A THREE POINT CONVEXITY PROPERTY

F. A. VALENTINE

There exist an interesting variety of set properties determined by
placing restrictions on each triple of points of the set. It is the purpose
here to study those closed sets in the n-dimensional Euclidean space
E, (in particular the plane E,) which satisfy the following condition.

DEFINITION 1. A set S in E, is said to possess the three-point
convexity property P, if for each triple of points @, y, z in S at least
one of the closed segments zxy, yz, xz is in S.

The principal result obtained in this paper appears in Theorem 2.
In order to achieve this result a series of lemmas and theorems is first
established. Most of these are also of independent interest.

1. Closed connected sets in E,, n>1. In this section we assume
that S is a closed connected set in E, n_>1. The concept of local
convexity is a useful one for our purpose, so we restate the well-known
definition.

DEFINITION 2. A set S is said to be locally comvexr at a point
qe S if there exists an open sphere N with center at ¢ such that S-N
is convex. If a set is locally convex at each of its points, it is said to
be locally convex.

NotaTiON 1. The open segment determined by points 2 and y is
denoted by (ay), whereas xy denotes the closed segment. The line de-
termined by 2 and y is denoted by L (z, y). The boundary of a set S
is B(S), and H(S) denotes the closed convex hull of S. The symbol +
stands for set union, and the symbol - stands for set produect.

THEOREM 1. Let S be a closed connected set in E, (n=>1) which
has property P,. Then either S is convexr or S 4s starlike with respect
to each of its points of local nonconvexity (It may be starlike elsewhere).

Proof. If S is locally convex, then by a theorem of Tietze [4, pp.
697-707], [2, pp. 448-449], the set S is convex, in which case it is
starlike with respect to each of its points. Hence, suppose S is not
locally convex, and let ¢eS be a point of local nonconvexity. This
implies that in each spherical neighborhood N, of ¢, there exist points
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x; and y; of S such that (x;5,)-S=0 (see Notation 1). Choose any point
xeS. Property P, implies that either wy, or ax; is in S. If the radius
of N; is 1/i, then as i—o the set wxx;+ay, converges to gz, which then
must belong to S. This completes the proof.

REMARK 1. The set of all starlike points of a set S is called the
convex kernel of S. The convex kernel of a set S C K, is convex. See
Brunn [1].

COROLLARY 1. FEach point of local nonconvexity of the set S in
Theorem 1 is contained in the boundary of the convex kernmel of S.

COROLLARY 2. For the set S above, let H be any r-dimensional plane
section of S, where (1 <r<n—1). Then either H-S is starlike or H-S
consists of two convex components.

Proof of Corollary 2. If H-S is connected, then since H-S has
property P;, Theorem 1 implies H-.S is starlike. If H-S is not con-
nected, property P, implies trivially that H-S consists of two and only
two components, each of which must be convex.

COROLLARY 3. FEach component of the complement of S vs unbounded.
This is an immediate consequence of the starlikeness of S.

2. Closed connected sets in E,. We restrict ourselves to closed
connected sets in E, in this section, and the following definitions are
useful.

DEFINITION 3. A component of the complement of a closed con-
nected set S is called a residual domain of S. A cross-cut xy of a re-
sidual domain K of S is a closed segment such that ze S, ye S and
(xy) C K (See Notation 1).

DEFINITION 4. An isolated point of local nonconvexity of S is called
a p-point. A point of S which is a p-point or a limit point of p-points
is called a q¢-point.

LEMMA 1. FEach open segment (uv) of the convex kernel of S con-
tains no g-points of S. (see Corollary 1).

Proof. Suppose w is a g-point contained in (uv). Clearly S L(u, v)
(see Notation 1). Choose ze S—L(u, v). Since uv belongs to the convex
kernel of S, we have triangle wzvCS. But this implies that each
sufficiently small neighborhood of w contains no cross-cuts of the com-
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plement of S, since such a cross cut ay would have to have its interior
(zy) in one of the open half-planes bounded by L(u, v).

LEMMA 2. Let S be a closed connected set in FE, having property
P,. Then if S is not convex, it contains at least one tisoclated point of
local nonconvexity.

