
A THREE POINT CONVEXITY PROPERTY

F. A. VALENTINE

There exist an interesting variety of set properties determined by
placing restrictions on each triple of points of the set. It is the purpose
here to study those closed sets in the ^-dimensional Euclidean space
En (in particular the plane EJ which satisfy the following condition.

DEFINITION 1. A set £? in En is said to possess the three-point
convexity property P3 if for each triple of points x, y, z in S at least
one of the closed segments xy, yz, xz is in S.

The principal result obtained in this paper appears in Theorem 2.
In order to achieve this result a series of lemmas and theorems is first
established. Most of these are also of independent interest.

1* Closed connected sets in En, n2>l. In this section we assume
that S is a closed connected set in Eny n7>l. The concept of local
convexity is a useful one for our purpose, so we restate the well-known
definition.

DEFINITION 2. A set S is said to be locally convex at a point
qeS if there exists an open sphere N with center at q such that S N
is convex. If a set is locally convex at each of its points, it is said to
be locally convex.

NOTATION 1. The open segment determined by points x and y is
denoted by (xy), whereas xy denotes the closed segment. The line de-
termined by x and y is denoted by L (x, y). The boundary of a set S
is B(S), and H(S) denotes the closed convex hull of S. The symbol -f-
stands for set union, and the symbol stands for set product.

THEOREM 1. Let S be a closed connected set in En (n^ΐ) which
has property P3. Then either S is convex or S is star like with respect
to each of its points of local nonconvexity (It may be star like elsewhere).

Proof If S is locally convex, then by a theorem of Tietze [4, pp.
697-707], [2, pp. 448-449], the set S is convex, in which case it is
star like with respect to each of its points. Hence, suppose S is not
locally convex, and let g e S be a point of local nonconvexity. This
implies that in each spherical neighborhood Nt of q, there exist points
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xt and yt of S such that (a?i2/i) S = 0 (see Notation 1). Choose any point
x e S. Property P 3 implies that either xyt or xxi is in S. If the radius
of Ni is 1/ΐ, then as i->oo the set xxi + xyi converges to qx, which then
must belong to S. This completes the proof.

REMARK 1. The set of all starlike points of a set S is called the
convex kernel of S. The convex kernel of a set S CZEn is convex. See
Brunn [1].

COROLLARY 1. Each point of local nonconvexity of the set S in
Theorem 1 is contained in the boundary of the convex kernel of S.

COROLLARY 2. For the set S above, let H be any r-dimensional plane
section of S, where (l<Lr<Ln — l). Then either H'S is starlike or H S
consists of two convex components.

Proof of Corollary 2. If H S is connected, then since H S has
property P3, Theorem 1 implies H S is starlike. If H S is not con-
nected, property P 3 implies trivially that H S consists of two and only
two components, each of which must be convex.

COROLLARY 3. Each component of the complement of S is unbounded.
This is an immediate consequence of the starlikeness of S.

2. Closed connected sets in E2. We restrict ourselves to closed
connected sets in E2 in this section, and the following definitions are
useful.

DEFINITION 3. A component of the complement of a closed con-
nected set S is called a residual domain of S. A cross-cut xy of a re-
sidual domain K of S is & closed segment such that x e S, y 6 S and
(xy)CK (See Notation 1).

DEFINITION 4. An isolated point of local nonconvexity of S is called
a p-point. A point of S which is a p-point or a limit point of p-points
is called a q-point.

LEMMA 1, Each open segment (uv) of the convex kernel of S con-
tains no q-points of S. (see Corollary 1).

Proof. Suppose w is a g-point contained in (uv). Clearly Sς£L(u, v)
(see Notation 1). Choose zeS—L(u, v). Since uv belongs to the convex
kernel of S, we have triangle uzv C *S. But this implies that each
sufficiently small neighborhood of w contains no cross-cuts of the com-
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plement of S, since such a cross cut xy would have to have its interior
(xy) in one of the open half-planes bounded by L(u, v).

LEMMA 2. Let S be a closed connected set in E2 having property
P 3. Then if S is not convex, it contains at least one isolated point of
local nonconvexity.

