ON THE GENERALIZED RADIATION PROBLEM OF
A. WEINSTEIN

H. M. LIEBERSTEIN

1. Introduction. The generalized radiation problem as formulated
and solved by A. Weinstein [8] requires determination of a non-singular
solution of the two-dimensional Euler-Poisson-Darboux (abbreviated EPD)
equation

(1.1) uld=up) +r§u5’“

for — o0 <k<1 such that
(1.2) lim u™(x, y)= f(x) and u™(x,y)=0 for y==x
y-0

where f(x) is a function given on some interval 0<a<a, possessing a
specified number of continuous derivatives there and having another
specified number of zero derivatives at x=0. These conditions on f(x)
depend on the parameter k& as stated in [8]. The classical radiation
problem, requiring an axially symmetric solution of the higher dimen-
sional wave equation with a certain type of singularity, as given in [3],
is a special case. If k is an integer and u™ a solution of the above
generalized radiation problem, then

(1.3) uG-(g5, )= (@ ¥)

1-&

is a solution of the classical radiation problem in an m=38—k dimensional
space (not counting time as a dimension). Thus from a regular solution
u™ one generates a solution u®*-* of the EPD equation with that type
of singularity needed to solve the radiation problem.

The first part of this paper will be devoted to uniqueness for the
generalized radiation problem. Although a more complete answer to
the uniqueness question would be welcome, consideration of solutions
which have two continuous derivatives on y=2 is natural since such
solutions are the ones that correspond closely to radiation phenomena.
Let T be a triangle with vertices (0, 0), (a, 0), (a/2, @/2). We define a
function to be regular on T if it has two continuous derivatives in some
triangle G the interior of which contains 7' and its sides except for the
base line, y=0. Only a function satisfying the EPD equation, regular
on T, and taking on the given data will be considered a solution of the
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radiation problem. Such considerations cover an important class of the
Weinstein solutions.

We are concerned for uniqueness only with the difference of two
solutions u™(x, y) which take on the given data f(x); that is, we show
that «™(z, 0)=u"z, 2)=0 implies u™(x,y)=0. It will be convenient
to use several properties of solutions that follow from the general solu-
tion of the EPD equation. These general solutions were known to
Darboux [4], except for the case k=—(2n—1), n=1,2, ---. We use the
E. K. Blum [2] representation of the general solutions.

The recursion

(1.4) iz, y)=yu** Yz, y)

plays a basic role in our uniqueness considerations. This relation and
the relation (1.8) are still valid even where x represents variables z,,
Z,, -+-, 2, and u* is a solution of

k
A,uzu,,y-l-;ug, .

In their n-dimensional form both recursions are due to A. Weinstein,
but in the two-dimensional form used here the recursion (1.3) was known
to Darboux. In place of (1.4) Darboux uses a relation which in our
notation is

kul Nz, y)=yut**+ Nz, y)

and which therefore does not admit an inversion for £#=0. Certainly
the discovery and emphasis of the very important role of these recursions
in the general theory of the EPD equations is the work of A. Weinstein.

Of course, any uniqueness proof which applies to solutions of (1.1)
(1.2) also applies when it is required that

(1.5) w Nz, w)=g(x) ,  wz, 0)=rf(x)

where f(x) and ¢(x)#=0 are given functions. A later paper will be
devoted to solution of the problem (1.5), and precise conditions on f
and ¢ required for existence of solutions regular on 7' will be given
there.

From the Weinstein solutions it can be seen that the region of
determination of f(x) defined for 0<a<a is the infinite strip bounded
by the lines y=2 and y=a—a. The uniqueness question, however, can
be restricted to consideration of the characteristic triangle T defined
above. That is, for uniqueness one considers only the problem f(x)=0.
If it follows from this prescription of f(x) that the solution is identically
zero in the characteristic triangle, then it is certainly zero on the
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characteristic y= —a+a. But now as the solution has been prescribed
to be zero on y=w, it can be shown to be zero in the infinite strip by
solution of a characteristic problem. The characteristic problem for the
two-dimensional EPD equation is classical. It was solved by Riemann
[6] in order to obtain the Riemann function for the EPD equation.

