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1. Introduction. The theorem to be proved in this note is a
generalization of a well-known combinatorial theorem of P. Hall, [4].

HALL'S THEOREM. Let Sl9 S2, •••, Sn be subsets of a set X. Then
a necessary and sufficient condition that there exist distinct elements
%u •> %n> such that Xi e St is that the union of every k sets from among
the St contain at least k elements.

The result has a simple interpretation in terms of transportation
networks. A certain article is produced at a set X of origins, and is
demanded at n destinations ylf , yn. Certain of the origins x are
"connected" to certain of the destinations y making it possible to ship
one article from x to y.

PROBLEM. Under what conditions is it possible to ship articles to all
the destinations y?

An obvious reinterpretation of Hall's theorem shows that this is
possible if and only if every k of the destinations are connected to at
least k origins.

We shall now give a verbal statement of the generalization to be
proved. A more formal statement will be given in the next section.

Let N be an arbitrary network or graph. To each node x of N
corresponds a real number d(x), where \d(x)\ is to be thought of as the
demand for or the supply of some good at x according as d{x) is positive
or negative. To each edge (x, y) corresponds a nonnegative real number
c(x, y), the capacity of this edge, which assigns an upper bound to
the possible flow from x to y.

The demands d(x) are called feasible if there exists a flow in the
network such that the flow along each edge is no greater than its capaci-
ty, and the net flow into (out of) each node is at least (at most) equal
to the demand (supply) at that node.

An obviously necessary condition for the demands d{x) to be feasi-
ble is the following.

For every collection S of nodes the sum of the demands at the nodes
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of S must not exceed the sum of the capacities of the edges leading
into S.

If this condition were not satisfied it would clearly be impossible to
satisfy the aggregate demand of the subset S. The principal theorem
of this paper shows that conversely, if the above condition is satisfied,
then the demands d(x) are feasible.

HalΓs theorem drops out as a special case of this result if one ap-
plies it to the particular network described in the paragraph above and
makes use of the known fact (see [1]) that transportation problems of
this type with integral constraints have integral solutions. However,
the simple inductive argument which works in [4] does not seem to
generalize to yield a proof of our theorem. Our approach is in fact
quite different and is based on the *' minimum cut ' ' theorem of Ford
and Fulkerson, [2], [1].

In the next section we give a formal statement of the problem
and prove the principal theorem. The final section is devoted to the
treatment of a special case for which the "feasibility criterion " yields
a very simple method for computing solutions.

2. The principal theorem* We proceed to define in a more formal
manner the objects to be discussed.

DEFINITIONS. A network [N,c] consists of a finite set of nodes N
and a capacity function c on N x N where c(x, y) is a nonnegative real
number or plus infinity.

A flow f on [N, c] is a function / o n NxN such that

(1) f(x, y)+J\v, α)=0,

(2) f(x, y)^c(x, y) for all x, yeN.

A demand d on [N, c] is simply a real valued function on N.
Note that we do not require the function c to be symmetric, thus

the maximum allowable flow from x to y need not be the same as that
from y to x. Condition (1) above corresponds to the usual convention
that the net flow from x to y is the negative of the net flow from y
to x.

We shall save writing many summation symbols in what follows by
adopting the following convenient notation.

NOTATION. If S is a subset of N and d a function on N, we write

xes
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If S and T are subsets of N and / a function on NxN we write

AS, Γ)= Σ /(*, »).

From these definitions it follows at once that if U and V are dis-
joint subsets of N then

(3) d{U\j V)=

AS, U\J V)=AS, U)+f(S, V).

In particular, denoting the complement of S by S' we have,

f(N, T)=f(S, T)+f(S', T) for all S C N.

In this notation (1) and (2) are clearly equivalent to

(10 AA, A)=0;

and

(2') f(Ay B)^c(A, B) for all A, BC.N.

The above notation is natural to our problem, for if d is a demand
function then d(S) is simply the aggregate demand of the set S, and if
/ is a flow then f{S, T) represents the net flow from S into Γ.

DEFINITION. A demand d is called feasible if there exists a flow /

such that

(4) f(N, x)^ d(x) for x e N.

This condition states that the flow into each node must be at least
equal to the demand at that node. However (1) and (4) together imply

f(x, N)^-d(x)

so that we are also requiring the flow out of each node to be at most
equal to the supply at that node (recalling that a negative demand re-
presents a supply).

Finally we note that from (3) it follows that (4) is equivalent to

(4;) f(N, S)^d(S) for all SC.N.

We can now give a simple statement of our main result.

FEASIBILITY THEOREM. The demand d is feasible if and only if for
every subset S C N

(5) d(S')^c(S, S').
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Proof. The necessity of (5) is obvious, for if d is feasible then
there is a flow / such that

The proof of sufficiency depends on the " minimum cut theorem "
of Ford and Fulkerson, which we shall now state and prove in our
own formulation. While our proof is little more than a translation of
the above authors' second proof [3] into our notation, we record it here,
nevertheless, both for the sake of completeness and because it is sub-
stantially shorter than any proof published heretofore.

