SIMPLIFIED PROOFS OF “SOME TAUBERIAN THEOREMS”
OF JAKIMOVSKI

C.T. RAJAGOPAL

1. Introduction. In this note, the preceding paper (mentioned in
the title) will be referred to as [J], the papers or books numbered 1, 2,
.- in the bibliography concluding [J] will be referred to as [J1], [J2],---,
while those in the numbered list of references at the end will be re-
ferred to by their numbers in square brackets.
The notation in [J] is retained with a slight simplification as follows.
As in Hardy’s Divergent series [J3], a sequence {t,} is called a Haus-
dorff transform of another sequence {s,} when there is a sequence {z,}
such that

(1) Anty= g1, 4%, .

If « is a real number, the special case of {¢,} defined by (1) with g,
=(n+1)"*, called the (H, «) transform, will be denoted by H® where
s denotes the sequence {s,}. Since two Hausdorff transformations are
commutable, the operator H® is such that H*HP=HPH*=H®%*® and H°
is the identity operator.

From the Abel or (A) transform of {s,}, defined as the left-hand
member of

(2) (1-—90)5:; 8,07 =(—1)7(L— )2+ :2 Ars, o

0<£l7<1, p=1y 27 3; R}

we deduce the equality (2) by induction on p. It is in the form of the
right-hand member of (2) that the (A) transform is used in this note.

For any sequence {s,}, summability (H, «) to a finite value [ and
summability (A) to [ have their usual meanings as in [J].

2. The fundamental theorem in [J]. This theorem ([J], Theorem
2) may be restated as follows with its non-trivial parts separated, so
that Tauber’s first theorem ([J3], Theorem 85) emerges as the case
k=1 of the first part, with the conclusion of the convergence of {s,}
restated as that of the (H, —1) summability of {s,}.

THEOREM 1. (a) If (i) {s.} is summable (A) to I, (ii) for a positive
integer k, n*d’s,_ ,=o0(1), n — o, then {s,} is summable (H, —k) to L.
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(b) Conditions (i) and (ii) are also necessary for {s,} to be summable
(H, —k) to L.

For establishing this theorem, Jakimovski’s tools are (1) the Tau-
berian technique embodied in Lemma 2 of this note with the additional
complications necessary to bring in n?4%s,_, to take the place of nd’s,_,,
(2) the technique of repeated differences (or differentiation) implicit in
his appeal to one particular case of a theorem proved by Parthasarathy
and Rajagopal ([J6], case k=[+1 of Theorem C). However, the second
technique, while generally useful in proving Tauberian theorems of the
Hardy-Littlewood class, is not required at all for proving the original
Tauberian theorems; and it is perhaps not very satisfactory to use it to
prove Theorem 1 which is essentially of the latter class of theorems.
The present note supplies a new proof of Theorem 1 whose merit is
that it depends only on Lemma 2 as it stands and on the interpreta-
tion, in Lemma 1, of n(n—1)---(n—p+1)4%s,_,, which is asympotically
equal to n?4%s,_,, as a Hausdorff transform of s,. Although the content
of Lemma 1 is due to Jakimovski, the proof of Lemma 1 as it appears
here is a simplification of his proof, resulting from the symbolic repre-
sentation (5) of the Hausdorff transformation of s, in question, sug-
gested to me by Mr. M. R. Parameswaran.

LEMMA 1. If k is a positive integer and
(3) ta= (1) 511,
then t, is related to s, by (1) with

(1w
(4) rm=(=17(})

that is, {t,} in (3) s the Hausdorff transform of {s,} corresponding to
the {p,} defined by (4), and further we have symbolically

(5) (ty =V H v — )20 (K

(S arm)s, Sanmo,
r=0

r=0

the order of factors in (5) being immaterial.

Here I must record may indebtedness to Dr. Jakimovski who has
pointed out an implication of the first part of (5), namely, that
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< )Ak —_ (,, ) Z Ic—r+1H—k+rs
k n-—lc = k+1 ’
where S™ are Stirling’s numbers of the first kind ([1], p. 142, (3)).

Proof. The relation between s, and ¢, is proved directly, starting
from

and showing that substitution for ¢, from (3) leads to (1) with the {z,}
in (4).
Equation (5) follows from the faet that (4) can be written:

P = ("'”1) ("+1)( 92'11)(1”&1)'"(1*%10—1)'

Now the factors (n+1)*, 1—(n+1)"}, 1-2(n+1)7% -, 1—k(n+1)7",
taken successively instead of g, in (1), make the {¢,} of {1} the Haus-
dorff transforms of {s,}] corresponding to the operators H* H'— H',
H'-2H*, .--, H'—EkH" respectively. Hence the {¢,} of (3) is the pro-
duct of the several Hausdorff transforms last mentioned multiplied by
(—1)%/k!. We thus have the representation in (5) of the {¢,} in (3),
and we can take the factors in this representation in any order since
Hausdorff transformations are commutable.

LEmMMA 2. If {s,} is such that nd's,_,=0Q), then, for x=1—n"",

lim sup Z‘,As, = i Als,._lx"lgzr lim sup |nd's,_:|
r=0 n—>00

N—rce

where t is the ‘ Tauberian constant’ :

r=C+ ZS e~ Vdx , C=FEuler’s constant.

This result, due to Hadwiger ([J2], inequality (15)), is a particular
case of a more general result (e.g. [2], case a=1, A,=n, ¢*(u)=e* of
Theorem 2(b)).