2. Some important properties of solutions. In this section we shall
be concerned with several properties that are derived from the general
solutions of the two-dimensional EPD equation for solutions u™(z, y),
k<1, regular on 7, and such that

ul*Yz, x)=u*z, 0)=0 .

The general solutions which we use are valid on a characteristic
triangle in which the solution has two derivatives in a region G' containing
that characteristic triangle except for the points of its base. Certainly
then the general solutions are valid for functions which are regular on
T in the sense described above.

The general solutions for k& negative are obtained [2] from repeated
application of (1.3) and (1.4) (and certain considerations associated with
them) to solutions u')(z, y), 0<s<2. Consider coefficients a,, defined by

—(_1Y7[r+2n—r)-1] _
1) “’”'< 2) n—mir—1)t ==L

The general solutions are:
Case 1. 0<k<1
(2.2) Wz, y) = — 2’°-‘y“’°S:1<l>[ac+ay](1~6¥“)"“’2 da
—2"‘+1g:l¢[:v-l—ay](1—a“)"”“l da .

For solutions which are regular on 7, the arbitrary functions ¢ and ¢
have one continuous derivative on the closed interval [0, a].

Case 2. k<0, k non-integral,

(2.8) w )z y):__zs—lznl‘ aurl 2’:(1—3)(—3). e o(—8—1—7) .
’ = Ol o g! (r—a)!

X S—ldﬂ)[x—l— ayl(l—a?)~*"a’ da
1

— -8+l il am?/s +7r-1 S:l ¢(r)[x+ ay](l — az)slz—xar doa
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where 0<s<2, s#*1 and »n is an integer given by 2—k=2n+s. Here if
u* is regular on 7T, ¢ and ¢ have (n+1) continuous derivatives on
[0, a].

Case 3(a). k=0, u"z, y) =F(z+y)+G(x—y).

Case 3(b). k=—2n, n=1,2, -+,
(2.4) ut Nz, y)= g Oy 1 Yy FP@+y)+H(=1)YG(@—y)] .

Here if u*! is regular on T, F' and G have (n+3) continuous derivatives
on [0, a].

Case 4. k=—(2n+1), n=0,1,2, ---

- 79,011
(2.5) Wz, ) = Zlar,n+1yr o"ut
r=1 ayT
where
(2.6) u[ll(x, y)= 2S—1¢[x+ay](1 — )" da
1

+2S: Ylz+ayl(l—a?) " log [yl —a?)(1/2)] dex .

Here if u!1 is regular on T, ¢ and ¢ have n+2 continuous derivatives
on [0, a].

LEmMmA 1. If ull(z, 0)=0 and u*Nx, y) is regqular on T, then

Case 1. ¢=0

Case 2. ¢$=0

Case 3(a). =—-G
(b). F'=-@G

Case 4. ¢=0.

Proof. There results were known to Blum [2]. The hypothesis is,
as stated above, intended in the sense that lim »/™*)(z, y)=0. In Case 2,
y—0

for example, let ¥y —0. As s+r—1 is always positive, since =1, we
have
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ut(z, 0)=lim ul*(z, y)
Y0
n -1
=21 2 q,,(1—5)(—s)- -(—s—r)qs(:c)g (1—a?)-* dat
r=1 1

or
ut*(z, 0)

_28—1%1%‘"(1—8)(_8)' : '(*S—T)Sl-l(l—-az)‘srz da .

2.7 @)=

But the integral cannot be zero since it is a symmetric integral of an
even function—in fact, the integral is

—I'(1/2) I (1—s/2)

(3/2—s/2)

and it can be shown that iam(l—s)(-—s)- «+(—s—r)#0. Thus u™(z, 0)
r=1

=0 implies ¢(x)=0 as stated.
Consider now Case 4. Here we have

uM(x, 0)

(2.8) ()= u :
2 G+ 3 7 =101

and ¢=0 if ¥"™(z, 0)=0. For example, take k= —1,
u(e, y) =20 gl ayl(l—a) e da
1
-1
+2S1 ¢'[o+ayly log [y(1 —a)1/2](1 — ) e dx
-1
+2y§ Hot ay)( =) (1—a)H da .
1 Y
un letting y — 0 we notice that yloge y — 0 for any constant ¢ so that
0=ut-D(a, 0)=2S_1¢[x](1—a“)-”2da
and again, since
S_l(l—acz)'“” da£0,  Ja]=0.
1

Case 1 and Case 3 are now entirely trivial.

