
SIMPLIFIED PROOFS OF "SOME TAUBERIAN THEOREMS"

OF JAKIMOVSKI

C. T. RAJAGOPAL

l Introduction* In this note, the preceding paper (mentioned in
the title) will be referred to as [J], the papers or books numbered 1, 2,
• in the bibliography concluding [J] will be referred to as [Jl], [J2], ,
while those in the numbered list of references at the end will be re-
ferred to by their numbers in square brackets.

The notation in [J] is retained with a slight simplification as follows.
As in Hardy's Divergent series [J3], a sequence {tn} is called a Haus-
dorff transform of another sequence {sn} when there is a sequence {μn}
such that

(1) J%==/V4%.

If a is a real number, the special case of {tn} defined by (1) with μn

= (n-h 1)"*, called the (H, a) transform, will be denoted by H*s where
s denotes the sequence {sn}. Since two Hausdorff transformations are
commutable, the operator H* is such that H«EP=HβH«=H«^ and H°
is the identity operator.

From the Abel or (A) transform of {sn}, defined as the left-hand
member of

( ) ( ) Σ * ( ) ( ) Σ n / ,
0 0

0 < > < l , p-1,2 , 3, . . . ,

we deduce the equality (2) by induction on p. It is in the form of the
right-hand member of (2) that the (A) transform is used in this note.

For any sequence {sn}, summability (H, a) to a finite value I and
summability (A) to I have their usual meanings as in [J].

2 The fundamental theorem in [J] This theorem ([J], Theorem
2) may be restated as follows with its non-trivial parts separated, so
that Tauber's first theorem ([J3], Theorem 85) emerges as the case
k=l of the first part, with the conclusion of the convergence of {sn}
restated as that of the (H, —1) summability of {sn}.

THEOREM 1. (a) If (i) {sn} is summable (A) to I, (ii) for a positive
integer k, nkAksn-k=o(X), n~> oo, then {sn} is summable (H, —k) to L
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(b) Conditions (i) and (ii) are also necessary for {sn} to be summable
(H, -Jfc) to I

For establishing this theorem, Jakimovski's tools are (1) the Tau-
berian technique embodied in Lemma 2 of this note with the additional
complications necessary to bring in npΔpsn-p to take the place of nΔpsn_u

(2) the technique of repeated differences (or differentiation) implicit in
his appeal to one particular case of a theorem proved by Parthasarathy
and Rajagopal ([J6], case k=l + r of Theorem C). However, the second
technique, while generally useful in proving Tauberian theorems of the
Hardy-Littlewood class, is not required at all for proving the original
Tauberian theorems; and it is perhaps not very satisfactory to use it to
prove Theorem 1 which is essentially of the latter class of theorems.
The present note supplies a new proof of Theorem 1 whose merit is
that it depends only on Lemma 2 as it stands and on the interpreta-
tion, in Lemma 1, of n(n —1) *(n — pΛ- l)Δpsn-p, which is asympotically
equal to npΔpsn-p, as a Hausdorff transform of sn. Although the content
of Lemma 1 is due to Jakimovski, the proof of Lemma 1 as it appears
here is a simplification of his proof, resulting from the symbolic repre-
sentation (5) of the Hausdorff transformation of sn in question, sug-
gested to me by Mr. M. R. Parameswaran.

LEMMA 1. If k is a positive integer and

then tn is related to sn by (1) with

(4) < " - ( - l

that is, {tn} in (3) is the Hausdorff transform of {sn} corresponding to
the {μn} defined by (4), and further we have symbolically

( 5 ) {U ~(~^kH-7c(H°-H1)(H°--2H1)- -(H°-kHι)s
k\

the order of factors in (5) being immaterial.

Here I must record may indebtedness to Dr. Jakimovski who has
pointed out an implication of the first part of (5), namely, that
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where S% are Stirling's numbers of the first kind ([1], p. 142, (3)).

Proof. The relation between sn and tn is proved directly, starting
from

and showing that substitution for tr from (3) leads to (1) with the {/*„}
in (4).

Equation (5) follows from the fact that (4) can be written:

n+V V

Now the factors (n + l)\ l-~(n + l)-\ l - 2 ( n +1)"1, •••, l-k(n + l)-\
taken successively instead of μn in (1), make the {tn} of {1} the Haus-
dorff transforms of {sn} corresponding to the operators H~k, H° — H\
H°-2H\ ••• , H'-kH1 respectively. Hence the {tn} of (3) is the pro-
duct of the several Hausdorff transforms last mentioned multiplied by
( — ly/kl. We thus have the representation in (5) of the {tn} in (3),
and we can take the factors in this representation in any order since
Hausdorff transformations are commutable.

LEMMA 2. If {sn} is such that nJd
1sn-ι=O(l), then, for x=l—n~\

lim sup Σ
r=cQ

where τ is the ' Tauberian constant9 :

lim sup \nΔιsn-1\

\ e~xx ι dx , C=Euler's constant.

This result, due to Hadwiger ([J2], inequality (15)), is a particular
case of a more general result (e.g. [2], case a=l, λn=n, φ^(u)=^e~u of
Theorem 2(b)).

