A REAL INVERSION FORMULA FOR A CLASS OF
BILATERAL LAPLACE TRANSFORMS

WiLLiaAM R. GAFFEY

1. Introduction. The Post-Widder inversion formula for unilateral
Laplace transformations [1] states that, under certain weak restrictions

on ¢(u),

lim <_’€)“ L r S(u* exp (—ki)du=¢(c) ,
Y k! Jo c
for any continuity point ¢ of ¢(u).

This formula applies when ¢(z) is defined only for u—>0. A similar
formula may be deduced if ¢(x) is defined for ¥ > —a, for some positive
a. In such a case, we may let ¢*(u)=¢p(u—a), and we may then use
the Post-Widder formula to determine ¢*(x) at the point u=c+a. The
inversion formula then becomes

um( k )Mlgqu(u—a)ukexp (—k u )du=¢>(c),

koo \ C+ 0 k! cta
or, if we make the transformation z=u/(c+a),

kk-{-l

(1) lim 7] g+ we—alzt exp (—hadz—g(c) -

= k!

This suggests that, if ¢(u) is defined for — oo < u < o, some sort
of limiting form of (1) applies. We shall prove that under suitable
restrictions on ¢ and on the behavior of ¢(u),

(2) lim %S "l e~k exp (—ka)dz—(c) -

k—co

2. Remarks. In the following sections ¢(u) will be assumed to be
integrable over the interval from — o to o, and ¢ will be assumed to
be a continuity point of ¢(u). All limits should be understood to be for
increasing values of %.

The expression d/(c+k*), where 6 and ¢ are positive numbers, occurs
frequently. It will be denoted by é&(%, ).

Finally, it may be noted that in terms of the Laplace transform of
¢(u) for real ¢,
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FO=|_ow exp (~tujan,

the inversion formula (2) may be written in the form

. (=1) k K+l Jk e .
lim 7vT—(01768—> dte LF () exp (—th)]i-pjcorrsy=h(C) .

3. Preliminary proofs. The results of the following four lemmas
will be needed below. Proofs are given for the first two. The second
two are proved in a similar way.

LeMMA 1. If n is any fived number and 1/3 < e<(1/2, then
lim k*[1 + o(k, ¢)]* exp [—ko(k, €)]=0 .

Proof. If the logarithm of the expression under the limit sign is
expanded in powers of d(k, ¢), the sum of two of the terms in the ex-
pansion approaches —oo as k— oo, while the sum of the rest of the
terms is bounded.

LEMMA 2. If 1/3 <e<1/2, then

kk+1
k!

. 1+8(k, 3) 1
lim S 2" exp (—kz)dz = 9
Proof. It is well known [1] that

kk+1
k!

lim r 2" exp (—kz)dz =

Do |+

Therefore, it is sufficient to show that

. klc+1 oo
lim S 2" exp (—kz)dz=0 .

k' 1+8(k, &)

Since zexp(—=z) is a decreasing function of z for z > 1, the above ex-
pression is, for fixed %, no larger than

«,l;;f [1+0(k, )" texp [—(k—1)(1+ (%, ¢))] S zexp (—2)dz .

o
1+8Ck,e)

By applying Stirling’s formula and Lemma 1, we see that the upper
bound approaches zero as k increases.

LeMMA 3. If n is any fixzed number and 0 < e<1/2, then
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lim k"[1—6(k, ¢)]* exp [kd(k, €)]=0,

LEMMA 4. If 0 <e<(1/2, then

kk+lsl

lim
k!

2F exp (—kz)dz =% .

1-8(k,8)

4. The inversion formula.
THEOREM. If

(a) || w0 a2 < 4 exp (—do+)

for some positive quantities A, d, and «, and if

(b) max (1/3, 1/@+a) < e < 1/2,
then
lim I, — lim -’g;ilg: Sl(c+k)z— KT exp (—k2)de—a(c) .

Proof. For any 6 >0, the infinite interval may be partitioned into
the four subintervals (— oo, 1—6(k, ¢)), 1—0(k, ¢), 1), (1, 1+ 0(k, 2)), and
A+ (%, €), ). I, may be considered as the sum of four integrals over
these intervals, so that we may write

L=IP+IP+IP+1IP .
I{” is understood to represent the integral over (— oo, 1—6(k, ¢)) ete.

L—¢(0)] < 11|+ | 1~ H9

+|10= 4 e,

We prove first that I{® and I{® approach zero as k— . For I,
consider first the integral over the interval from 0 to 1—d(k, ¢). The
function zexp (—z) attains its maximum at the upper endpoint. There-
fore an upper bound for the absolute value of this portion of the ex-
pression is

M= o, e exp [—le+katk, 1 [ gle+ k= 1lldz

1-5¢k.
0

which approaches zero by Stirling’s formula and Lemma 3.
Consider now the integral over the interval from — o to 0. Inte-
grating by parts, we find that it is equal to
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-1 Z“'ifg" Fl(e+k)e—kT (1 —z2) exp (—k2)dz
otk k! )-e ’

where F(z)=sz $(w)du. Note that, by the assumption on F(z),

|Fl(c+k)z—Fk]| < Aexp[—d{—(c+k)z+Ek}**"],
which is in turn equal to or less than
A exp [de(c+ ko)l +*] .

The result of the integration by parts may be written as the dif-
ference between two integrals, the first containing 2z*~* and the second
containing z*. The first integral is no greater in absolute value than

A kk+2SO

Gtk B |2%1| exp [z {d(c+ k)2 +® — K} 1dz .

— oo

Since ¢(24+a)>1, the coefficient of z in the exponent above is
positive for sufficiently large k. Therefore, after some manipulation,
this upper bound can be shown to be equal to

A ke (k)
(C+ k) k' [dct+ k)™ —k]*

’

which approaches zero as k — .

By the same argument, the second integral approaches zero, so that
lim I$>=0.

For I¥, observe that since zexp (—=z) is a decreasing function of z
for z>>1, the expression has the following upper bound for its absolute
value :

B Lo, o exp [—k—kat, 9|7 glle+K)e—Rlde

1+ 8(k,
Since the integral is bounded, the whole upper bound approaches zero

by virtue of Stirling’s formula and Lemma 1.
We now prove that

lim I®— ; #(c)

1
<—2“77

for any 7 >0. By Lemma 2, it is sufficient to show that

; klc+1 1+8Ck, €) 77
‘hm k' S (Blle+ k)= k)= 9(e)) 2* exp (—k)de| < L .

1
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Since ¢ is a continuity point of ¢(u), there is a 6 >0 such that if
[(e+k¥)z—k*—c| <08, that is, if |z—1|<é(k, €), then
lpl(c+E)e—E]— ()| <7 .

For such a &, the absolute value of the expression above is equal
to or less than

E+1

1. 1+8Ck, &) . ( k )d 7
I X — =1,
/R k' Sl z" exp z)az 2

By the use of Lemma 4, it may be shown in a similar way that

lim I — é—qb(c) < %77 .

Putting together these results, we have |[lim I, —¢(c)|< 7 for any
7 >0, which proves the theorem.
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