Proof. Let xy be a cross-cut of a residual domain K of S. Since
disclosed and connected, the set K—(xy) is the union of two mutually
exclusive open sets, denoted by Kt and K.z [3, p. 118]. Since S is star-
like, Corollary 3 implies that one and only one of these two sets is
bounded. Let it be Kl9 and denote the boundary B(K1) — (xy)^C(K1).
The set B{K^) is a continuum [3, p. 124]. Since Kx is a bounded domain,
and since C(K1)-(xy)=*Q, it follows that C{Kτ) is a continuum. Define
Bt to be the set of points zx e C(KX) such that xzλ C S, and define B2 to
be the points z2 e C{KX) such that yzt C S. Since xy ςt S, property P 3

implies C ( J K ' 1 ) = 5 1 4 - S 2 . Moreover, xeBly yeBt, and moreover Bx and
Bt are each closed since S and C(K^) are closed. Hence, since C{Kλ) is
a continuum, it is well-known that BΊ'B%φ0. Hence, let peBλ B2, and
we must have xpCS, ypCZS, so that Kx is interior to triangle xpy.
Since p e B{KX), it is clear that each neighborhood of p contains a cross-
cut of Ku so that p is a point of local nonconvexity of S.

To prove that p is an isolated point of local nonconvexity, observe
that the lines L(x, p) and L(y, p) determine four F-shaped domains,

each bounded by two rays. Order these VLJ F2, F3, F 4 so that xypCL Vlt

and so that the sets F έ are arranged consecutively in a clockwise direc-

tion about the point p. Suppose a p-point ^ e V1 — p exists. Then since

PιX-\~Pιy(ZS, we would have KλCZxyplf which would violate the fact

peB{Kτ). Suppose a p-point, say pι exists in F2. But this implies that

%PPιCS, ypPι<ZS. But this again would violate the fact peB(Kτ)t In

exactly the same way F 4 contains no p-point of S. Now consider F 3 .

If pι is a p-point of S in F3, then ypPi + xpPiCZS, which implies that p

is an isolated £>-point since Vx contains no p-point 'of S. Finally, Lemma

1 implies that no sequence of ^-points of S can exist on L(x, p) Vz or

on L{yy p) V3 having p as a limit point. Thus we have shown that p

is an isolated p-point of S.

REMARK 2. Let xy be the cross-cut in the above proof, and let p
be the associated isolated p-point. Then the closed triangle xyp is such
that the set xyp S is the union of two convex sets having only the
point p in common. One of these convex sets contains xp and is de-
noted by C(xp), and the other denoted by C(yp) contains py.
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Proof. Let L% and L be lines parallel to xy, such that Lt separates
p and xy, and such that p e L. Let fl, be the closed half-plane bounded
by Li and containing xy. Suppose Lt ->L as i —>&> so that Hί+1^>Hί.
Since S Hi xyp is locally convex, by Tietze's Theorem [4, loc. cit.] each
of its components is convex. Property P3 implies that there are at most
two such components. The fact that xy gL S, implies there are exactly two
such components. Denote them by Ct and A Clearly C i + O Cif A + O A>
and hence Ct and A converge to convex sets having p in common. They
have only p in common, otherwise p would not be a boundary point of
Kι as defined in the proof of Lemma 2. One of the convex sets con-
tains xp and the other yp so that the notation in the remark is justified.

DEFINITION 5. Let Q be the set of ^-points of S.

REMARK 3. Corollary 1 implies that Q is contained in the boundary
of its own convex hull H(Q), designated by B(H).

LEMMA 3. The boundary of H(Q) is connected, and it can contain
at most one ray.

Proof. Since H=H(Q) is convex, if B(H) were not connected, it
would have to consist of two parallel lines (this is known). However,
Lemma 1 would then imply that each of these parallel lines would
contain at most two g-points. But this would imply that Q is bounded
in which case B{H) would be connected. If B(H) contained two rays,
then Lemma 1 would again imply that Q is bounded, which would again
be contradictory.

DEFINITION 6. An edge of the boundary B(H) is a closed segment
xy or a closed ray χoo whose endpoints are g-points. An open half-plane
whose boundary contains xy(or a oo), and which does not intersect H(Q)
is called an open half-plane of support, and it is denoted by W.

LEMMA 4. Let W be an open half-plane of support to H(Q), which
abuts on an edge xy(or XOQ). Then H(Q) + W S is a convex subset of S.