LEMMA 2. For k<0, iof u™ s regular on T and u™(xz, 0) exists,
then
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ut N (zx, 0)=lim u{(x, y)=0 .
y—0

That is, for £<0, letting u™(z, 0)= f(x), given, the function u*(z, y) is
a (non-unique) solution of the singular Cauchy problem.* This is the
main result of Blum [2]; one arbitrary function is determined as seen
in Lemma 1 by specification of f(x), the other is left free so that the
general solutions then yield the class of all solutions of the Cauchy
problem for k£<0. For k>0 solutions of the singular Cauchy problem
are unique. One now sees that the solution of the generalized radiation
problem for k<0 is a solution of the Cauchy problem with one additional
condition. It is this condition which must provide uniqueness. The
proof of the lemma consists simply in deriving the general solutions with
respect to y and examining limits as y — 0. It should be noted that in
deriving the general solutions of the EPD equation nothing is said about
the behavior of %, on the line y=0. Also, it should be emphasized that
one cannot simply look at the term %u,, of the EPD equation and con-
clude the above immediately; for £=0, ul*(x, 0) is not necessarily zero.

Lemma 2 is true for any u™ regular on T such that u™(x, 0) exists,
but the problem of uniqueness involves only #™(x, 0)=0, and in this
case a more general result, valid for k< —1 but used here only for
k< —2, is obtained. In [8] the existence of certain derivatives of u!*
on y=0 was (tacitly) assumed. Lemma 3 allows us, for unicity only,

to avoid any such assumption.

LEMMA 3. Let u™(x, y), k< —1, be any solution of the EPD equation
reqular on T. Then u™(x, 0)=0 implies

lim 4@ Y) g
) Y

For —1<k<0, a counterexample is u™(x, y)=y'-*.

Proof. We must again consider separately each of the general solu-
tions. To avoid extensive manipulations a sample case only is presented ;
k non-integral, —2<k< —1.

By Lemma 1 all solutions are of the form

uM(e, y)= —2‘3+1y55_1¢'[m+ay](1—az)sf""a da
1

with 1<s<2. We have

1 For the singular Cauchy problem, specify f(x) and require

W, O=F@), ui (@, 0)=0.
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lim %@ Y) _ i _g-sn {sys‘zgﬂls’!'[w—i-ay](l—az)s”“oz do
1

y-0 ’y Y0

+ys—1S:l¢//[m+ay](1_a2)s/2—1a2 da}

=—2"%*1g]lim ys‘zg-lgb’[x—kay](l —a?)* e da
y-0 1
But as y — 0, the integral factor goes to
¢’[w]§ =@yt a da=0
1
(the integrand is odd), and the L’Hospital rule is applicable. We obtain

(k] -
lim % @ Y) _ _g-sn 8 jiy e S '+ ag](1— o) da=0

Y0 Y 2——8 y-0

LEMMA 4. If u™ is reqular on T, in the genmeral solution for u™
we may without loss of generality take

Case 2. ¢/(0)=¢"(0)="+++=¢™(0)=0

Case 3. F'(0)=F"(0)=---=F™1(0)=0
or G(0)=G"(0)="--=GD(0)=0

Case 4. ¢'(0)=¢"(0)="-+=¢@*D(0)=0 .

The importance of this lemma is that it is essential in the proof of
Lemma 5 where these results are used in repeated application of the
rule of IL’Hospital. Lemma 5 in turn is essential to an important in-
duction used in the uniqueness proof of §4. For solutions with two
derivatives inside 7T only, the lemma can be extended by replacing the
evaluation of ¢, ¢, F', and G at 0 by evaluation at ¢>0 and considering
solutions regular on a triangle T, contained in 7.

