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1. Introduction, The present paper is an extension and continua-
tion of our earlier paper "Additive Functionals of a Markov Process "
[5] which will be referred to in the sequel as AF. Roughly speaking
we consider a temporally homogeneous Markov process, x(t), in a locally
compact, separable, metric space and certain other processes derived
from it. We always assume %{t) has right continuous paths and we
consider processes obtained by stopping x(t) at the boundary of an
open set, G, and subjecting x(t) to a local " death rate" , V(x), in G.
Our main study is the relationships between the infinitesimal generators
of certain semi-groups naturally associated with these processes.

Actually we use a function space approach to stochastic processes
and so our results are of an analytic nature (i. e. relations between the
transition probabilities and infinitesimal generators) rather than of a mea-
sure theoretic nature (i. e. statements above sample functions, etc.). The
use of a function space approach simplifies many measure theoretic dif-
ficulties associated with conditional probabilities and expectations, but
introduces the difficulty that if G is open then G(t) — {#(•)• x(τ) e G;
O ^ r ^ t} is not in general measurable with respect to the σ-algebra
33(36) defined in § 2. It is known [7] that under certain restrictions (im-
plied by our assumptions in § 2) G(t) is measurable with respect to the
appropriate completion of 33(36). However, we do not choose to complete
33(36) as this introduces the other difficulties mentioned above; instead we
consider the set {x( ): x(τ) e G; 0 <̂  τ <̂  ί} (G denotes the closure of G)
which is obviously in 35(£) and impose a regularity condition on G that
insures us that these two sets are roughly the same. (Theorem 2.1 and
the ensuing development.)

In § 2 we develop the preliminary machinery that is needed throughout
the remainder of the paper. We show in § 2 that all the results of
AF are valid without the assumption (P3) of AF. In § 3 we investi-
gate the behavior at the boundary of G of the semi-groups introduced
in § 2. In § 4 we consider the special case in which the infinitesimal
generator of the semi-group associated with <c{t) is a local operator. The
results of this section also extend and complement those of AF. In the
remaining three sections of the paper we study the spectral properties
of the semi-groups introduced in the earlier part of the paper.
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for the many enlightening discussions I had with him during the course
of this work.

2* Preliminaries. Let X be a locally compact separable metric space
with metric p and 23(X) the Borel sets of X; that is, the smallest σ-al-
gebra of subsets of X containing the compact subsets of X. Let 36 be
the set of all functions from [0 ^ ί < °°] to X which are right con-
tinuous; that is, x(t) -> x(t0) as t I t0 for all tQ ^ 0. Let 33(36) be the σ-
algebra of subsets of 3c generated by sets of the form

(2.1) 51 = {x(-) I x(t3) e A,: 0 = *0 < * ! < . . . < ίn; A, e S3(X),

Let p(ί, x, A) be a transition probability function defined for ί > θ , x e l ,
and A e 23(X), such that given an arbitrary probability measure, μ, on
33(X) there exists a countably additive probability measure, Pμ, on 93(36)
for which

(2.2) Pμ(5I) = f ( ( μ(dxo)p(tly χ0, dxλ)

p(t2 - t19 xl9 dx2)-* -p{tn - *„_!«„-!, dα?w)

where 51 is of the form (2.1). If μ assigns mass one to a single point,
x, we write Px for P μ .

We make the following assumption throughout the present paper.

(P) There exists a Radon measure, m, on X whose support is X and a
non-negative function f(t, x, y) defined for t > 0, x e X, y e X which is
jointly measurable (measurablity conditions in £ refer to the ordinary
Borel sets of [0 <: t < oo]) in (t, x,y) such that

(2.3) p(ί, α?, A) = f /(ί, a?, y)dm(y) for all A 6 S3(X) .

To be explicit we assume

(2.4)

for all t > 0, a? e X and

(2.5) /(« + β, a?, y) = j / ( ί , x, «)/"(«, 2,

for all ί, s > 0 and x, y e X. Finally we assume

(2.6) f/(ί, x, y)dm(x) ^ Meαί

where M and α are constants independent of y and t.
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We remark that condition (P) is equivalent to conditions (Pτ) and
(P2) of AF and hence the results of § 2 of of AF are applicable. We
intend to use the same notation as in AF but for the convenience of
the reader we repeat the basic definitions. If A e 3B(X) we define At —
{&(•): x(t) e A} e §8(X). For 21 e 35(36), A e S3(J5Γ), t > 0, and x e X we
define P(2I; t, x, A) = Px(2ί n At). Clearly P( ;t, x, A) is a finite measure
on 33(96) for fixed t, x, A and P(2ί; ί, x, ) is a finite measure on 33(X) for
fixed 31, t, x. It was shown in AF (Theorem 2.1) that P[2I; , , A] is a
measurable function of (£, #) for fixed 21, A. If Φ[#( )] is a complex va-
lued measurable functional on 3c we write r[φ; t, x, A] for the integral
of φ over 3£ with respect to the measure P[-)t,x,A] provided the in-
tegral exists. If φ Ξ> 0 then r is a measure on SS(X) for fixed ί, a? and
is measurable in (£, x) for fixed A. (AF Theorem 2.3) Finally if φ is a
measurable functional on 3c we denote its integral over H with respect to
the measure Px by E{φ \ x(Q) — x}.

If A is any set let I[A; ](or IA) denote its characteristic function.

LEMMA 2.1. If A e 23(X) then I[At; x( )] is jointly measurable in
(ί, »(•)) where At was defined above.

