TWO THEOREMS ON TOPOLOGICAL LATTICES

ALEXANDER DONIPHAN WALLACE

A topological lattice is a pair of continuous functions
AN: LxL—-L, AN:LxL—L

(L a Hausdorff space) satisfying the usual conditions for lattice opera-
tions. A set A is convex if z, ye A and x < a <y implies a € A. This
is equivalent to A=A N LYN(AN L).

After proving a separation theorem involving a convex set we show
that a compact connected topological lattice is a cyclic chain in the sense
of G. T. Whyburn and that each cyclic element is a convex sublattice.
In doing so we rely on some results recently obtained by L. W.
Anderson.

THEOREM 1. Let L be a connected topological lattice and let A be a
convex set such that L\ A is not connected. Then LN\A is the union of
the comnected separated sets (A /\ L)NA and (A\/ L)NA which are open
(closed) if A is closed (open). If L is also compact then A is connected
of ot is either open or closed.

Proof. Let INA=U\J V with U*N\ V=¢=U N V* and let pe U,
g€ V. The connected set (p /\ L)\U(q /\ L) meets both U and V; hence
it meets A. Adjust the notation so that (¢ /\ L)\ A% ¢ and thus
ge AN L. If g\ VL)NA#%¢ then qe A/ L and hence ge (4 A\ L)
NAYN L)=A. This being impossible we infer that (¢\/ L)N\ A=¢
and ge(4\/ LNA=(A\/ LN(A A L). The connected set (p\/ L)U
(¢\/ L) intersects U and V and so intersects A. But (¢\/ L)\ 4A=¢
so that (p\/ L)\ A% ¢ and hence pe A A\ L. Were (pn ANL)NAF¢
we would also have pe A\/ L and so pe A4, a contradiction. Thus
AL A=¢ and pe (AN LNA=(A\ L)\(A N\ L). Now take ye V
and suppose that y isnotin A\/ L so that (y A\ L)\ A=¢; then (p A\ L)
N A~ ¢ since (p A\ L)YU(y /\ L) is a connected set meeting U and V.
But this is contrary to the proven fact that (p A L)\ A=¢. We con-
clude that V C(4 \/ L)\A and, dually, that U C(4 N\ L)\A. It follows
that L=(A ANL)UANV L). Now ze(4A\V LN\A and zeI\V gives
ze UC(A N\ L)NA and this contradicts the convexity of A. Hence
U=(A N LN\Aand V=(A\/ L)\A. To see that U A\ L=U we need only
note that ze U gives (¢ /\ L)\ A=¢ and thus (x A\ L)\ V=¢ (since z /\ L
is connected and contains ) and hence x A\ L C(A A\LNAV L)=U.
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Dually, V' A L=V and these equalities imply that U and V are con-
nected. If A is closed (open) then U and V are open (closed). This
completes the proof of the first sentence of the conclusion. If L is
also compact then H'(L)=0 [3] so that (as is well known) L is un-
icoherent. But L is locally connected, L=(4 N\ L)\J(A\/ L), and the
sets A A\ L and A\/ L are connected, and open (closed) [1] if A is
open (closed). Hence by a known result [2] we see that A=(4 N\ L)N
(A\/ L) is connected.

We assume that the reader is familiar with the cyclic element
theory of locally connected continua as given in [4]. We recall that a
locally compact connected topological lattice is locally connected [1].

THEOREM 2. Let L be a compact comnected metrizable topological
lattice. Then L is a cyclic chain, each cyclic element of which is a con-
vex sublattice. If L is topologically contained in the plane then each true
cyclic element of L is 2-cell and L has the fixed-point property.

Proof. Let C be a true cyclic element of L, let z, ye C with 2y
and let pe L such that 2 <p<y. If T is a maximal chain containing
xz, p, and y then T is an arc from 0 to 1, as is well known [1].
Hence the set [x, y]={t|teT and o <¢ <y} is an arc from = to y [1].
Since C is an A-set [4] we know that [z, ¥y] C and thus peC.
Hence C is convex. Let D be the cyclic chain from 0 to 1, that is, D
is the smallest A-set containing 0 and 1 [4]. Then, by definition, T'C
D and if e L\D then the maximal chain 7" containing 0, =, 1 is an
arc from 0 to 1 and thus 7"C D, a contradiction. Hence D=L and L
is the cyclic chain from 0 to 1. Let 7T, be 0, 1 and all points which
separate 0 and 1. Then L is the union of 7T, and all true cyclic ele-
ments meeting 7, in two points [4]. Suppose that the true cyclic
element C meets T, in the cutpoints p and ¢. Note that neither 0 nor
1 is a cutpoint [3]. If z is a cutpoint then, since {z} is convex, L=
(# ANL)U(z\/ L) and thus 2 is comparable with each x € L, by Theorem
1. We may assume that p<'q. We will show that C={z|p <x <q}.
The convexity of C proves the containment > ’’. If zeC and if,
say, < q is false then we have ¢ < «. By Theorem 1, L \g=((¢ /\ L)\q)
U (¢ L)\Q) is a separation and C meets both members, contrary to
the fact that C is a true cyclic element [4] . Dually, < p cannot be
false, proving the containment ‘‘ C ’’ of the desired equality. It fol-
lows that C is a convex sublattice. The cases p=0 or ¢=1 are treated
similarly. The remaining results follow from the fact that H'(L)=0
[3] so that L is a locally connected continuum [1] which does not cut
the plane [4].
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