2) is both a necessary and sufficient condition
for (1). In fact, the probability in (2) must be 1 for all states z.3

Sums of lattice random variables* Let {XJ i = l, 2, be a sequence
of independent and identically distributed integral valued random vari-
ables such that 1 is the absolute value of the greatest common divisor
of all values of x for which P{Xi^x)y>Q. Consider the sequence
{Sn} n=0, 1, ••• , where we set S0=0 with probability 1 and

The sequence {Sn} is then a Markov chain with stationary transition
probabilities and a denumerable state space. Because the transition
probabilities are stationary, we shall simply write

even though ίϊo=O with probability 1.
We now state as lemmas some known results to be used below.

LEMMA 1. Let {Zn} n=0,1, be a Markov chain with a denumerable

state space. If ^P(Zn=j\Z0=i)<Cc& for all i and j , then

3 We are indebted to J. Wolfowitz for this remark.
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(4) P(Zn=j for some

When EX^μ^O, a result of Chung and Fuchs [5] implies that

(5)

for all * and j . Therefore, on replacing Zn by Sn in (4) and noting
that P(Sn=j\S0=j)=P(Sn^0\S,=0) we have

± ( \
(4') P(Sn=j for some n\S0=i)= --71"1

Lemma 1 is a special case of a relation given by Doeblin [7] (see Chung
[3]). However, we shall sketch a direct proof.

Proof. We define P(ZQ=j\ZQ=j) = l. Then we have

( 6 ) P(Zn=i|Zo=i)- Σ P ( ^ = i , Zrφj for

=i, ^ % " for
711—I

On summing over w in (6) and interchanging summations on the right
we get

(7) ±P(Zn=j\Z^i)=±P{Zm~j,Zrφj for

l^r<m)(l + Σ P(Zn=j\Z0=j))
71=1

^P{ZnH for some n)(l + ±P(Zn=j\Z0=j)) ,
11=1

the relation (4).

LEMMA 2. // JEX t=μ>0, ίΛew

(8) limΣP(Sn=i|Sf0=i) - 1 > 0 , ^ O

Lemma 2 is due to Chung and Wolfowitz [6]. We now prove the
following.
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THEOREM 2. (i) If 0<^EXi=μ<Coo and A is any set containing an
infinite number of positive integers, then Sn e A infinitely often with pro-
bability 1.

(ii) // EXt = -f oo , then there exists a set A containing an infinite
number of positive integers such that SneA only finitely often with pro-
bability 1.

Proof of ( i ) . Since 0<//<oo , by (8) there exists a constant
independent of i, and an integer J(i) such that for all j

(9)
n-l

Therefore by (40 and (5)

(10) P(Sn=j for some n\S0=i)>-£-, , j>J(i)
1 + c

where e' = ΣPίSn==0|S0==0)<<». Since A contains infinitely many posi-
n = l

tive integers, it always contains an integer greater than J(i) for every
i. Therefore (2) holds and part (i) of Theorem 2 follows from Theorem
1.

Proof of (ii). If /*= + oo, then from (8) there exists an increasing
subsequence {i3} of positive integers such that

(11) Σ ±P(Sn=ij\S0=0) = ± ΣiχS»==ij|S0=0)<co .
.7 = 1 n = l n=l j=l

Let A={ij}. Now (11) is the expected number of n such that SneA.
Since this expectation is finite it follows that the number of n such
t h a t £ w e A i s finite with probability 1. This completes the proof of the
theorem.

Random variables with continuous distribution functions* Consider
now a sequence {Xt} i = l , 2, ••• of independent, identically distributed
random variables possessing a common density function f(x). Again

let {Sn} n=0,l, ••• denote the cumulative sums Sn=SQ-h^Xi where
1 = 1

S0=0 with probability 1. Our previous remark pertaining to the
notation P( \S0=x) applies here also. Suppose £ ' X i = ^ > 0 . Then a

oo

result of Chung and Fuchs [5] implies that iϊ(#) = ΣP(Sw<la;)<oo for
n = \

all x. Since H(x) is non-decreasing, H(x) exists everywhere except
on a set NQ of Lebesque measure zero. Let
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= 1, say, xeN,,

=0 xeN,x<C0

We shall say that f(x) satisfies condition / if there exist constants
Kx and K2 such that

(12)
a3-»oo X—>σo

and if

(13) lira h(x)=0
X—>— oo

The behavior of h(x) for large \x\ has been investigated in various
papers on renewal theory. Smith [10], for example, has shown that if
f(x) = 0 for x<CQ, f(x)->0 as |#|->oo and f(x)εLι+δ for some o > 0 , then

lim h(x)= , μ<i°°
μ

= 0 , μ== + oo

More recently, Smith4 has shown that the condition that f(x) = 0 for
x<^0 may be dropped, and furthermore (13) holds. We now prove the
following.