Proof. We first consider the case in which A is open, thus if G is
an arbitrary open set we define F(t, #(•)) = I[Gt; ίc( )]. Since F only
takes on two values, namely 0 and 1, to show F is jointly measurable
in (£, flj( )) it is sufficient to show that

Λ = {(ί, χ(.)) I F(t, x(0) = 1} e SB x S( ϊ )

where 35 is the σ-algebra of the ordinary Borel sets on [0, oo). Let
{#?>} = {JI2n} where n = 1, 2, and j = 0,1, 2, . and define

and

Clearly SIf} e S3(X) and I ( / } 6 S3, and using the right continuity of the
paths x(-) and the fact that G is open it follows that

(2.7) Λ = ΰ Π U (If' x 2ίf})

and hence F is jointly measurable.
Moreover since I[At; #(.)] = 1 — /[(AOίi #(•)] where A' denotes the

complement of A, and /[(A Π B)t;x(-)]= I[At;x(-)]I[Bt;x(-)] it follows
that I(At; x( )] is jointly measurable if A is open or closed and the class
of sets for which the lemma holds is closed under finite intersections and
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unions. This class of sets is clearly monotone and thus the lemma fol-
lows.

We now introduce some notation that we will use throughout the

paper. Let G be an open set in X and let G be its closure then for

0 <̂  t < s we define

(2.8) G(ί, s) = {»(•): α (τ) e G; for all τ such t h a t ί ^ τ ^ s}

and let G(ί) = G(0, t). Since G is closed and each #(•) is right continu-
ous it follows that G(ΐ, s) e 33(3:). We further note that the sets G(t)
are increasing as t decreases and hence we define G(t +)— U G(s). Let

33(ί, s) be the σ-algebra of subsets of X generated by sets of the form
{&(•): a(t0) 6 A; t ^ t0 ^ s} and SB(t) = 95(0, t). Since the σ-algebras 8(t)
are decreasing as t decreased we define 33(ί + )= Π S3. Clearly G(t,s)e

S5(ί, s) for each pair 0 ^ ί < s and G(t +) e $B(ί + ) .

LEMMA 2.2. Lβί G be an open set then the function I[G(t, s); x( )~\
is jointly measurable in (ί, s, #(•)).

Proof. We introduce the set G(t,s~) — {ίc( ) ^( τ) e G; for all r
such that ί ^ τ < s} and clearly G(ί, s - ) e S( ϊ ) . Moreover I[G(t,s);
x( )~\ = /[G(ί, s —); #(•)] /[(G)s; »(•)] and thus using Lemma 2.1 it suffices
to prove I[G(t, s —); #(•)] jointly measurable in (ί,s, «;(•))• Let {ίf}} be
as in the proof of Lemma 2.1 then for each n we defind Fn(t, s,x( ) —
I[G(t%\, t™-); x( )] if Vjn) S t < ίj+ 1, ^

w ) ^ s < ίίnΛ and fe > j ; while if
fc = j (the only other possibility since t < s) we define jF"n(£, s, cc (•)) = 0.
Clearly each Fn is jointly measurable in (ί, s, #(•)) and using the fact
that each #(•) is right continuous it is easy to see that Fn(t,s,x( ))-^>
I[G(t, s — ); x(-)~] as n-> oo. This establishes Lemma 2.2.

Let G be an open subset of X and V a non-negative measurable
function on X. We define the functional.

(2.9) φ[t, »(.)] = exp[- JV[»(τ)]dr]/[G (ί); »(•)]

for each t > 0 and cc( ) e 3£. From Lemma 2.2 and Theorem 3.1 of (AF)
it follows that φ is jointly measurable in its variables and moreover it
is clear that φ[t, •] is measurable with respect to S3(ί) for fixed ί. We
define

(2.10) K(F, G; ί, a?, A) = r[φ[ί, »(-)]; ί, a?, A]

that is the integral of φ[ί, •] with respect to the measure P[ ; ί, x, A].
This integral certainly exists since the integrand is measurable, non-
negative, and bounded by one. Theorem 2.5 of (AF) implies that
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K{V, G; , , A) is jointly measurable in (ί, x) and as before K(V, G; ί, x, •)
is a measure on

LEMMA 2.3.

, G; t, x, dy)K(V, G; 8, y, A) = K(V, G t + s, x, A) .

Proof. Let St be the mapping from X into £ defined by Stx( ) =
x(t + •) and let Stφ[x( )] = Φ[Sta?( )] for any functional φ, then Lemma
2.3 is an immediate consequence of Theorem 2.4 of (AF) provided we
show that φ[ί, &(•)] Stφ[s, &(•)] = Φ[ί + s, x( )l But

Moreover I[G(s); Stx(-)] = 1 if and only if Stx( ) e G(s), or equivalently

x( ) e S r 1 ^ ^ ) = G(ί, ί + s). Thus Stφ[8f »(•)] = expΓ-Γ + V[a;(τ)]drΊ

/[G(ί, ί + s); $(•)] and the desired result is now obvious.
Of particular importance is the case V = 0 and we write Kθ(t, x, A)

for K(0, G; ί, a?, A). Clearly

(2.11) 0^K(Vf G; t, x, A) £ KG{t, x, A) £ p(t, x, A) .

We next show that G is the relevant set in considering K.

LEMMA 2.4. ( i ) K(V,G; t,x, A) = 0 if x $ G.

(ii)

Proof. ( i ) In light of (2.11) it is sufficient to show this for KG.

For any arbitrary set §ί e SS(ϊ) let 31° be the set of values of a (O) 'as

x(-) ranges over St, then PX[2I] = 0 if x $ St°. Moreover Kβ(t, x, A) =

r[I[G(t); •]; t, a?, A] = P[G(t); t, x, A] - Px[G(ί) n AJ = 0 if a? 0 G since

x 0 G implies x $ (G(ί) Π At)°.

(ii) Again it is sufficient to consider the case KQ. As above

Kθ(t, x, A) = Pz[G(t) n A,] but G(ί) Π Aβ = G(ί) n (A n G)β and thus

Kθ(t, x, A) - Px[G(t) n (A n G)J - ίΓβ(t, x, A Π G).