Proof. If ueH(Q) and if veS-W, then uvCLS, since S is star like
with respect to u. This, together with the facts xeB(S), yeB(S), and
property P3 imply that uv xy^O (or uv xcozfiO), so that uv(ZH(Q)Λ-
W S. Suppose ueS-W, veS-W. Let ze(xy) or (αoo). If b(uv)ςtS,
since uzCIS, vzCZS9 then triangle uvz would contain a p-point of S
(See the first paragraph of the proof of Lemma 2). But this is impos-
sible, since W contains no p-points of S, and since by Lemma 1 the
open segment (xy) or (a?oo) contains no p-points of S. Hence H(Q)±
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W'S is convex. It should be observed that if H{Q)^xy, then H(Q) +
W'S may or may not be closed.

LEMMA 5. Let x%y% be a countable number of pair wise disjoint edges
in B(H)ΞΞΞΞB(H(Q)). Assume that B(H) contains at least three edges,
and let Wt be the open half-plane of support to H(Q) whose boundary
contains (x^) (xiUi may be ̂ ©o).

Then the set H(Q) + S*ΣίWi is a closed convex set.

Proof. Without loss of generality establish an order on the bound-
ary B(H), and assume that in terms of this order, x% is the beginning
of the edge x^ and that y% is the endpoint of x^. Select any two
disjoint edges xiyi and x3y3, and without loss of generality assume that
%u Vί> Xj9 Vj fall in an order so that an arc of B(H) has xt and y5 as
its endpoints, and so that all four points lie on this arc in the order
given above (B(H) may be unbounded). Let the convex set which is
bounded by the two lines L(xi9 y3) and L(xj9 y%)9 and which contains the
quadrilateral Xiy^x^j be denoted by V. The segments xiyi and x3y3

divide V into three parts one is the closed quadrilateral xiy,ίxjyj the
second is a three sided closed polygonal set adjacent to xiyt and denoted
by Δ(xi9 yt) the third is a three sided closed polygonal set adjacent to
x3y3 and denoted by Δ(χjy yό). The last two sets may or may not be
bounded. If the edge x3y3 is a ray x3co instead, then the same type
of division occurs, in which L(xi9 oo) is a line parallel to the ray α̂  oo
so that Δ(xj9 oo) has two bounding sides instead of three. We must
have S WiCΔ(xi9 #t), for if this were not so, it is easily seen that
either xt or yt would be an interior point of a triangle which would
belong to S. But this would contradict the fact that xi e B{S)9 yt e B(S).
Similarly S Wj C Δ(xj9 y3). This is true whether x3y3 is a finite segment
or a ray Xjoo.

Now, choose two points u and v in U^H(Q)Jt-S-IiWi. If u and
v are in H(Q) + S- Wiy then Lemma 4 implies uvC_U. If ueS Wi and
veS-Wj, then by the preceding paragraph ueΔ(xi1 yt), veΔ(xjy y3) (or
veΔ(xjf oo)). Since V = Δ(xif y^-\-xiyix1y3

Jf Δ(xj9 y3) is convex, and since
Δ{xi,yί)^xiyix5y^xiyu we have uvx^^O, whence uvCU.

To prove that U is closed, observe first that if there are a finite
number of disjoint sets xiyi (there are at least three edges) then U is closed,

since WrSClΔ(xίf y,) implies WrS(ZWrS+B(H). If there are an
infinite number of sets Wi9 then let s be a limit point of an infinite
sequence of sets Win S. Since WinCZΔ(xln9 yin) by fixing (χJf y3) of the
preceding paragraph, it follows that (xin9 ytn)-*q, a fixed point of B(H),
as in*-co. However, since in this situation, we must have Δ(xin, yin)~->q
as iw->oo, it follows that s=qeH(Q). Hence, it is clear that U is
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closed, since H(Q) is closed.

THEOREM 2. Suppose S is a closed connected set in E2 such that for
each triple of points x, y, z in S at least one of the segments xy, yzf xz
is in S.

Then S is expressible as the union of three or fewer closed convex
sets having a nonempty intersection. The number three is best.

DEFINITION 7. Let N denote the cardinality of the set of p-points
of S in Theorem 2.

THEOREM 3. If N is not an odd integer greater than 1, then S can
be expressed as the union of two or fewer closed convex sets having a
nonempty intersection.