DEFINITION. Let [N, c] be a network and let s and s' be two dis-
tinguished nodes (s=source, s'=sink). A flow from s to s' is a flow
such that

(6) f(N, x)=0 f o r a y s , xφsf.

Let F denote the set of all flows from s to s'.
A cut (S, S') of N with respect to s and s' is a partition of N into

sets S and S' such that seS, β'eS'.
Let Q denote the set of all such cuts.

MINIMUM CUT THEOREM. For any network [N, c]

max/(s, Λ0=minc(S, Sf),
F Q

Proof. First note that for any flow feF and cut (S, S') e Q we
have

(7) f(s, N)=f(s, N)+ Σ A*, N)=As, N)+f(S-s, N)
xes-s

=f(S, N)=f(S, S)+f(S, S0=/(S, S')^c(S, S').

Hence, it remains only to show that equality is attained in (7) for
some flow and cut.

Let feF be a flow such that f(s, N) is a maximum. Let S con-
sist of s and all nodes x such that there exists a chain σ=(xQ, xlf , xn)

of distinct nodes with xo=s, xn=x and c{x^u x^)~/(a?t-u #t)>0, i = l ,
• , n. Now s' is not in S, for, if it were, there would be a chain σ
as above with x=sβ'. But then letting

(x^u Xi)-f{Xi-i, xt)] ,

one could superimpose a flow of μ along the chain σ on top of the flow

/, contradicting the maximality of / .
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The above argument shows that (S, S') is a cut, and we conclude

the proof by observing that f(s, N)=c(S, S'), for if not, then from (7),

j\S, S'Xc(S, S'), hence for some xeS and yeS' we would have c(x, y)

—Άχ> 2/)>0> but since xeS there is a chain σ=(s, xlf •••, x) which

could be extended to a chain </=(s, xl9 •••,#, y), contrary to the fact

that yeS'. This completes the proof.

Proof of feasibility theorem. Consider a new network [JV, c] where

iV consists of JV plus two additional nodes s and s\ Let U (Z N be all

nodes a? such that d(x)<L0. Then c is defined by the rules

c(x, y)=c(x, y) for x, yeN,

c(s, x)=—d(x) for xeU,

c(x, s')=d(x) for xeU,

c{x, y) = 0 otherwise.

We now assert that the cut (N—s\ s') is a minimal cut of [N, c],

for let S, and S7 be any cut of [̂ 7, c\ and let S=*!3-8, Sf=S'-sr. From
the definition above we have

=c(S, S')-d(S'Γ\

and subtracting we get

c(N-sf, s')-c(S, &)=d(S'Γ[ ΐr) + d(S'Γ[ U)~c(S, S')

=d(Sf)-c(S, S')<LO,

the last inequality being the hypothesis (5), and the assertion is proved.

Now, from the Minimum Cut Theorem, there is a flow /from s to

s' on [N, c] such that

f(N-sf, sf)=c(N-sf, s')=d(Uf),

hence

( 8 ) fix, sf)=d(x) for all #eCΛ

Let / be / restricted to iVxiV. Then / is clearly a flow and it re-
mains to show that / satisfies (4). If xeU; then

0=/fo N)=f(x,
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hence

(9) f(N, x)=d(x).

If x 6 U then

0=f(N, x)=f(N, x)+f(s, x)^f(N, x) + c(8, x)=f{N, x)-d(x),

so

(10) f(N, x)>d(x),

and (9) and (10) together show that / satisfies (4), completing the proof.

REMARK. We wish to call attention to the following important
fact. We have at no point in what has been said thus far made use
of the assumption that the functions d, c and / were real valued. In
fact, all definitions and proofs go through verbatim if the real numbers
are replaced by any ordered Abelian group, in particular, the group of
integers. One useful consequence of this remark is the fact that if a
network with integer valued demand and capacity functions admits a
feasible flow then this flow may also be chosen to be integer valued.
We shall make use of this fact in the next section.

There is a second formulation of the Feasibility Theorem which is
sometimes convenient. In the network [JV, c] let U be as above the
set of nodes x such that d(x)<L0.

THEOREM. The demand d is feasible if and only if for every set
Y d V there exists a flow fγ such that

(11) fy(N, x)>=d{x) for xeU

(12) fAN, Y)^d(Y).

Proof. The necessity is obvious. To prove sufficiency we show that
(11) and (12) imply (5).

Let (S, £') be a partition of N and let X=Uf\S, X' = UΓ\Sr,
Y=Uff^Sy Y'^U'ftS'. Then from (11) there exists fγ, such that

and from (12),

d(Y')^fv<(N, Y)=fAX\JY, Y')+fr,(X', T).

Adding these inequalities we get
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fAXKJY, X')+fAX\JY, T)

Y, r u r>=/(s, so^cίs, so,
which is exactly (5).

3* An example. As an illustration of the feasibility theorem, con-
sider the following problem.

(I). Let au •••, am and bu •••, bn be two sets of positive integers.