Proof of Theorem 1. (a) We may suppose without loss of gene-
rality that Z=0. For, we have only to consider, instead of {sn}, the
new sequence {sn — 1} which is clearly subject to hypothesis (i) with
1=0 and also hypothesis (ii).

First, we take Δksn.k instead of Δ1sn^ι in Lemma 1 and obtain, for
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( 6 ) lim rlim sup (1—x)~k+ι\nd*8n-k

=τ lim sup \nkA*sn-k\ .

Next, we take p=k in (2) and get

( 7 ) (-mi-x)-«+ι±J%-kχr=(l-x)Σisχ

as a result of hypothesis (i) where Z=0 according to our supposition.
Using in (6) hypothesis (ii) and (7) with a?=l — n'\ we obtain

n^Jt-X^+^-il-xy^it^Sr-^oil), n -> co.
r-0

If &=1, we infer at once that sn converges to 0. If fel>2, we repeat
the foregoing argument with k — 1, &—-2, •••, 1 successively in place of
& and find that w M ^ . ^ o f l ) for p=Jc-2, fc-3, •••,(), thus finally
drawing the same inference as before. After this we use the fact,
following from npJpsn-p=o(l), l<Lp<Lk, taken along with (5), that

( 8) {-ψH

as ^-> oo for p=l, 2, •••, k, and prove successively that H~ιs, H~2s,
••• , H'ks all converge to 0=1.

(b) If {sM} is summable (H, —k) to I, then if^s, 39=fc, Λ —1, , 0,
are obviously each convergent to / and (8) necessarily holds for p=k;
also {sn}, being convergent to Z, is necessarily summable (A) to I.

3. Remarks on other theorems in [J]- It may be pointed out how
(5) in conjunction with the notation of this note simplifies the presenta-
tion of Jakimovski's main theorems ([J], Theorems 3,5) restated in this
notation as Theorems 2,3. The simplified presentation, like the one
given by Jakimovski, depends only on the results of the preceding sec-
tion, 0. Szasz's theorem for the product of a regular Hausdorff method
of summability and (A) summability ([J], Theorem D, generalized by
Rajagopal in [3], Theorem I), and finally an idea whose simplest ex-
pression is the lemma which follows.

LEMMA 3. If {sn} is summable (A) to I and the sequence denoted by
H*s, where a is any real number, is bounded on one side, then HΛ+ιs is
convergent to I.

The case α = 0 of Lemma 4 is classical. The case a 7^0 is includ-
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ed in one of Jakimovski's theorems ([J4], Theorem (9.6)). However, it
is best to deduce it from the case a=0 by means of the following
observation. If a > 0, then H*s is summable (A) to I by Szasz's
product-theorem referred to above; while, if a < 0, H*s is again sum-
mable (A) to I since it is summable (H, —a-\-l) to I as a result of
s=H-*(Has) being bounded on one side and summable (A) to Z.

In Lemma 3 we extend a Tauberian theorem for sequences s sum-
mable (A) by replacing s by H*s in the Tauberian hypothesis and the
conclusion. The method of extension shows that, in Theorem 1 (a), we
may replace s by Has, or, a being any real number, replace s by
Ha+Jcs, in hypothesis (ii) and the conclusion. The result of the replace-
ment of s by H"+ks is stated below.

THEOREM 2. (a) // (i) the sequence {sn} is summable (A) to I, (ii)
for a real number a and a positive integer k, the sequence Ha+H is null,
where t = {tn} is defined by (3) or (5), then {sn} is summable (H, a) to I.

(b) Conditions (i) and (ii) are also clearly necessary for {sn} to be
summable (H, a) to I.

An immediate deduction from Theorem 2 is the next.

THEOREM 3. If, in Theorem 2(a), condition (ii) is replaced by the
condition that HΛ+kt is bounded on one side, the conclusion will be that
{sn} is summable (H, a +1) to L

Proof, By Szasz's product-theorem, HH is summable (A) to 0.
Hence, by Lemma 3 with HH instead of s, HΛl+1+H is a null sequence,
and the conclusion follows from Theorem 2(a) with α-f-1 instead of a.

4. Addition. (November 23, 1956.) Szasz ([4], p. 1019, Lemma 5)
has proved the following theorem.

THEOREM X. Let {sn} be a sequence which is (i) summable (A) to I,
(ii) bounded below and quasi-monotonic-decreasing in the sense that there
is a constant c > 0 such that

sn+ι <: (1 +cln)sn , n > no(c).

Then {sn} is convergent to I.

Appealing to Lemma 3, we can replace s ΞΞΞ {sn} by H*s in the
hypothesis (ii) and the conclusion of Theorem X, and obtain the follow-
ing theorem.

THEOREM Y, Let s be a sequence such that (i) it is summable (A) to
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I, (ii) its transform H*s is bounded below and quasi-monotonic-decreasing
according to the definition in Theorem X. Then s is summable (H, a)
to I.

The cases a=0, a = — 1 of Theorem Y have applications to trigono-
metric series ([4]: p. 1020, Theorem 3 and p. 1031, Theorem 8).
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