Proofs of Theorems 2 and 3. We recall that Q is the closure of the
set of p-points of S. The proof is divided into 5 cases, depending upon
the value of N. The five cases are: N=l; N=2; i V = 2 m > l ; N=2m

Case 1. iV=l. Let Q=p, and let C be a circle with center at p
and having radius r. The set S C is a closed connected set having
property P3 and having p as its only p-point. If S C satisfies the con-
clusions of either Theorem 2 or Theorem 3, it is quite clear that S=
limS C as r->oo will satisfy the same conclusions. Let the boundary
of the convex hull H(S-C) be D(H), since B(H) stands for the boundary
of H(Q). The rest of the proof will show incidentally that D(H)-S has
one, two or four components.

Suppose D(H) S has exactly three components and designate these
by B, ( i=l , 2, 3). It is easy to show that B,φ {p} ( i=l , 2, 3). Choose
points xi^Bi with xtφp ( ΐ=l, 2, 3). Property P3 implies that at least
one of the intervals xxx2, x2x3, x-sxL is in S. Suppose x^cZS. Since
XiβDiH) (i=l, 2), and since B^B^^O, we must have L(xu x2) S=x1χ.i.
If pφiXiXt), then let Hn be the closed half-plane bounded by L(xu x2)
and not containing p. Since xxeBlt x2eB.z with B1'B.λ=Q1 there must
exist a cross cut of the complement of S in Hn. However, by the proof
of Lemma 2, there would exist a p-point in Hn S which contradicts the
fact that Q=p. Hence peix^). Since pefaxz), if x^CZS, the proof
of Lemma 2 would again imply the existence of a p-point in that closed
half-space bounded by L(xu x3) which does not contain p. However
this contradicts Q=p. Hence, xLx3ςtS. Similarly XjX3ςtS. Property
P3 and the closure of S implies that for points xeBλ sufficiently near
xl9 we have xx^CZS, xx3ς£.S, x.^x3ςLS. Applying the same reasoning
to x, x z, x-6 that we applied to xl9 x.i9 x3, we get p e (xx2) for all x near
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xx. This can only be true if B1=x1. Similarly, B2=xI. However, since
B3 is contained in only one of the open half planes bounded by L{xu xz),
the facts Bt=xt (i=l, 2) simply that xxx%CZD{H)*S, which contradicts
the fact B-i J3a=0. Hence D(H) S cannot have exactly three components.
Suppose D(H) S has at least four components, and designate four of
these by Bt ( i=l , 2, 3, 4). The above argument implies that Bi=-xi

eD(H) S, and these can be renumbered so that ^ ε ( ^ ) , pe(x^x^).
Clearly any fifth component B5 could not exist, since the above argu-
ment applied to xl9 x2, x5 and x5 e B5 would yield p e (a?^), p e (x&6), so
that xδ=xif a contradiction. Thus if D(H)-S has more than two com-
ponents, then S C is the union of two line segments having an interior
point in common.

Now, suppose D(H) S has exactly two components denoted by J5X

and B2. Let the end points of Bt be x% and yi ordered so that yτx.z and
y>zxx are cross-cuts of the complement of S. The points xt and yt need
not be distinct. We will prove that each of the sets P$ == H(Bt -f p) +
C(xίp) + C(yίp)1 (i=l, 2) is convex. (See Remark 2 following Lemma 2
for the definitions of C(xtp) and C(yiP)). Property P3 and the fact that
Z)(i?) S'=βi+β 2 implies that Bi + x^ + y^ is the boundary of H(Bi + p).
We will prove that Px is convex. Since each of the sets H(Bι

J

rp)1

C(xλp), C(yxp) is convex, to show that Pλ is convex, it suffices to select
points ze H(B1 + p), ueC(xxp)f veCfep), and to show that uv + uz-hvz
CZPi We must have uv xφφ-Q, uv*yxpφ§, for if this were not so,
the fact D(H) S=B1 + B2 would imply that uv P%φ0. However, this
would contradict property P3. Hence, we have uv C#I2/LP+ Cix^ + Ciyφ).
Thus uv C Pi- In the same manner uz C Pi, vz C Pi, so that P1 is con-
vex. The same argument applies to P2.

Finally if D(H)*S has exactly one component, and Q=p, it can be
shown readily that there exists a line through p which divides S C into
two closed convex sets having p in common. This completes the proof
for N=l, and oddly enough it appears to be the most difficult to prove.