Lemma 2.4 states that the support of the measure K(V, G; ί, x, •) is

contained in G and that the support of the function K(V, G; ί, , A) is

contained in G, thus we can write Lemma 2.3 as

(2.12) L # ( F , G; ί, a?f d»)ίΓ(7, G; s, », A) = X(7, G; t + s, a?, A) .
J β
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In the sequel we will consider K as only being defined for x e G and
icG,

We next introduce the transformations that are the main object of
this paper:

(2.13) (Utφ){x) = J φ(y)p(t, x, dy) = \φ(y)f(t, x, y)dm{y)

(2.14) Tt[V, G]φ(x) - \_φ(y)K(V, G; ί, x, dy) .

We will write Tt instead of Tt[V, G] if there is no chance of confusion.
In view of assumption (P), (2.12), and Theorem 3.3 of AF it follows that
{Ut; t > 0} and {Tt; t > 0} are semi-groups of bounded operators on

L2(X, m) and L2(G, m) respectively. Moreover

(2.15) || Tt ||2 ^ || C/t ||
2 ^ MeΛt t > 0 .

We wish to prove that these semi-groups are strongly continuous
for t ^ 0 (with To == Ϊ7O = /). In order to do this we introduce two
conditions which we will assume throughout the remainder of this paper.
The first of these is merely a regularity condition on G; if dG denotes
the boundary of G, we assume

(RJ m(dG) = 0 .

The second condition is an assumption on the size of V on G, explicitly
we assume

OJG
Km Γ( /(τ, x, y)V(y)dm(y)dτ = 0

for almost all α? in G. We remark that (i22) is certainly satisfied if for

some ε > 0 we have I I /(τ, ίc, y)V(y)dm(y)dτ < <χ> for almost all x in
JojG

G. We now state and prove the main theorem of this section (T0~U0 — I).

THEOREM 2.1. The semi-group {Ut; t ^ 0} is strongly continuous for
t ^ 0 and if {R^) and (R2) hold then the semi-group {Tt[V, G]; t ^ 0} is
strongly continuous for t ^ 0.

Proof. We prove the theorem for {Tt[V9 G];t ^ 0} as the result for
{Ut; t ^ 0} is a special case (take V — 0 and G = X, clearly (βj) and (R2)
are satisfied with this choice of V and G). We write Γt for Γt[F, G]. As
is well known (see [11], p. 242) it is sufficient to prove that Ttφ -> φ
weakly as t -> 0 for all φ 6 L2(G). Suppose φ is continuous with compact
support then using Theorem 2.3 of AF we see that
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(2.16) (Ttφ)(x) = \φ(y)K(V, G; t, x, dy)

= E{φ(x(t))exp(-^V[x(τ)]dτy[G(ty, .]|α(0) =

Clearly φ(x(t)) -> φ(x(0)) as M 0 and I[G(t); «(•)] -* ί[G(0+); &(•)] as ί | 0
for all #(•).

We next investigate the behavior of the exponential in (2.16). In
(2.16) there is no loss of generality in considering V= 0 on the com-
plement of G. With this simplification, since the integrand is non-nega-
tive and jointly measurable in τ and sc( ), we obtain

E{['V[x(τ)]dτ | x(0) = a?l =

> y)V(y)dm(y)dτ .

Using (Rx) and (R2) it now follows that there exists an m-null set S c G

such that I V[x(τy]dτ -> 0 as a function of α?( ) in P,, measure provided
Jo

x e G — S as £—•(). Finally the monotoneity of the integral implies

that I V[x(τ)~\dτ -» 0 as t -> 0 f or almost all x( ) relative to Px measure
Jo

if x € G — S(the exceptional set will, of course, depend on x). Thus for
xεG — S the exponential in (2.16) approaches one as t j 0 for almost all
x( ) with respect to Px measure. Hence if x e G — S we obtain using
the bounded convergence theorem
(2.17) ( 7 » (x) -> E{φ(x(0))I[G(0 + ); »(•)] I *(<>) = *}

as ί j 0. For such α? the right continuity of x( ) implies that the right
hand side of (2.17) reduces to φ(x). Since m(S) — m(dG) = 0 we obtain
that (Ttψ)(x) —> φ(x) almost everywhere on G as t | 0.

But I (Ttφ) (x) I ̂  sup I φ{x) \ and thus if ψ is continuous with com-
pact support it follows that (ψ, Ttφ) -> (ψ, ψ) as t I 0. Now using the
fact that || Γβ || is uniformly bounded near ί ^ O w e easily deduce that
Ttφ ~> ψ weakly as t I 0 for all ψ e L2(G). This completes the proof of
Theorem 2.1.

As mentioned above we will always assume (Rx) and (R2) in the se-

quel. Condition (Rx) implies that L2(G) = L2(G) and since K(V, G, ί, x, dG)S

p(t, x, dG) = 0, we can (and will) write integrals over G instead of G.
Exactly as in § 4 of AF we can derive the Darling-Siegert equations

(in AF these were derived only in the case G = X but the method car-
ries over without any trouble) which are for bounded V
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(2.18) K(V, G; t, x, A) = KG(t, x, A)

— \ds\ V(y)K(V, G t - s, y, A)K0(s, x, dy)
Jo J G

(2.19) K(V,G;t,x,A) = K0(t,x,A)

- [ds\ V(y)K0(t - s, y, A)K(V, G; s, x, dy) .
JO JG

If ΩG and ΩG denote the infinitesimal generators of {Γt[0, G]; t ^ 0} and
{Tt[V, G]; t ^ 0} respectively it then follows exactly as in AF that

(2.20) Ω'Q = ΩG - V

provided V is essentially bounded on G. Moreover if V is not bounded
one can show (Theorem 5.2 of AF) that 3)(βσ) ί l S ( F ) c &(Ω'Θ) and for
Ψ 6 ®(βσ) Π ®(F) we have β ^ = (β σ — F ) ^ , where ®(β) is the domain
of Ω for any operator Ω and ®(F) is the domain of V considered as a
multiplication operator on L2(G). In the case G = I w e will write β
and Ωf instead of Ωx and Ωx.