Proof. Case 2. Let the function ¢@(z) be defined by

D0 — D — D) — SO TO) o $90) s
2.14) ¢PR)=¢D(2) —¢D(0)—¢®(0)z 51 Z (n—l)!z .
Of course, ¢P(0)=¢P(0)="-..=¢%(0)=0, and we show that ¢{’(z) can

replace ¢“(z), r=1, ---, n, in equation (2.3). Differentiating (2.14) r—1
times we obtain

$0@) =@+ 3 L0 s
m=r(m—r)!
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and using binomial expansion we have

(2.15)  ¢O(x+ay)=¢P(@+ay)+ Zmz—“r ¢ (0) {(m ) gm-r- jngi} .
ni=r =0 (m—r)l U jlim—j—r)!

Then using (2.15), we may rewrite equation (2.3) as
@16 wie,p)=-2"% - 2| g
1
—2 5 | 90l el ety oiar da
r=1 1

13 n m-r m)
__2s+1ys{ Z Wy Z Z ¢’( (0) xm—r-j,yjﬂ'—l

r=1 m=r j=0 Jl(m—j— 7-)1
-1
X S (1 _az)s/z—lanj do }
1

so that our lemma will be proved when we have shown that the last
group of terms sum to zero for all « and y. In this group for
terms where 7-+j is odd, the integral factor vanishes. We prove that
the indicated brackets is zero for each r-+j even. Reordering terms,
the brackets in (2.16) becomes

(2.17) Zn: g/l("‘)(()){ Z Z Tn_#_xm-(7’+f)y(r+l)—l

=t glm—j—r)!
x (" —ayriar dal

and it will be possible to show that the new brackets, denoted by S(n)
is zero for all » such that r<m<mn. Letting 2v=r+j, for 0<j<m—r

we have r<2v<m or since the least value of ris 1, 1§y§["21:|.2 Then

51 4 i
(218) S(n)_ Z (m 2)))' — =Y —1{“1 (zy—,r)' }Sl (1_a2)s/2—1a2v da

and we only need show that

(2.19) —S O
' TTHE @)

is zero for all » and ».

2 [%:l is the Legendre symbol—the greatest integer less than or equal to —lnzi .
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From (2.19) and (2.1), then

& n—r @2n—r—1)!
rz‘ﬂ( 1/2) (n—r) (r—1)! (2v—1r)!

and this is the quantity which is our present concern.
Consider the polynomial

( 1/2)212—7‘ 1(1 z)Zn r=1 2(n—l) .
(2.21) P(z)= ; (=)l @] l% b2t .

Then

n-1 2n—7r-1 (2”’ r— 1)'( 1)"1 __s\n-r
PemE)= 3 (-1 =)

and

n-1 —(_1\2-1( __ n-1 el . n—7 (2%-—7‘—-1)!
POD(O)=(=1y7(~1/2)"" 2 (=1/2) () (1)) (@ =]

=(_1)n—1(__1/2)n—10_

1631

Thus P(z) has been chosen so that it will be sufficient to demonstrate

that the coefficient b,_, is zero. Let us rewrite P(z) as follows

(1)2—1/2r1 1 2,—1 _—
P@E)= f\;l r—1) @v—1)! (211—-1)!12-:( )(1/2z 1/2)

_ (1/22—1/2)n-2 1
T (21 (1+1/2z—1/2)

(1/2z 1/2)2(n v)- 1(1/22_!_1/2)” -1

(e —1)'
— —1\2®n=-v)-1 2v—-1 — 2(n-1)
=c(z—1)*®-""Y(z+1) , c= @ 1)'(1/2)(
— pn=v=1/2( + S 1 -t 1 —Y' -1
=cz /(1/2 _17——2—‘) (Tz—‘i‘l/Z) e
=c2""'Q(2)

where
w=(vz-) T (rve)

We note that Q(z)=—Q(1/2), and that, therefore
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028 _r(L)e1- o[}

4

or P(2)=—2""YP(1/z). Thus

2n~-1) 2(n—1)

> b= — z b=t — 3 b2

and b,4by,-1y-,=0. Putting {=n—1, the required result b,,=0 is ob-
tained.

It is noted that the coefficients a,, of the general solutions do not
arise from consideration of any polynomials.