LEMMA 3. // EXi=μ<lco , f(%) satisfies condition I, A is any
Lebesgue measurable set of positive real numbers having infinite measure,
then

(14) inf P(Sn e A for some n \ S0=x) > 0 .
-oo<rB<oo

Proof. For every x, let Ax be a measurable subset of A with
0 < C 1 < ? ^ ( J 4 X ) < C 2 < C Ό and such that for a given number Lλ all points
in Ax exceed x by at least LL. Such a set exists since m(A)= oo. For
any ε > 0 it follows from (12) that there exists an L^L^ε) such that

(15) 0<(l^e)K1c1<ΣiP(SneAx\S0=x)<(l + ε)KA<^ .

Let A'x be any measurable set with m{A'x)<Lc% and such that for a given
L2 all points in A'x are exceeded by x by at least L>. By (13)δ there
exists an L2=L2(ε) such that

(16) llP(SneA:\S0=x)<6.
71 = 1

4 Communication by letter.
5 Added in proof: Condition (13) can be dropped; (16) follows from the fact that

lim fiΓ(a?) = O whether (13) holds or not.
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Let L = m a x (Lx, L2). For a given y e Ax let Aι

xy=Ax f\ [y—L, y+L),

4=4Π[l/+ί^) and 4LMΠ(-^^-i).
Then from (15) and (16)

(17)

\Sΰ=y) + ± P(Sn e
l

The first term on the right of (17) is finite by the result of Chung and
Fuchs [5]. Therefore, since (17) is true for all yeAx we have

(18) sup ±P(SneAx\So=y)<c3<™

Let F£\B)=P(SυeB, Sυ,$Ax for l<Lv'<v\S0=x) where B is any
measurable subset of Ax. Define P(Soe Ax\SQ=y) = l if yeAz and = 0
otherwise. Then we have

= Σ ί Σ
v = l JAX n = v

Σ>P(SneAx\So=x)= Σ Σ t P(SneAx\Sυ=y)F^(dy)
w=l n = l υ = l JAX

,eΛISv=y)F™(dy)

^ Σ \ ±P(SneAx\S0=y)F
v = l JAχ n = Q

^ Σ F2\AX) sup Σ P(Sn e ̂ , I Sa=2/)

^ for some n\SQ=x)(l + c3).

This being true for all N the lemma follows on account of (15).
We now state the following.

THEOREM 3. ( i ) If 0<^EXί=μ<^&>, Condition I is satisfied, and
A is any Lebesgue measurable subset of the positive real numbers, then
Sne A infinitely often or finitely often with probability 1 according as
m(A) = oo or <^ oo .

(ii) If μ=cn, then there exists a measurable subset A of the positive
real numbers with m(A) = cΌ such that SneA for only finitely many n
with probability 1.

Proof of ( i ) . If m(A)=™, the result follows from Theorem 1 and

Lemma 3. If m{A)<™ it follows from (15) that Σ-P(Sn e A)<oo .
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Since that is the expected number of n such that Sn e A , the assertion
follows immediately.

Proof of (ii). A result due to Blackwell [1] asserts that for any
fixed

Using this result the rest of the proof is similar to that of part (ii)
Theorem 2.

Unsolved problems* Let {Xt} be a sequence of independent and
n

identically distributed r-dimensional random vectors, Sn= ΣX* > B be

any Borel set in the r-dimensional Euclidean space Rr. It has been
recently proved by Hewitt and Savage [9] (in the lattice case also by
Blackwell [2]) that the probability that Sne B infinitely often is neces-
sarily either 0 or 1. It would be of interest to determine for which
sets the probability is 0, and for which the probability is 1. Our results
give a criterion for this dichotomy in certain cases in Rι, namely in
the lattice case where EX% exists and is finite (Theorem 2) and in the
continuous case under more restrictive conditions (Theorem 3).
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