The proof of Theorem 5.2 in AF depends only on the strong conti-
nuity for t >̂ 0 of the semi-groups involved. (The use of condition (P3)
in that proof is easily avoided; see the proof of Theorem 4.1 of the pre-
sent paper.) However, in order to insure the strong continuity of
{Tt[V, G]; t ;> 0} one needs to assume some condition such as (R2).
This isn't done explicitly in the hypothesis of Theorem 5.2 in AF and
thus the result is only valid if V satisfies some condition such as (R2).

In the remainder of this paper integrals involving K in which the
region of integration is not specified are understood to be over G.

3, Behavior near the boundary. In this section we investigate the
behavior of the semi-groups {Tt; t > 0} near the boundary of G. Our
approach is a straightforward generalization of the methods of [9] p.
308-309 and hence we just sketch the development omitting proofs.
However, in many examples it is necessary to use the results of this
section in order to identify the operators we have constructed with cer-
tain classical operators.

We would like to prove that Tt[V, G]φ(x) -> 0 as x -> dG at least for
a fairly wide class of ^>'s. However, even in classical potential theory
such statements holds only modulo certain exceptional sets on dG. Hence
we formulate the concept of a regular point on dG relative to the process
defined by p(t, x, A). We introduce the notation S(xQf e) = {x \p(x, x0) < ε}
where p is the metric in X.

DEFINITION. Let G be an open set and let xQ e dG, then x0 is
called regular provided that there exist positive numbers ε = ε(α?0), 8 = 8(x0)
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and an open set C — C(xQ) such that
( i ) C c S f e δ ) = S,
(ii) C and G are disjoint,
(iii) C n G = {xQ}, and
(iv) p(t, x0, C) ^ εp(t, x0, S) for all sufficiently small t.
Using the general form of the zero-one law given in [2] the methods

of [9] p. 308-309 are easily modified to yield the following theorem.

THEOREM 3.1. Let G be an open set and let x0 e 6G be regular. Let

\φ(y)f(t, x, y)dm(y) be a bounded continuous function on X whenever ψ

is a bounded continuous function on X. Under these conditions

lim K(V,G;t,x,A) - 0 ,
X~+XQ

and if ψ is a bounded continuous function on G then

lim\φ(y)K(V,G;t, x,dy) = Q .
x-*xQ J

4. Local Operators. In § 2 we introduced the infinitesimal genera-
tors Ω and ΩQ of {Ut; t^O} and {T^O, G]; t^O} respectively. We intend
to call ΩQ the generalized restriction of Ω to G. The purpose of this
section is to show that if Ω is a local operator (to be defined shortly)
then Ωo is the ordinary restriction of Ω to G. In order to attack this
problem we first establish an approximation theorem which will also be
of use in § 6.

In general L2(G) can be imbedded in L2(X) by the map

U: L2{G)^

where

( 0 x $ G

Thus L2(G) can be regarded as a closed subspace of L2(X) and in the
sequel we will adopt this point of view. We define functions Vn as fol-
lows

and we let {Γ?";ί^0} be the semi-group {Tt[Vn, X]; t ^ Q}, and
{Tt; t ^ 0} the semi-group {Tt[0, G~\; t :> 0}. Our approximation theorem
can now be stated as follows.
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THEOREM 4.1. For all φ e L2(G) and each t > 0 we have

(4.1) lim 2 T V = Ttφ

where the limit is taken in L2(X) .

Proof. Let

KS, x, A) = K(Vn, X; t, x,A) = r [exp(-jVn[a?(r)]dr); ί, x, A~j .

Using the right continuity of x( ) we see that lim exp( — I Vn[x(τ)~\dτ) =
W->oo \ Jθ /

I[G(t - ) ; x(.)l where G(t-) = {&(.): α?(τ) e G^O ^ τ < t}. Thus by the
monotone convergence theorem we obtain lim Kn{t, x, A) — P[G(t — ); t,x;A~\

n-*oo

or if A c G that Kn(t, x, A) j KG(t, x, A) as n -> oo. It now follows
easily that if φ e L2(G) and is continuous with compact support then
(T[n)φ)(x)-* (Ttφ)(x) pointwise as n^ oo. (See proof of Theorem 5.2 in
AF.) But

I (TPφ)(x) I ̂  jl φ{y) I ίΓn(ί, x, dy) ^ (ΓΓ } I <P 1)0*0

which is in L2(X) and hence by the Lebesgue bounded convergence theo-
rem || T[n)φ — Ttφ || -> 0 if φ is continuous with compact support. This
implies (4.1) since || T[n) \\ is uniformly bounded in n.

We now define the concept of a local operator in L2(X). All ope-
rators are assumed linear.

DEFINITION. An operator, Ω, in L2(X) will be called a local opera-
tor if whenever φ e £&(Ω) and G is any open set with m(dG) = 0 then
9>/σ e &(Ω) and / σ ^ = Ω{IGφ) as elements of

The following properties of local operators are immediate. LI If
φ — 0 2L.e. on an open set, G, with m(dG) = 0 and φ e £^(β) then
β̂ > = 0 a. e. on G.

L 2 If /, g e &(Ω) and / == g a.e. on an open set, G, with m(dG)=0
then 13/ = Ωg a. e. on G.

L 3 £? is a local operator if and only if for all open sets G with
m(dG) = 0 we have 7ffί3 = i?/^-where Io is being considered as a multi-
plication operator on L2(X).

1 The condition m(dG)=0 is needed if differential operators in En are to be local ope-
rators under our definition.
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If Ω is a local operator and G an open set with m(dG) — 0, then the

restriction, Ωo, of Ω to G is an operator in L2(G) which is defined as

follows (we regard L2(G) as a subspace of L2(X)):

&Φa) = {<p: Ψ € L2(G) and <p e S&(Ω)} and for ψ e &(ΩG)

(4.2) ΩGψ = IQΩφ e L2(G) .