Proof. Let ay be a cross-cut of a residual domain K of S. Since
S is closed and connected, the set K—(xy) is the union of two mutually
exclusive open sets, denoted by K, and K, [3, p. 118]. Since S is star-
like, Corollary 3 implies that one and only one of these two sets is
bounded. Let it be K, and denote the boundary B(K,)—(ay)= C(K)).
The set B(K,) is a continuum [3, p. 124]. Since K, is a bounded domain,
and since C(K))-(ay)=0, it follows that C(K)) is a continuum. Define
B, to be the set of points 2z, € C(K,) such that zz, CS, and define B, to
be the points 2z,€ C(K,) such that yz,CS. Since ay S, property P,
implies C(K,)=B,+B,. Moreover, € B, y& B,, and moreover B, and
B, are each closed since S and C(K,) are closed. Hence, since C(K)) is
a continuum, it is well-known that B,-B,54 0. Hence, let p<€ B,-B,, and
we must have apCS, ypS, so that K, is interior to triangle apy.
Since p € B(K,), it is clear that each neighborhood of p contains a cross-
cut of K,, so that p is a point of local nonconvexity of S.

To prove that p is an isolated point of local nonconvexity, observe
that the lines L(zx, p) and L(y, p) determine four V-shaped domains,

each bounded by two rays. Order these V,, V,, V,, V. so that azyp C V.,
and so that the sets V, are arranged consecutively in a clockwise direc-

tion about the point p. Suppose a p-point p, e V,—p exists. Then since
px+py S, we would have K, Cxyp, which would violate the fact
pe€ B(K,). Suppose a p-point, say p, exists in V,. But this implies that
xpp, C S, ypp, < S. But this again would violate the fact pe B(K;). In
exactly the same way V, contains no p-point of S. Now consider V,.
If p, is a p-point of S in V,, then ypp,+app, TS, which implies that p
is an isolated p-point since V, contains no p-point ‘of S. Finally, Lemma
1 implies that no sequence of p-points of S can exist on L(x, p)- V, or

on L(y, p)- V, having p as a limit point. Thus we have shown that p
is an isolated p-point of S.

REMARK 2. Let zy be the cross-cut in the above proof, and let p
be the associated isolated p-point. Then the closed triangle zyp is such
that the set zyp-S is the union of two convex sets having only the
point p in common. One of these convex sets contains zp and is de-
noted by C(zp), and the other denoted by C(yp) contains py.
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Proof. Let L, and L be lines parallel to xy, such that L, separates
p and zy, and such that pe L. Let H; be the closed half-plane bounded
by L; and containing xy. Suppose L, — L as ¢ —> o so that H,,, D H,.
Since S-H,;-xyp is locally convex, by Tietze’s Theorem [4, loc. cit.] each
of its components is convex. Property P, implies that there are at most
two such components. The fact that zy & S, implies there are exactly two
such components. Denote them by C, and D,. Clearly C,,; > C,, D;,, O D,
and hence C; and D, converge to convex sets having p in common. They
have only p in common, otherwise p would not be a boundary point of
K, as defined in the proof of Lemma 2. One of the convex sets con-
tains xp and the other yp so that the notation in the remark is justified.

DEFINITION 5. Let @ be the set of ¢-points of S.

REMARK 3. Corollary 1 implies that @ is contained in the boundary
of its own convex hull H(Q), designated by B(H).

LEMMA 8. The boundary of H(Q) is connected, and it can contain
at most one ray.

Proof. Since H==H(Q) is convex, if B(H) were not connected, it
would have to consist of two parallel lines (this is known). However,
Lemma 1 would then imply that each of these parallel lines would
contain at most two g¢-points. But this would imply that @ is bounded
in which case B(H) would be connected. If B(H) contained two rays,
then Lemma 1 would again imply that @ is bounded, which would again
be contradictory.

DEFINITION 6. An edge of the boundary B(H) is a closed segment
xy or a closed ray xe whose endpoints are ¢g-points. An open half-plane
whose boundary contains ay(or o), and which does not intersect H(Q)
is called an open half-plane of support, and it is denoted by W.

LEMMA 4. Let W be an open half-plane of support to H(Q), which
abuts on an edge xy(or xoo)., Then H(Q)+ W-S is a convex subsel of S.