Case 3(b). It remains only to show that this treatment reduces
after a certain point to that of Case 2.
Let

FO(@) = FO () — GD(0)— 2G®(0) — gg(3>(0)_ e — ﬁ’"(;(nu)(o)
. ni

and
GL(x) = GD() — GD(0) —mG@(O)—g GD(0)— - - - —ﬁ" G@+(0) .
. n.

Then F'® and G have the required number of continuous derivatives
and GP0)=GP0)=---=G¢*>(0)=0. (Of course, if we subtracted the
“Taylor part” of F®(z) from F® and G® we would find that
FOO)=FP(0)=+--=F¢"(0)=0.

F)(g)= F"’(a:)-}-z G(0) \m
m-=r( —’)‘)'
and
G(w) =GP () + 5;:‘ (G("” _(0))'
From (2.4)
u['2"1=Ear,n+1y"1l:ﬁ'5?(w+y)+:§l (m ((;),( z+y)mr
+(—1GP@—1) +(~17 3] (G( (O))J o

n+1

=T§s]1 @ ey T FP(@+y)+H(—1)GP(x—y)]— 32
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where
s [ "E G™0) & (m—1)! (=1)(m—r)(=1)
2= 2 Ot [m2=1(m—r)! j—x(j!(m—j—r)!+ i (m—j—r)! )
x:c"‘"‘"y’]

and, of course, we must show that 3 is zero. We have

N o SCHIL RPN
mer r=1 J=0 j!(m—j—rr)! )

x4+ (=1)*).

But the expression in brackets in (2.22) is exactly that of (2.17) with
n replaced by (n+1), and the factor 14+(—1)"*’ plays exactly the role of

-1 s 1
S A—at)s 'ar da
1

each being zero for r-+7 odd.

LEMMA 5. If k<0 and u™(x, y) s a solution of the EPD equation
regular on T and such that

u(x, 2)=0,
then
(i) ul(x, x)=Bx**, B constant
(ii) u™(z, 0)=0—) B=0.

That the solution be regular on T implies that all second derivatives
exist on the line y=« and that the EPD equation be satisfied there.

Proof.
(i) On y=« the EPD equation may be written, using « as a parameter,
(2.23) 9 e, &) —u (s, 2))= Fu iz, @) .
dx @

Differentiating u™(x, y) on the line y=x, we have
(2.24) 0=ulN(x, )+ ul)(z, x)
so that (2.23) may be rewritten

%(uaﬂ(x, @) = ——2%u5“<w, )
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and the first part of the lemma follows. This elementary procedure is
basic in our problem and similar techniques will be used often.

(ii) To demonstrate the second part of the lemma we note that since
u™(x, y) has been assumed to be regular on T the general solutions
apply on the line y==«, and from Lemma 1 the condition u™(x, 0) gives
the general solutions a simplified form. Thus for Case 2, k& non-integral,
noting that k/2= —s/2+1—n, we have

(2.25) B=a"*uM(z, x)

— _2—s+1zn“ @y {(3+7'+1)ms/“r_"_lg_l‘r/)(")[(l+C¥)a?](1 _az)s/2_1a7. da
r=1 1

+ms/2+r—n5‘1¢(,-+1)[(1 +a)m](1 __az)s/z-lar—H da} .

We can now conclude that B=0 by taking the limit of (2.25) as x — 0.
To do this we apply the rule of L’Hospital (n+1—7) times to the 7™
term in the first set of terms and (rn—7) times to the ™ term in the
second set of terms. The purpose in presenting Lemma 4 was to justify
this procedure.

The Cases 1 and 3(a) are irrelevant to this lemma as we require k

to be negative. Treatment of Case 4 is precisely analogous to Case 2

except that here, by Lemma 1, ¢(x)=0, and (2.25) appears in terms of

integrals of ¢ instead of ¢ and with a slightly different kernel.
Consider Case 3(b), k=—2n, n=1,2, ---. The analogue of (2.25) is

n+1

(2.26)  B=a"ulf (@, @)= 3, @y @ """ [FTD(22) 4+ (— 1) " F(0)]
1=1

+ 121(1,7., wer(r =2 " FO(2x)+(— 1Y F™(0)] .