Note that since Ω is local (4.2) can be written ΩQψ = Ω(IQψ) = ί2^
since <p e L2(G) implies 70<p = »̂ as elements of L2(X).

We now state and prove the main theorem of the present section.

THEOREM 4.2. Let Ω and ΩG he the infinitesimal generators of {Ut;
t ^ 0} and [Tf[0, G] t jΞ> 0} respectively, then if Ω is a local operator we
have ΩG = Ωβ, that is, the generalized restriction of Ω to G equals the or-
dinary restriction of Ω to G if Ω is a local operator. Of course, we are
assuming m(dG) — 0.

Proof. Let T[n) — Tt\Vn, X] be the semi-groups constructed in
Theorem 4.1 and from Theorem 4.1 we know that T[n)φ -> Ttφ=Tt[0, G]
φ for all φ 6 L2(G). Let Iλ, Jλ, and J(

λ

re) be the resolvents of the semi-
groups {Ut; t ^ 0}, {Tt; t ^ 0} and {T(

t

n); t ^ 0} respectively, it then fol-
lows from Theorem 4.1 that J^φ -> Jλφ for all φ e L2(G). Moreover
we know from Theorem 5.1 of AF that the infinitesimal generator of
{Tίn); t ^ 0} is Ω - Vn. Let φ e O(Ω) then since Ω is local Ioφ e &{Ω- Vn)
for all n. We recall the fact that for each fixed λ the range of the re-
solvent of a strongly continuous (t >̂ 0) semi-group is precisely the domain
of the infinitesimal generator of the semi-group [6]. Let λ be fixed then
for each n there exists ψn e L2(X) such that

(4.3) IGφ = J{n'ψn .

But then

ψn = [λ - (Ω - Vn)1 IGφ = \IGφ - ΩlGφ + Vn IGφ =IG(Xφ - Ωφ)

since VJG = 0. Hence ψn = ψ = IG(Xφ - Ωφ) e L2(G) and J{^ψ -> Jλψ.
But this implies that IQφ — Jλψ or IQφ e &{ΩG) and

ΩG{IGφ) = XJλψ — ψ =XlGφ — [XlGφ — IGΩψ\ = ΩIGφ .

Thus if φe Sfφa) it follows by definition that <pe Sf{Ω) and φeL2(G),

hence φ = / ^ 6 &(ΩQ) and β^^ — Ωφ = ΩGφ, that is β 0 c βG.
Conversely suppose φ e &(ΩG) then there exists ψ e L2(G) such that φ—

Jλψ. Define φn=Jίn)ψ e L2(X), then φn e &{Ω- Vn) and [X-(Ω- Vn)~]φn =
ψ. Multiply this last equation by ICr and using the facts that Ω is local
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and IQVn = 0 we obtain (λ — Ω)IGφn — IQψ = ψ since ψ e L2(G). But
φn = J^ψ -> Jλψ = φ and hence 7σ9>n -> 7 ^ = >̂ since φ e L2(G). Comb-
ining these results with the fact that Ω is closed we see that φe 2&{Ω)
and Ωφ = Xφ — ψ = Xφ — (x — ΩG)φ — Ωoφ. Since φ e L2(G) this im-
plies φe 2${Ω0) and ΩGφ — Ωφ = ΩGφ. That is ΩGaΩG. This establishes
Theorem 4.2.

Let £?' be the infinitesimal generator of {TJ[V, X]; t ;> 0} then we
know that if V is bounded β' = Ω — V. In general if V is not bounded
we can only conclude that Ω — 7 c β ' (Theorem 5.2 of AF). However,
if Ω is a local operator we can obtain more information about Ω', at least
if we assume a mild regularity condition on the underlying space X and
the measure m. We introduce the following condition which will be re-
ferred to as (R):

(R) There exists a sequence, {Gn}, of open sets with compact clo-
sure such that X — U Gn and m(dGn) — 0 for all n.

Let Ω be a local operator in L2(X) and assume (R) holds, then if
IG φ e & (Ω) for all n we can define a function, (Ωφ)(x), which is de-
termined almost everywhere but which will not in general be in L2(X).
We define (Ωφ)(x) — (ΩIGnφ) (x) provided x e Gn and since Ω is local it is
clear that (Ωφ)(x) is well defined independently of the particular sequ-
ence, {Gn}, chosen up to a set of measure zero. The point of the mat-
ter is that although IGnφ e &(Ω) for all n it may happen that φ3ί $ (Ω)
because {Ωφ){ ) $ L2(X). This is a familiar phenomenon in the case of
the best known local operators, i.e., differential operators in Euclidean
spaces. We will say that the function, V, is locally bounded if it is
essentially bounded on compact sets. The following theorem gives pre-
cise information about Ω' in the case that Ω is local, F i s locally bounded,
and (R) is satisfied. It should be compared with Theorems 5.1 and 5.2
of AF.

THEOREM 4.3. Let Ω be a local operator, and V be locally bounded on
G, and (R) be satisfied, then for every φ e ^(Ωr

G) we have

(4.4) (Ωf

Gφ)(x) = (Ωφ)(x) - V(x)φ(x)

almost everywhere. However neither (Ωφ)( ) nor Vφ need be in L2(G).

Proof. We prove the theorem in the case G = X, the general re-
sult following by a completely analogous argument and an appeal to
Theorem 4.2.