Proof. If we HQ) and if veS-W, then uv C S, since S is starlike
with respect to . This, together with the facts xe B(S), ye B(S), and
property P; imply that uv-xy=£0 (or uv-x o £0), so that uv C H(Q)+
W-.S. Suppose ueS-W, veS-W. Let ze(xy) or (zo). If uv)ZS,
since uz C S, vz S, then triangle wvz would contain a p-point of S
(See the first paragraph of the proof of Lemma 2). But this is impos-
sible, since W contains no p-points of S, and since by Lemma 1 the
open segment (xy) or (xo) contains no p-points of S. Hence H(Q)+
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W-S is convex. It should be observed that if H(Q)==xy, then H(Q)+
W-S may or may not be closed.

LEMMA 5. Let xy; be a countable number of pairwise disjoint edges
in B(H)=B(H(Q)). Assume that B(H) contains at least three edges,
and let W, be the open half-plane of support to H(Q) whose boundary
contains (x;y;) (x,y; may be x;00).

Then the set HQ)+S-2; W, is a closed convex set.

Proof. Without loss of generality establish an order on the bound-
ary B(H), and assume that in terms of this order, x; is the beginning
of the edge x;y, and that y, is the endpoint of z,y,. Select any two
disjoint edges x;y, and @,y;, and without loss of generality assume that
x;, Y, «;, Y, fall in an order so that an arc of B(H) has «; and y, as
its endpoints, and so that all four points lie on this arc in the order
given above (B(H) may be unbounded). Let the convex set which is
bounded by the two lines L(w;, ¥;) and L(z,, y;), and which contains the
quadrilateral zy,z,y; be denoted by V. The segments xy, and z;
divide V into three parts; one is the closed quadrilateral zyxy,; the
second is a three sided closed polygonal set adjacent to x4, and denoted
by 4(x;, v;); the third is a three sided closed polygonal set adjacent to
z,y, and denoted by 4(z;, y;). The last two sets may or may not be
bounded. If the edge x,y; is a ray x, instead, then the same type
of division occurs, in which L(x;, «) is a line parallel to the ray x;o
so that 4(x,, ) has two bounding sides instead of three. We must
have S-W,C d(x;, y;), for if this were not so, it is easily seen that
either x;, or y, would be an interior point of a triangle which would
belong to S. But this would contradict the fact that x; e B(S), y, € B(S).
Similarly S-W, C 4(z,, y;). This is true whether xy, is a finite segment
or a ray x,co.

Now, choose two points # and v in U= H(Q)+S-Z,W,. If w and
v are in H(Q)+S-W,, then Lemma 4 implies uv CU. If ueS-W, and
veS-W,, then by the preceding paragraph ue d(x;, y;), ve 4(z,, y;) (or
v € d(x,;, )). Since V=4d(x,, y;,)+xyxy,;+ 4(x,;, y,) is convex, and since
M@y, ¥:) xyy;=ay;, we have uv-xy, %0, whence uv C U.

To prove that U is closed, observe first that if there are a finite
number of disjoint sets x,y; (there are at least three edges) then U is closed,
since W,-S C 4(x,, v;) implies W,-SC W,-S+B(H). If there are an
infinite number of sets W,, then let s be a limit point of an infinite
sequence of sets W, -S. Since W, C 4(x,, v;,) by fixing (x,, y;) of the
preceding paragraph, it follows that (=, , ¥;,) > ¢, a fixed point of B(H),
as 1, < . However, since in this situation, we must have 4(x; , y, ) —¢
as 9,— o, it follows that s=q¢e H(Q). Hence, it is clear that U is
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closed, since H(Q) is closed.

THEOREM 2. Suppose S is a closed connected set in E, such that for
each triple of points x, y, z in S at least one of the segments xy, Yz, 2
%8s im S.

Then S is expressible as the union of three or fewer closed convex
sets having o nmonempty intersection. The number three is best.

DEFINITION 7. Let N denote the cardinality of the set of p-points
of S in Theorem 2.

THEOREM 3. If N is not an odd integer greater than 1, then S can
be expressed as the union of two or fewer closed convexr sets having a
nonempty intersection.