Under what conditions can one find integers ocij=0 or 1, such that

and

Σ ecu <:

for all i and j ?
As a concrete illustration, suppose w. families are going on a picnic

in m busses, where the jth family has b3 members and the ith bus has
a% seats. When is it possible to seat all passengers in such a way that
no two members of the same family are in the same bus ?

In the case Σ ^ ^ Σ ^ i the problem becomes that of filling an mxn
matrix M with zeros and ones so that the rows and columns shall have
prescribed sums.

The feasibility theorem gives a simple necessary and sufficient con-
dition for the problem to have a solution. In order to state if we need
the following.

DEFINITION. Let {αj be a nonincreasing sequence of nonnegative
integers al9 a.z, •••, such that all but a finite number of the at are zero.
Let

where j is a positive integer and let Sj be the number of elements in
Sj. The sequence of numbers {sj} clearly satisfies the same conditions
as the sequence {αj it is called the dual sequence of the sequence {αj
and is denoted by {αj*.

It is clear that {αt}* determines {αj since the integer ai occurs
exactly sα. — sα+1 times in {αj. Actually the correspondence between
{αj and {αj* is completely dual in the following sense.

THEOREM. {««}**={«<}

This result will not be needed in the sequel and its proof is left as
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an exercise. However, its validity can be made quite obvious by means
of a simple pictorial representation.

Let each number at be represented by a row of dots, and write
these rows in a vertical array so that ai+ι lies under aif thus:

aδ

It is then clear that the dual number βj is simply the number of dots
in the jth. column of the array.

We can now give the criterion for the feasibility of Problem I.
Henceforth for convenience we shall assume the numbers at and b5 are
indexed in decreasing order, and shall define ^ = 0 for i > m , 6^=0 for

THEOREM. Let {sj = {αj*. Then Problem 1 is feasible if and only
if

k k

Σ bj <i Σ SJ > for aM integers k .

Proof. We may interpret (I) as a flow problem. Let N be a net-
work consisting of m-j-w nodes xlt , xm and yu , yn, and let c(xt, yd
= 1 for all i and j , c=0 otherwise. Let d(xi)=—aι and d(yj)=bj. One
easily verifies that the feasibility of (I) is equivalent to the feasibility
of the demand d.

We shall show that d is feasible by applying the second theorem of
the previous section. Let Y be a subset of k nodes yjf say Y== {yJιf

• tVj } We now compute the maximum possible flow into Y. Because
all capacities are unity this maximal flow fγ is achieved by shipping as
much as possible from each node xt into the set Y. Thus, the flow
from xt to Y is min \au k] and the total flow into Y is

fr(N, Y)= Σ m i n ίai> &]

We now assert

(13) ]
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which is proved by induction on k. It is clear from the definition that

]Γ, min [at, l ] = m = s 1 .
1 = 1

Now

min [aif k~\ for α* < k
min [βt, &-fl]=

min[aiy &]-hl for α f l>ά + l, or

hence,

^ i f e & l ] = = Σ min [α̂ ,

and (13) follows from the induction hypothesis.
The second feasibility theorem now states that the problem is feasi-

ble if and only if

and since the b3 are indexed in decreasing order, the conclusion of the
theorem follows.

It is interesting that for this particular problem there is a simple
" w-step" method for actually filling out the matrix of atj'&. Such
procedures are sufficiently rare in programming theory so that it seems
worth while to present it here.

The procedure is the following: If the problem is feasible then
b1<l81 and hence alf •••, α δ l l> l (recall that the at'& are indexed in de-
scending order). Let tftl=l for i<Lbu 0^=0 for i > 6 l β Now consider
the new problem, (I)', with the matrix M having m rows and n—1
columns, j=2, •••, n, with 0^=^ — 0:̂  and b]=bjt We assert that (I)r

is again feasible so that by repeating the process we will eventually
fill out the whole matrix.

To show that (I)' is feasible we must prove, for any ky

where {si} is the dual sequence to {a't}. The expression on the right
can be rewritten

]==Σ m i n [α«~"l> *]+ Σ minΣ mi

We must now consider two cases.

Case 1. Sfc+11> δlβ Then ^ — l^k for i ^ b λ and hence minfαi —1, A:]
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=/£=min [at, k], so that we get

k m m k k )

2. s f c + 1<61. Then for i<isk+1, at^k-i-l so at— l^>k and
infα^ — 1 , ^]=/i ;=min [au k~\. For s}c+1<^i <Lbu ^^k, so m i n ^ — l , k]

intα^ k] — 1, hence,

?)i fc+i fe+i

;, fc] = Σmin[α i, fc]-&i + sfc+1= Σ ^ - 6 ^ Σ bj,
ί = l ί = l j = l 1-2

since

fc+l fe+1

Σ

by the feasibility condition. The proof is now complete.
In terms of the picnic problem, the n families should be seated in

n stages according to the following simple rule: at each stage distribute
the largest unseated family among those busses having the greatest
number of vacant seats.
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