Let &(V) = {φ: φ e L2(X) and Vφ e L2(X)}. Let φ e ^(Ωf) and
{Gk} be the sequence of open sets in (R). We first show that IGkφ e

n &{V) for all k. If
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1 n if V(x) > n

then let J ^ } be the' resolvent of the semi-group {Tt[Vn, X]; t ^ 0} and
Jλ the resolvent of {Tt[V, X]; £ ̂  0}. It was shown in AF (during the
proof of Theorem 5.2, see also the proof of Theorem 4.1 of the present
paper) that Tt[Vn, X]φ -• Tt[V, X]φ and J™φ -> Jλφ for all ψ e L2(X).
Moreover the infinitesimal generator of {Tt[Vni X]; t >̂ 0} is £? — Fw

while that of {Tt[V, X]; ί ^ 0} is by definition Ωf.
Now since φ e D(β') there exists ψ e L2(X) such that ψ = J λ ^ .

Define <pn = J ^ ^ and then [λ — (Ω— Vn)]φn—ψ or Ωφn — Xφn+Vnφ — ψ.
Multiplying this last equation by IG and using the fact that Ω is local
we obtain

(4.5) Ω(IakΨn) = XhkΨn + VJa]cPn - IβΨ .

But φn = J^ψ -> Jλψ = <p and hence / G ^ w -> IG φ. Moreover since Gk

is compact and V is locally bounded it follows that VnIG φn -+ VIG Ψ in
L2. Combining the fact that Ω is closed with the above remarks we see
that Irφ 6 £?'(£?) and hence IOiφ e S^{Ω) Π ^(V).
From (4.5) we obtain

Ω{Iakψ) = λ/^99 + F/^r/^ - i ^ t

= λJG <p + VIG φ — IG (λ — β')^

Since X = U Gk this last equation can be written

(Ω'φ)(x) = (fiφ)(a;) ~ V(a?Mίc)

almost everywhere on X, where (Ωφ)(x) is the function defined above.
This completes the proof of Theorem 4.3.

5. The Density of K. Since K(V\ G; t, x, A)£p(t, x, A)=\ f(t, x, y)

dm{y) it is evident that K is absolutely continuous with respect to m.
The following theorem shows that the density can be chosen to be
jointly measurable in its variables.

THEOREM 5.1. There exists a function k(V,G;t, x,y) — k(t,xy y) de-
fined for t > 0 and (x,y) e G x G such that k is jointly measurable in all
its variables and for fixed (t, x)

(5.1) K(V, G; ί, x, A) = ί fc(ί, x, y)dm(y) for all A, and

(5.2) k(t, x, y) ^ /(ί, x, y) for almost all y.
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Proof. In the present proof V and G are fixed and so we will sup-
press them m our notation. Let G = U Sn where the Sn's are disjoint
measurable sets of finite measure. Since X is a separable metric space
S3(X) is countably generated and m restricted to Sn is a finite measure.
Under these conditions one can show using a technique due to Doob [3,
pp. 343-344] that there exists a function, kn(t, x, y), defined for t > 0,
x e G, y e Sn such that kn is jointly measurable in (£, x, y) (for this one
needs the fact-that iί( , , A) is jointly measurable in {t, x) which was
established in §2) and kn(t, x, •) is a density for K(t, x, •) with respect
to m restricted to Sn for each pair (t, x). The details of this construc-
tion will be omitted since one merely has to put in (t, x) in the appro-
priate spots in Doob's construction. (See [1] where the details are give.)

If we define

fc(t, χ,y) = Σ* K(t, %> v)i[Sn, y]
W = l

it is clear that k has the desired properties.

6 The Spectral Decomposition: Compact case We begin with the
following simple remarks.

THEOREM 6.1. If f(t, x, y)=f(t, y, x) almost everywhere, mxm then
each of the operators Tt[V, G] is self-adjoint and \\ Tt\V, G] \\ <̂  1.

Proof. The fact that Ut and Tt[V, X] are self-ad joint is contained
in the corollary to Theorem 2.5 of AF. Using Theorem 4.1 and the fact
that the strong limit of self-ad joint operators is self-ad joint we see that
Tt[Vf G] is self-ad joint. The symmetry of / implies that M and a can be
taken to be 1 and 0 respectively in (2.6). Hence (2.15) yields \\Tt[V, G] |^ l .

Theorem 6.2. Suppose G and f are such that

(K) [ \ f(t, x, y)2dm(x)dm(y) < ™ ,
JβjG

then each of the operators Tt[V, G] = Tt is an integral operator of finite
double norm2. That is

(6.1) (Ttφ)(x) = jfc(ί, x, y)φ(y)dm(y)

where k is jointly measurable in its variables and

2 The theory of operators of finite double norm (also called Hilbert-Schmidt operators)
can be found in [10, sec. 97] and slightly more generally in [12], especially pp. 242-248
and p. 353,
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(6.2) JJfc(t, x, yγdm(x)dm(y) < co .

(Integrals involving k are understood to be over G unless otherwise
specified.)

Proof. This is an immediate consequence of Theorem 5.1.

THEOREM 6.3. Let (K) of Theorem 6.2 hold and f(t, x, y) = / (* , y, x)
a. e., then Tt[V,G] = Tt is a positive definite, self-adjoint operator of
finite double norm. Moreover there exists a sequence {X3} of real numbers
such that 0 ^ λx ^ λ2 g with Xj -• + co, and a complete orthonormal
system {φ3} in L2{G) such that

(6.3) Ttφ3 = e-κi%φ3 for all t > 0

and

(6.4) Ωoψj = — Xjψj

where Ωr

σ is the infinitesimal generator of {Tt; t ^ 0}.

Proof. From Theorem 6.1 it follows that each Tt is self-ad joint and
hence it is easy to see that k(t, x, y) = k(t, y, x) almost everywhere,
m x m for fixed t (k(t, x, y) is the function defined in Theorem 6.2). Thus
Tt is given by an integral operator whose kernel is of finite double norm
and symmetric.