Proofs of Theorems 2 and 3. We recall that @ is the closure of the
set of p-points of S. The proof is divided into 5 cases, depending upon
the value of N. The five cases are: N=1; N=2; N=2m >1; N=2m
+1>1; N=co.

Case 1. N=1. Let Q=p, and let C be a circle with center at p
and having radius ». The set S-C is a closed connected set having
property P, and having p as its only p-point. If S-C satisfies the con-
clusions of either Theorem 2 or Theorem 3, it is quite clear that S=
IimS-C as r — o will satisfy the same conclusions. Let the boundary
of the convex hull H(S-C) be D(H), since B(H) stands for the boundary
of H(®). The rest of the proof will show incidentally that D(H)-S has
one, two or four components.

Suppose D(H)-S has exactly three components and designate these
by B, (i=1, 2, 8). It is easy to show that B, {p} (¢=1, 2, 3). Choose
points z; € B; with xz; 5%~ p (i=1, 2, 3). Property P, implies that at least
one of the intervals zw,, 22;, 22, is in S. Suppose zx, CS. Since
x; € D(H) (i=1, 2), and since B,-B,=0, we must have L(zx,, x.):S=x,2,.
If p¢ (x2,), then let H,, be the closed half-plane bounded by L(z,, )
and  not containing p. Since x,€ B,, v,€ B, with B,:-B,=0, there must
exist a cross cut of the complement of S in H,,. However, by the proof
of Lemma 2, there would exist a p-point in H,,-S which contradicts the
fact that @Q=p. Hence pe (zw,). Since pe (xx,), if a2, TS, the proof
of Lemma 2 would again imply the existence of a p-point in that closed
half-space bounded by L(z, x;) which does not contain p. However
this contradicts @=p. Hence, xx; & S. Similarly zx, S. Property
P, and the closure of S implies that for points x e B, sufficiently near
x,, we have zwx,CS, zx,Z S, zx;,ZS. Applying the same reasoning
to x, x,, x; that we applied to z,, x,, =;, we get pe (zz,) for all z near
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;. This can only be true if B,=«,. Similarly, B,=z,. However, since
B, is contained in only one of the open half planes bounded by L(w, x.),
the facts B,=x; (1=1, 2) simply that zx, C D(H)-S, which contradicts
the fact B,-B,=0. Hence D(H)-S cannot have exactly three components.
Suppose D(H)-S has at least four components, and designate four of
these by B; (i=1, 2, 83, 4). The above argument implies that B;,=u;
e D(H)-S, and these can be renumbered so that pe(xw,), »e (x:xy).
Clearly any fifth component B; could not exist, since the above argu-
ment applied to z,, z,, ; and x;€ B; would yield pe (z2,), € (xx;5), so
that x;=wx,, a contradiction. Thus iof D(H)-S has more than two com-
ponents, then S-C is the union of two line segments having an interior
point i common.

Now, suppose D(H)-S has exactly two components denoted by B,
and B,. Let the end points of B, be x;, and y; ordered so that yx, and
Y., are cross-cuts of the complement of S. The points z; and ¥y, need
not be distinct. We will prove that each of the sets P,= H(B;+p)+
C(x;p)+ C(y;p), (1=1, 2) is convex. (See Remark 2 following Lemma 2
for the definitions of C(x;p) and C(y;p)). Property P; and the fact that
D(H)-S=B,+ B, implies that B;+x,p+y,p is the boundary of H(B;+p).
We will prove that P, is convex. Since each of the sets H(B,+p),
C(x,p), C(y,p) is convex, to show that P, is convex, it suffices to select
points ze H(B,+p), ue Cxp), ve Clyp), and to show that uv-+uz+vz
C P,. We must have uv-xp=%0, uv-yp%0, for if this were not so,
the fact D(H)-S=B,+B, would imply that uv-P,=~0. However, this
would contradict property P,. Hence, we have uwv C 2.y,p+ C(x,p) + C(y,p).
Thus wv C P,.. In the same manner uz C P,, vz P,, so that P, is con-
vex. The same argument applies to P..

Finally if D(H)-S has exactly one component, and @=p, it can be
shown readily that there exists a line through p which divides S-C into
two closed convex sets having p in common. This completes the proof
for N=1, and oddly enough it appears to be the most difficult to prove.