Case 2. N=2. Let Q=p1 + pz. The line L(plf p.z) divides the plane
into two open half-planes Wt ( i=l , 2). Lemma 4 implies that Wt S is

convex. If WΊ S^Q, then S=W2 S+S*L(p1, p2) yields the desired con-
clusions of Theorem 2 and 3. Hence suppose W^SφO (ί=l, 2). Let

U~W^S±W7S. If U is convex, then S = U + S L(plf pj yields the
desired decomposition. Suppose U is not convex, then we can show
that S L(pι, p2) = U L(pl9 p2), for suppose a point ue S L(pu p2) —
U L(plf p^ exists. Since U is not convex, there exist points xte W^S

such that x^ςtS. Moreover uxi^tS, since u$, Wt S. However, this

violates property P3. Thus if U is not convex, S=W1 S-hWi S, and
this is a desired decomposition of S into two convex sets.
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Case 3. i V = 2 m > 2. In this case the hull H(Q) is a convex polygon,
each segment of which is an edge having ^-points as endpoints (See
definition 6). Order the edges xtxi+1 of the boundary B(H) counterclock-
wise so that ( i = l , 2, •••, 2m; x1=x2m+ι). The open half-plane of sup-
port to H(Q) adjacent to av&ί+1 is denoted by Wt. By Lemma 5 each
of the sets

( 1 )

is a closed convex set. Moreover, since S C H{Q) 4- Σ Wt we have

Case 4. 2 V = 2 m - f l > l . As in Case 3, let e^^x^^x ( i = l , •••,
2m 4-1 a?i=a?2OT+2) denote the ordered edges of B(H), and define £Ί and
S2 as in (1).

Let

By Lemma 5, the sets Si, St and ^3 satisfy the conclusions of Theorem 2.

Case 5. iV=oo. In order to prove this case, the following defini-
tion is helpful.

DEFINITION 8. A connected closed subset / of the boundary B{H) is
called a polygonal element if the following conditions hold :

(a) It is the closure of the union of edges of B{H) (see Definition 6).
(b) Its endpoints (one, two or none) are limit points of p-points

of S.
(c) If I=B(H), then / contains at most one limit point of p-points.

If IφB(H), then only its endpoints (one or two) are limit points of
£>-points.

Observe that these conditions imply that a polygonal element is
maximal in the sense that it is not a proper subset of a larger polygonal
element.

The number of polygonal elements of B(H) is countable, hence we
can well-order them easily. Let Ilf Iz, ••, In designate such a well-
ordering.

For each polygonal element In, divide the edges it contains (see
Definition 6) into two classes M^ and Ml such that no two edges of
Mn ( i = l , 2) are adjacent, that is, have an endpoint in common. It may
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happen that one of the Mι

n may be empty. For each edge eeM* we
let Wl denote the open half-plane of support to B(H) whose boundary
contains e. Define

* ϊ = Σ Wi-S ( i=l, 2) ,

and let

Since each edge in Mi is separated from each edge in Mι

m {
Lemma 5 implies that Sτ and £3 are closed convex subsets of S. More-
over, since for each point xeS, either xeH(Q), or x is contained in
some Wl S, we have Sr=S1 + Sr

2 and S^S^O.
To prove that the number " three" in Theorem 2 is best consider

the familiar two cell formed by a five-pointed star. It is a simple mat-
ter to verify that this set has property P3, and that it cannot be ex-
pressed as the union of two convex sets. The analogous 2m+ 1 pointed
star behaves the same way.

3«. Concluding remarks •
(a) It should be noted that the converse of Theorem 2 is not true.

For instance, the set consisting of three segments xx% ( i=l, 2, 3), where
each angle ^_xixxJ = 12Q° (iφj), is the union of three convex sets; yet
it does not have property P3.

(b) It would be of interest to characterize those sets in Έ% which
are the union of two closed convex sets. It appears that such a charac-
terization will follow from an investigation of the cardinality of the set
B(K)-B(S), where K is the convex kernel of S.

(c) The theory in Es needs to be settled. In view of § 1, it is
natural to ask the question. What are the closed connected sets in E3

such that each of its plane sections is either starlike or the union of
two disjoint convex sets ?
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