We next show that each Tt is positive definite. Since each Tt is
self-ad joint and Tt = Tm Ttl2 we see that ( ϊ > , φ) == || Ttί2φ ||2 > 0. Sup-
pose Ttφ = 0, then [| Ttί2φ [|2 = ( 7 > , φ) = 0 or Ttl2φ = 0. Repeating this
argument we see that Ttl2nφ = 0 for all w and since the semi-group
{Tt: t ^ 0} is strongly continuous it now follows that φ = 0. Thus r c

is positive definite.
Since TΊ is a compact, self-adjoint, positive definite operator it pos-

sesses a discrete set of eigen values {μ3y with corresponding eigen func-
tions φ3 such that 0 < μ3 <: || Tλ || ^ 1 and /^ j 0. Moreover the φ3 may
be taken so that {φ3} is a complete orthonormal system in L2(G). De-
fine λ̂  — — log μ3 then λ̂  ^ — log || TΊ || ^ 0 and Xj\ + oo. We now
prove that ^j is an eigen function of Tt with eigenvalue e~λ/ for each
t > 0. Consider

o = (i\ -

and let

Each distinct ^ is, of course, repeated according to its (finite) multiplicity.
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ψ =z (Tll2 - μf)φ3 ,

then

(Γ1/2 + μill2)Ψ = 0

Hence

0 = H ( T 1 / 2 + μ)'*)Φ II 2 = II T l l 2 ψ II 2 + μ j \ \ ψ II 2 + 2 μ J ( T l l i ψ , ψ ) .

But μ, > 0 and Tll2 is positive definite, thus ψ — 0 or Ti/2<Pj = μ)/2(PjJ=
β"1/2 j ^ . Similarly if ί = m/2^ we see that Ttφ3 — e~λjtψj and using the
strong continuity of the semi-group this then holds for all t > 0. More-
over {<Pj} being a complete orthonormal system implies that the numbers
e'λjt exhaust the eigen values of Tt. Finally the fact that T ί/2 is of finite
double norm implies that

(6.5) Σ e~λjι < oo for each ί > 0 .

To complete the proof of Theorem 6.3 we must show that each
<Pj 6 £?(Ω'G) and that (6.4) holds. Suppose Ttφ — e~λtφ and let JIM be the
resolvent of the semi-group [Tt; t ^ 0} , then

X + μ

Thus φ = Jμ[(λ + μ)ψ] which implies that φ e &(ΩG). Also

μ *G X + μ

or Ω'βφ = — Xφ. This proves (6.4) and again since {φs} is a complete
orthonormal system ΩG has a discrete spectrum consisting precisely of
the numbers — Xj. This completes the proof of Theorem 6.3.

The φ'β are, of course, only determined almost everywhere. We now
pick the <p/s such that

(6.6) φ5(x) = eλj \K( V, G; 1, x, dy)ψ3(y)

= eλj \k(l, xy y)φj(y)dm(y)

for all x, and in the sequel φό(x) will denote these functions which are
defined everywhere.

THEOREM 6.4 We assume the same hypotheses as in Theorem 6.3 and
oo

that ψi(x) is defined by (6.6), then X e'κjtφ){x)φ5{y) converges absolutely

for fixed t > 0, x, y, and
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(6.7) k(t,x, )= Σ « " V φ W )

for almost all y for fixed (£, x).

Proof. We first remark that since

\K(V, G; ί, x, dz)K(V, G; s, z, A) = K(V, G t + s, x, A)

identically in its variables it easily follows that

(6.8) k(t + s, x, y) — \k(t, x, z)k(s, z, y)dm(z)

for all most all y for fixed (£, s, cc) where the exceptional set, of course,
depends on (t, s, x).

We next show that for all t > 0 and all x

(6.9) cPj(x) = eV [k(t, x, y)<Pj(y)drn(y)

where ψ5 is, of course, defined by (6.6). We already know that for each
fixed t > 0 the relation (6.9) holds for almost all x. Thus if t < 1 we
have for all x

= eλj

, x, y)φj(y)dm(y)

Ίk(t, x, z)k(l - ί, 2:, y)dm(z) \φ3{y)dm(y)
1

= eλΛk(t, x, z)<Pj(z)dm(z) ,

where the interchange is justified since the integral exists absolutely in

the first order. If ί > 1 we have for all x

\k(t, x,y)<Pj(y)dm(y)

= 11 U(l, x, z)k(t - 1, zy y)dm(z) \φ5{y)dm{y)

l, x, z)ψj(z)dm(z)

-- e'λJtφj(x) .

Thus (6.9) holds for all t > 0 and all x.
For fixed s > 0 the Schwarz inequality, (6.2), and (6.9) combine to

yield

(6.10) I φ5(χ) |2 S e2λf Jfc(s, x, y)2dm(y) || ^ ||2 .
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By (6.5) we know that Σ ^"λ j ί < ω for all t > 0, and combining this
3-1

with (6.10) and the fact that \\φ5 || = 1 we obtain

(6.11) Σ e - V | ^ ( α O [ a < ~
3-1

for all t > 0 and all x. The Schwarz inequality and (6.11) imply that

converges absolutely for all ί > 0 and all (x9y). Let us define

h(t9 x,y) = ΣJ e-Wφjixtyjiy) .
J=i

Let t > 0 and x be fixed and let A c G with m(A) < oo . Since

\ I ̂ (a) I dm(a?) < [m(A)]1/2 it follows from (6.10) that

Σ e-V I φ,(x) l( I 9>j(») I dm(y) < oo .
3i }A

Thus by the Fubini theorem (we regard the sum as an integral over the
discrete measure space {1,2,3, •••} each point being assigned measure
one) and (6.9)

\ h(t, %, y)dm(y) = Σ e'xJ^j(x)(IAj ψ3)
JA 3=1

= Σ e-V" fft(ί/2, x, y)ψ}(y)dm(y)(IA, Ψi) .