We again conclude that B=0 by taking the limit of (2.26) as x — 0,
applying the rule of L’Hospital (r+1—7r) times to the »™ term of the
first set of terms and (n+2—7) times to the ™ term of the second set
of terms. For this purpose an immediate extension of Lemma 4 is used ;
that is, without loss of generality, in the expression from the general
solutions for {1, we may assume that

F(l)(O):F(2)(O)= R F("”)(O):O :

it is only %, not «™ itself, which enters into (2.26).

Since the coefficients of the EPD equation do not depend on z, it is
evident that if a solution ™)z, y) has three continuous derivatives in a
region, then ul*)(x,y) is a solution with at least two continuous deriva-
tives in that region. This is the motivation of the following lemma
which is essential to the induction of §4. A solution which has three
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continuous derivatives in a triangle G the interior of which contains the
triangle 7 and its sides except for the base line, will be said to be
reqular plus one on T.

LEMMA 6. Let U™(x,y) be any solution regular on T such that
U™z, 0)=0. There exists a solution u™Nx,y) regular plus one on T such
that

U™z, y)=ulNz, y)
and such that
u(z, 0)=0 .

Proof. This lemma is obtained in a trivial manner from the general
solutions using Lemma 1. For Case 2,

Uz, y)= —25*1 Z"“ @,y S—1¢,(r)[w+ay](1_a2)s/z-1 o da
r=1 1
=" —9s+1 i amys +7‘—1S“1 ¢(r—1)[x+ay](1 _az)s/z—lar da:l ,
ox r=1 1

or for Case 3(b)

n+1
U@, )= 2 Gy {AF O (@ +9) + (=1 F @ —y)}

8 n+1

o r=1|:a"”“yr'—1 {F(T'l)(m-l-?/)-l-(—1)“1F(r)(x_y)}] )

In both cases the quantity in square brackets is a solution of the EPD
equation which is regular plus one on T since the arbitrary funections
¢ and F' have (n+1) and (n+3) continuous derivatives respectively. Of
course, ul*(x, 0)=0 as required. Again the treatment of Case 4 is
analogous to Case 2.

3. Uniqueness for —2<k<1. In this section we show that when
—2<k<1

uf(x, y) regular on T

lim u™(z, y)=0 = u Yz, y)=0 .
0

u®z, x)=0

The argument is divided into the cases 0<k<1, k=0, and —2<k<0.
In §4 it will be shown that uniqueness for all k<0 follows from the
uniqueness for —2<k<0.



1636 H. M. LIEBERSTEIN

The k=0 case is entirely trivial. We have
u(z, y)=F(x+y)+Glx—y) .
The boundary conditions yield
0=u"Yz, x)=F(2x)+G(0) or F(x)=—G(0)
0=u(x, 0)=F(x)+G(x) or G(r)=—F(x)=G(0)
so that
u(z, y)=—G(0)+G(0)=0 .
Consider now 0<k<1. We have from (2.2) by Lemma 1
(3.1) u@, g) =~ 2y | glar- apl(1 )+ da
1
and
0=, 0)= 2=+ " gl + (L —) " dat
Let o=a(14+«). Then
0= 2"'1821 o~ *p[o)(o—2x) 2 do
0
or
0=I-+(2a) *g(24]]
where I*f[x] is the Riemann-Liouville integral of f to the order « (see

e.g. [8]). Then (2x)*2¢[2x]=0 and ¢[2x]=0. Of course, then, from
(3.1)

u™(zx, y)=0 .

The case —2<k<0 is similar. We treat only the case k= —1 be-
cause using Lemma 1, the treatments of k= —1 and % fractional become
entirely analogous. We have
3.2) W, )= 2y | o - a1 — ) a da

1
where 0<s<2 and ¢ has two continuous derivatives on [0, a]. Then

0=u"z, x)=— 2“190’5—15!)’[90(1 +a)]1—a?)*'a da
1

or, integrating once by parts,
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0=’¢:1 S 1— W la(l+ @)1 — ) da

for all . As above let o=x(1+«) and obtain

0=_1_S” o [} 22— )" dr
s Jo

or
0=1""+1(22)""¢" [22]] .
Again
(22)*P¢"'[2]=0
or for x+0, ¢'"[22]=0 and ¢'[2rx]=constant=K. But with ¢'=K, (3.2)
becomes
u Nz, y)= —2“‘ySKS:1(1 —a?)**la da=0

since the integrand is odd.

