
SPACES WHOSE FINEST UNIFORMITY IS METRIC

JOHN RAINWATER

Those metrizable spaces for which the finest uniform structure is
induced by a metric have attracted a certain amount of attention, and
M. Atsuji [1] has collected and extended a list of characterizations of
them, regarded as uniform spaces. J. Nagata [6] and B. Levshenko [4]
have given topological characterizations of these spaces. This note ex-
tends Atsuji's list and gives an analogous list of topological characteriza-
tions.

I am indebted to the referee for assistance with the references and
improvements in the proofs.

Recall that a metric space (or a subset of a metric space) is said
to be uniformly discrete if for some ε > 0, the distance between two
different points is always at least ε,

THEOREM 1. For a metric uniform space S, either of the following
properties implies that the metric uniformity is the finest compatible
with the topology; thus they are equivalent to the properties (l)-(8) of
[1, Theorem 1].

(9) All bounded continuous real-valued functions are uniformly
continuous.

(10) Every closed discrete subspace of S is uniformly discrete.

THEOREM 2. For a metrizable topological space S, the following
properties are mutually equivalent:

(a) The finest uniformity on S is a metric uniformity.
(b) The set of all non-isolated points of S is compact.
(c) Every subset of S has a compact boundary.
(d) Every closed set has a compact boundary.
(e) Every closed continuous image of S is metrizable.
(f) Every Hausdorff quotient space of S is metrizable.
(g) Every Hausdorff quotient space satisfies the first axiom of

countabίlity.
(h) Every closed set in S has a countable basis of neighborhoods.
The equivalence of (a) and (b) in Theorem 2 is due to Nagata [6].

Levshenko has given three conditions equivalent to (b) [4]. One is that
S is a regular space having a countable family of locally finite conver-
ings such that every locally finite covering has a refinement in this
family; the other two are obtained by replacing " locally finite " in both

Received November 10, 1958.

567



568 J. RAINWATER

places by "point-finite", and then by " star-finite' \ The mutual
equivalence of (d), (e), and (h) is also essentially known; it follows at
once from results obtained independently by A. H. Stone [7] and by
K. Morita and S. Hanai [5].

Proof of Theorem 1. First, (9) implies (10). Suppose on the con-
trary that T is a closed discrete subspace of S which is not uniformly
discrete. Then for each n we can find two points xn,yn, in T, at dis-
tance less than \\n from each other; moreover, we can assure that xn

and yn are distinct from the 2n — 2 preceding points xlf , yn.λ. Then
the bounded real-valued function f on T which is 0 on all xn and 1 on
all other points of T is continuous, but not uniformly continuous. By
Tietze's theorem, / has a bounded continuous extension over S; this
contradicts (9).

Next, (10) implies (4) of Atsuji's Theorem 1 [1], which says that
any two disjoint closed sets have disjoint ε neighborhoods for some ε > 0.
Suppose on the contrary that A and B are disjoint closed sets and {xn}
a sequence of points in S, each xn common to the \\n neighborhoods of
A and B. No subsequence of {xn} has a limit point, for such a point
would have to be in A Π B thus {xn} forms a closed discrete subspace
of S. By (10), it is uniformly discrete; and since no subsequence has
a limit point, it is infinite. Then there is a sequence {ym} of distinct
points xn at distance at least ε from each other, such that for each ym

there are points pm in A and qm in B both within 1/m of ym. Again
the pm and qm have no limit point but they form a closed discrete sub-
space which is not uniformly discrete, a contradiction.

Finally, Atsuji shows [1] that (4) implies (8): "All continuous map-
pings of S into an arbitrary uniform space S' are uniformly continuous " .
Taking Sr to be the topological space S with its finest uniformity, we
conclude that the given uniformity is the finest. Obviously this implies
(9), and the proof is complete.

Proof of Theorem 2. To begin with, (a) is equivalent to (a'): The
diagonal in S x S has a countable basis of neighborhoods. For since S
is metric, the finest uniformity consists of all neighborhoods of the
diagonal; and a uniformity is metric if and only if it has a countable
basis [3, Chapter 6]. Now if (b) the set N of all non-isolated points is
compact, then the corresponding subset of the diagonal (being a compact
subset of a metric space) has a countable basis of neighborhoods V-h.
If we define Ui as F t together with all the isolated points (x,x) not
in Vi9 we have a countable basis {Ϊ7J about the diagonal. Thus (b)
implies (a') Conversely, since N is closed, if it is not compact it con-
tains an infinite closed set of points xn whose distances from each other
are bounded below by ε > 0. Given any countable collection {Un} of
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neighborhoods of the diagonal, we can find a neighborhood of the diagonal
V which does not contain as large a neighborhood of (xn, xn) as Un does
(since xn is not isolated) thus no Un is contained in V, and {Un} is not
a basis.

Thus (a) and (b) are equivalent. Now obviously (b) => (c) => (d). For
(d)φ(e) , Stone has shown [7] that a particular closed continuous image
of a metric space is metric if and only if all inverse images of points
have compact boundaries. For (e) =Φ (h), if S had a closed subset H
having no countable basis of neighborhoods, the quotient space obtained
by collapsing H to a point would be the image under a closed mapping
but not a metric space. Now we can deduce (b) from (h) in the same
manner as from (a'), using the supposed points xn in S instead of (xnf xn)
in S x S.

Trivially (f) =φ (g) =φ (h). It remains to prove (b)=Φ(f). Let Q be
a Hausdorff space which is a quotient of S, with quotient mapping
/ : S-> Q. Then the image of N is a compact metric subspace P of Q.
Every point of Q — P is isolated, since its inverse image consists of
isolated points and thus is open. We shall verify that Q is a regular
space with a ^-discrete base, and thus a metric space [3]. For regularity
at a point p of P, consider any closed set, if, not containing p. Since
H Π P is a compact set in a Hausdorff space, p has a closed neighbor-
hood F disjoint from H Γ\ P. Then F — H is, a still a neighborhood of
p, since H is closed; and F — H is closed, since H — P is open. Now
for a base, let {U%} be a countable basis of neighborhood of N in S.
Each f(Ut) is a neighborhood of P, because /^(/(E/"*)) * s a neighborhood
of f~\P)) and for every neighborhood F of P, f~\V) contains some
Uu so that V contains f{Ui). Let {Bn} be a countable base for the
space P. Each Bn is P Π Cw for some open set Cw in Q; let Dni =
Cw Π f(Ut). To check that {-Dnί} constitutes a basis for each point p of
P, we must check that any closed set H not containing p is disjoint
from some Dni containing p. There is a Bn containing p such that
Bn does not meet P Π H; then Cn Π H and P are disjoint, so there ex-
ists some f(Ui) disjoint from Cn Π H. But then p e Dni and Dni does
not meet H. Finally we adjoin the discrete collections Ei of all single
points in Q — f(Ut); and the proof is complete.

REMARK. The concluding portion of the proof established the equi-
valence of (b'): S is a Hausdorff space in which the set of all non-
isolated points is compact metric and has a countable basis of neighbor-
hoods. This suggests the question whether the metrizability assumptions
can be weakened or removed from any of the other conditions. It is
easy to check that any compact perfectly normal space satisfies (g) and
(h); and the standard example [2, p. 31, Problem 19] Γalso has the
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property that every closed subset has a compact metric boundary. Note,
however, Levshenko's conditions [4].
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