Case 2. N=2. Let Q=p,+p,. The line L(p, p,) divides the plane
into two open half-planes W, (i=1, 2). Lemma 4 implies that W,-S is
convex. If W,-S=0, then S=W,-S+S -L(p,, p,) yields the desired con-
clusions of Theorem 2 and 3. Hence suppose W,-S=%0 (i=1, 2). Let
U=W,-S+W,-S. If U is convex, then S=U+S-L(p, p.) yields the
desired decomposition. Suppose U is not convex, then we can show
that S-L(p, p)=U-L(p, p.), for suppose a point ueS-L(p, p,)—
U-L(p, p,) exists. Since U is not convex, there exist points z,€ W,-S
such that xx, & S. Moreover ux, 7 S, since u¢ W,-S. However, this
violates property P,. Thus if U is not convex, S=W,-S+ W,.S, and
this is a desired decomposition of S into two convex sets.
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Case 3. N=2m >2. In this case the hull H(Q) is a convex polygon,
each segment of which is an edge having p-points as endpoints (See
definition 6). Order the edges w;;., of the boundary B(H) counterclock-
wise so that (=1, 2, ---, 2m; 2,=2y,+;). The open half-plane of sup-
port to H(Q) adjacent to x,x,,, is denoted by W,. By Lemma 5 each
of the sets

Si=H@+8- 3 Wiy
(1)
S,=H(Q)+5- 3 Wi

2m
is a closed convex set. Moreover, since S H(@Q)+> W, we have
=1
Sl‘l'Sz:S.

Case 4. N=2m+1>1. As in Case 3, let ¢,=x2;,, (1=1, ---,
2m+1; @,=00,,.,) denote the ordered edges of B(H), and define S, and
S, as in (1).

Let

S, =HQ)+S Wi .

By Lemma 5, the sets S, S, and S; satisfy the conclusions of Theorem 2.

Case 5. N=o. In order to prove this case, the following defini-
tion is helpful.

DEFINITION 8. A connected closed subset I of the boundary B(H) is
called a polygonal element if the following conditions hold :

(a) It is the closure of the union of edges of B(H) (see Definition 6).

(b) Its endpoints (one, two or none) are limit points of p-points
of S.

(c) If I=B(H), then I contains at most one limit point of p-points.
If I B(H), then only its endpoints (one or two) are limit points of
p-points.

Observe that these conditions imply that a polygonal element is
maximal in the sense that it is not a proper subset of a larger polygonal
element.

The number of polygonal elements of B(H) is countable, hence we
can well-order them easily. Let I, I, ---, I, --- designate such a well-
ordering.

For each polygonal element I,, divide the edges it contains (see
Definition 6) into two classes M} and M} such that no two edges of
M} (i=1, 2) are adjacent, that is, have an endpoint in common. It may
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happen that one of the M} may be empty. For each edge ec M)} we
let W/ denote the open half-plane of support to B(H) whose boundary
contains e. Define

Fi= > W;.S (t=1,2),
eeMé
and let
S;=H(Q)+ > F} (=1, 2) .

Since each edge in M, is separated from each edge in M} (n=£m),
Lemma 5 implies that S; and S, are closed convex subsets of S. More-
over, since for each point xe S, either x e H(Q), or x is contained in
some W:-S, we have S=S,+ S, and S,-S,z£40.

To prove that the number “three” in Theorem 2 is best consider
the familiar two cell formed by a five-pointed star. It is a simple mat-
ter to verify that this set has property P,, and that it cannot be ex-
pressed as the union of two convex sets. The analogous 2m +1 pointed
star behaves the same way.

3. Concluding remarks.

(a) It should be noted that the converse of Theorem 2 is not true.
For instance, the set consisting of three segments zz, (=1, 2, 3), where
each angle .~ zwx;=120° (1=£7), is the union of three convex sets; yet
it does not have property P,.

(b) It would be of interest to characterize those sets in E, which
are the union of two closed convex sets. It appears that such a charac-
terization will follow from an investigation of the cardinality of the set
B(K)-B(S), where K is the convex kernel of S.

(¢) The theory in FE; needs to be settled. In view of §1, it is
natural to ask the question. What are the closed connected sets in E;
such that each of its plane sections is either starlike or the union of
two disjoint convex sets?
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