Proof of Theorem 1. (a) We may suppose without loss of gene-
rality that /=0. For, we have only to consider, instead of {s,}, the
new sequence {s,—!} which is clearly subject to hypothesis (i) with
{=0 and also hypothesis (ii).

First, we take 4*s,_, instead of 4'%,_, in Lemma 1 and obtain, for
r=1—n",
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(6)lim sup (1—2)7*"!| 3} 4%, ,— i A3, 7| < 7 lim sup (1 —2)~**'|nds, |

= lim sup |n*4*s,_.| .

Ne-oo

Next, we take p=Fk in (2) and get
(7) (—1) (A=) S A, =(1—a) St s,a"=0(1) , @& —1—0,
r=0 r=0

as a result of hypothesis (i) where (=0 according to our supposition.
Using in (6) hypothesis (ii) and (7) with x=1—n»"', we obtain

n""d""sn_k+l=-—(1—90)"‘“51’1A"s,_k=o(1), n — o,
=0

If k=1, we infer at once that s, converges to 0. If k>2, we repeat
the foregoing argument with £—1, £—2, ---, 1 successively in place of
k and find that n?4%s,_,=o(1) for p=k—2, k—38, ---, 0, thus finally
drawing the same inference as before. After this we use the fact,
following from n*4’s,_,=o(1), 1 < p <k, taken along with (5), that

(8) (-_;)_]!-‘)I»)H‘”(H"—H‘)(H°~2H1)- < (H'— le)sE(;L))A”sn_,,:O(l)

as n —> o for p=1,2,.-., k, and prove successively that H's, H™s,
.-+, H™*s all converge to 0=I.

(b) If {s,} is summable (H, —k) to{, then H %s, p=Fk, k—1,--+, 0,
are obviously each convergent to/ and (8) necessarily holds for p=k;
also {s,}, being convergent to /, is necessarily summable (A) to I.

3. Remarks on other theorems in [J]. It may be pointed out how
(5) in conjunction with the notation of this note simplifies the presenta-
tion of Jakimovski’s main theorems ([J], Theorems 3,5) restated in this
notation as Theorems 2,3. The simplified presentation, like the one
given by Jakimovski, depends only on the results of the preceding sec-
tion, O. Szasz’s theorem for the product of a regular Hausdorff method
of summability and (A) summability ([J], Theorem D, generalized by
Rajagopal in [3], Theorem I), and finally an idea whose simplest ex-
pression is the lemma which follows.

LEMMA 3. If {s,} is summable (A) to | and the sequence denoted by
H*s, where « is any real number, is bounded on one side, then H**'s is
convergeni to .

The case a=0 of Lemma 4 is classical, The case a0 is includ-
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ed in one of Jakimovski’s theorems ([J4], Theorem (9.6)). However, it
is best to deduce it from the case a=0 by means of the following
observation. If « >0, then H" is summable (A) to [ by Szasz’s
product-theorem referred to above; while, if « < 0, H%s is again sum-
mable (A) to ! since it is summable (H, —a+1) to [ as a result of
s=H"*(H"s) being bounded on one side and summable (A) to {.

In Lemma 3 we extend a Tauberian theorem for sequences s sum-
mable (A) by replacing s by H% in the Tauberian hypothesis and the
conclusion. The method of extension shows that, in Theorem 1 (a), we
may replace s by H¢%, or, a being any real number, replace s by
H***s, in hypothesis (ii) and the conclusion. The result of the replace-
ment of s by H***s is stated below.

THEOREM 2. (a) If (i) the sequence {s,} 4s summable (A) to I, (ii)
Jor a real number a and a positive integer k, the sequence H®**t is null,
where t = {t,} is defined by (3) or (5), then {s,} s summable (H, a) tol.

(b) Conditions (i) and (ii) are also clearly mecessary for {s,} to be
summable (H, «) to .

An immediate deduction from Theorem 2 is the next.

THEOREM 3. If, in Theorem 2(a), condition (ii) 4s refolaced by the
condition that H***t is bounded on one side, the conclusion will be that
{sn} is summable (H, a+1) to L.

Proof. By Szasz’s product-theorem, H" is summable (A) to 0.
Hence, by Lemma 3 with H*# instead of s, H**'*% is a null sequence,
and the conclusion follows from Theorem 2(a) with «+1 instead of «.

4. Addition. (November 23, 1956.) Szasz ([4], p. 1019, Lemma 5)
has proved the following theorem.

THEOREM X. Let {s,} be a sequence which is (i) summable (A) to I,
(ii) bounded below and quasi-monotonic-decreasing in the sense that there
%8s a constant ¢ >0 such that

Spa1 = (1+c¢/n)s, , n > nc).

Then {s,} is convergent to I.
Appealing to Lemma 3, we can replace s={s,}] by H% in the
hypothesis (ii) and the conclusion of Theorem X, and obtain the follow-

ing theorem.

THEOREM Y. Let s be a sequence such that (i) it is summable (A) to
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i, (ii) its transform H%s is bounded below and quasi-monotonic-decreasing
according to the definition tn Theorem X. Then s 18 summable (H, @)
to 1.

The cases a=0, a=—1 of Theorem Y have applications to trigono-
metric series ([4]: p. 1020, Theorem 3 and p. 1031, Theorem 8).
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