4. An induction, uniqueness for all k<1. Uniqueness for —2<
k<0 as proven in the last section together with the lemmas of §2 are
used here to establish uniqueness for all k<0, the case 0<k<1 having
already been considered in § 3.

Define (negative) numbers k, recursively by the relation %,.,=k,—2,
n=1,2, --« where —2<k,;<0; that is, such that —2n<k,<—2(n—1).
We apply a complete induction. In §3 it was shown that for n=1
(that is, for any k which is a k) u™(z, 0)=u"(x, z)=0 implies u")(z, y)
=0 provided u™*! is regular on 7. It remains only to show that if this
statement is true for k=k,, then it is true for k=k,..=k,—2.

Induction assumption. u% Nz, 0)=ullx, x)=0 implies ul(z, y)=0
provided u™! is regular on T.

(a) Given ulfnsid(z, y) regular plus one® on T and such that
unaid(, 0) =uln+d(, 2)=0

we generate a solution ul*:!(z, y) of the EPD equation which is regular
on T by the recursion

(4.1) yual(@, y) =uffrl(@, y) .

3 See Lemma 6.
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Now by Lemma 5, ulf»+1)(z, )=0 so that
(4.2) uttnlzx, )=0 .
Further from (4.1) by Lemma 3

T, 4]
(4.3) un)(z, 0)=1lim uY(z, y)=1lim Uy w2, Y) =0 .
v=0 ¥-0 y

(b) Now the induction assumption together with (4.2) and (4.3) imply
that u3(x, y)=0. But then by (4.1)

unsd(z, y)=0
or
ulbnsl(z, y)=F(x) for all y.

However, F(x) may be evaluated by setting y equal either to zero or «
so that

F(x)=u"n+)(x, 0) =2un+1l(x, 2)=0
and
(4.4) utbnsl(z, y)=0 .
(¢) Consider now U%a+(z, y) regular on T and such that
Unsid(z, 0)=U%n+)(z, 2)=0 .
By Lemma 6 we can write
(4.5) Unsid(, y)=ulinsil(@, y)
where ul*»+1! is regular plus one on T and
(4.6) u¥nsd(2, 0)=0 .

Let us examine the condition U1z, #)=0 or, equivalently, the con-

dition wlns(x, x)=0. On the line y=xz, the EPD equation may be
written

ad—(usl\:sk”“](x’ :v)_ui[/k"'”](a” d?)) :.I?—nﬂuy”"'ll(x’ x)
x x
and the condition ulx+1)(zx, 2)=0 yields

o Wi, ) = s afhaile, o)

or
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4.7) i) (2, )= Az~ ns1, A arbitrary.

Differentiating u!®n+1)(, y¥) on the line y=« we have

e, 2)-+ufensi, 2)=- ez, 2
“i

and, again since uln+1)(z, )=0, using (4.7) we have

Az Frnri=ulnal(z, x)= % ulns (2, )
&L

so that
(4'8) u[’“nn](x, (U) =Bx' Fns14+C .

Here B is arbitrary but C becomes zero since u'*z+1)(x, 0)=0. From parts
(a) and (b) above in which the uniqueness of a solution u%z+1! which is
regular plus one on T was established, the unique solution of the
boundary value problem (4.6) (4.8) is

u*nad(, y)=By' a1,
Then by (4.5)
Uttna(z, y)=0

and this completes the induction.
The following theorem summarizes the results obtained in §§ 3 and 4.

THEOREM. For — oo <k<1 there is at most one solution of the EPD
equation which is regular on T and is such that for given functions f(x)
and g(x)

nm ulie, y)=F@),  uNe, 2)=g() .

It should be noted that the uniqueness theorem given in [1] does
not apply here for the cases k<0 since the EPD equation does not
satisfy the relation (A) (5") of that paper unless 0<k<2
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