Applying the Fubini theorem again (the integral and sum exist absolutely)
we obtain

\ h(t, x, y)dm(y) = f fc(ί/2, x, y)^e'kJtI%(IA9 φj)φj(y)dm(y) .
JA J J = l

This last sum converges absolutely but it also converges in L2(G) to TtlJA

and, of course, the L2 sum and the pointwise sum must agree almost
everywhere. Thus we finally have

(t, xy y)dm{y) = Jfc(t/2, x, y)(TtlJA)(y)dm(y)

= \ fc(ί, a;, z)dm(z) .
J -4

Since A was an arbitrary set of finite measure it now follows that h(t9 x, •) =
fc(ί, x, •) almost everywhere for each fixed (ί, x), that is, fe(t, a;, •) is a
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density for K(t, x, •) with respect to m. Clearly h(t, x, y) is jointly mea-
surable in its variables and since these were the defining properties of
k we may (and will) set k(t, x, y) = h{t, x, y) for all t > 0, x,y in the
sequel.

THEOREM 6.5. Under the assumptions of Theorem 6.4

\k(t, x, y)2dm(x)dm(y) = Σ e~2λ/ .

Proof. This is a well known property of such operators. See [12;
p. 353]. '

7. The Spectral Decomposition:'General Case. In this section we
will use the theory of generalized eigenfunction expansions to obtain a
spectral decomposition for k(t, x, y) without assuming (K) of Theorem 6.2.
We begin by giving a short outline of this theory.4

Let T be a (possibly unbounded) self-ad joint operator in L2(G) and

E(X) its spectral resolution. One version of the spectral theorem asserts

that there exists a sequence of elements, {<pn}> in L2(G) such that L2(G)

is the orthogonal direct sum Σ £>w where £>n is the closed manifold of
1

all vectors of the form F(T)φn where F e L2(μn) and μn{') — (E(*)φniφn).
In fact the correspondence F(T)φn -> F( ) establishes an isomorphism, U,

of L2(G) onto the direct sum Σ = Σ L2(μn) which diagonalizes T in the

sense that

(7.1) (UF(T)φ)n(X) - F(\)(Uφ)n(X)

for φ e D(F(T)). If φ 6 L2(G) then (ί7<p)n denotes the component of
Uφ in L2(μn). Moreover, each ξ)n reduces Γand the support of each μn

is contained in the spectrum of T. The operator T is said to have a
generalized eigenfunction expansion provided that there exist kernels
Wn(λ, x) jointly measurable in (λ, x) such that for all φ e L2(G)

(7.2) (Uφ)n{X) - \φ(x) WZ(X, x)dm{xf

and

(7.3) φ(x) = ±\~ (Uφ)n(X)Wn(X, x)dμn(X) ,

where the precise meaning (7.2) and (7,3) is as follows. In (7.2) there

4 We follow Garding's approach to the problem [4]. A set of seminar notes entitled
" Generalized Eigenfunction Expansions" giving the details of this subject may be ob-
tained from the author upon request.

5 If ψ is a complex valued function, φ* denotes its complex conjugate.
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exists an increasing sequence, {Sk}, of sets of finite measure such that

G=[jSk and I <p(x)Wt{X, x)dm{x) exists as a Lebesgue integral for each
Jsfc

k and is an element of L2(μn) as a function of λ. Moreover, as k -> oo
this sequence of elements converges in L2(μn) to the value of the integ-
ral. The intergral in (7.3) is defined similarly in L2(G) and the sum is
then taken in L2(G).

A complex valued function, b(x, y), defined on G x G and jointly
measurable in (x, y) will be called a Carleman kernel if it satisfies

(7.4) 6(α?) = ( 1 6(05, y) \2dm(y) < oo a. e. [m] .
JG

That is b(x, •) e L2(G) for almost all x. With the kernel, b(x, y), we as-
sociate the domain, £)0, consisting of those elements φ e L2(G) satisfying

(7.5) [\φ(x)\b(x)dm{x) < oo

A densely defined operator, B, in L2(G) is called a Carleman ope-
rator if there exists a Carleman kernel, b(x, y), such that for all φ e O(B)
we have

(7.6) (Bφ)(x) =

The following theorem was proved by Garding [4]. (Actually he proved
slightly more but this is all that we will need.)

THEOREM 7.1. Let T be a densely defined self-ad joint operator in
L2(G) and we use the notation introduced above. Let φbe a complex valued
function measurable with respect to all the μn and such that |φ |>0 almost
everywhere with respect to all the μn. If φ(T) is a Carleman operator,
then T has a generalized eigenf unction expansion.

In proving this theorem Garding first showed that there existed
functions JBn(λ, cc) jointly measurable in (Xfx) such that Bn( , x) e L2(μn)
and Bx = {Bn( , x)} e Σ f° r all x. If b(x, y) is the Carleman kernel cor-
responding to φ(T) then [Ub(x, )[w(λ) = Bn(X, x) as elements of L2{μn)
for almost all x. Finally we have

(7.7) Wn(\, x) - φ(λ)-^*(λ, x) .

Garding also showed that if ψ e Do then

(Uφ)n(\) - \φ(x)W*(\, x)dm{x)

exists as an ordinary Lebesgue integral and

An(X, φ) = \φ(x)Bn(Xf x)dm(x) e L2(μn)
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and A(φ) = {An(-,φ)} e Σ Also if F -= {Fn} e Σ is such that

(7.8) Σ Γ I Φixy'KiX) \2dμn(X) < co
n J —

then

a. e. where the integrals exist as Lebesgue integrals and sum converges
absolutely. This completes our review of Garding's theory and we now
return to the problem at hand.

THEOREM 7.2.6 Let f(t, x, y) = f(t, y, x) a. e. [m x m] and let

\ f(t, x, yfdm(y) ^ 6(ί) < co for almost all x, then there exist finite mea-
J G

sures, μn, with support contained in the nonnegative reals and real kernels
Wn(\, x) defined for λ > 0 and xeG and jointly measurable in (λ, x) such

that

(7.9) h(t, x, y) = Σ ( V λ ί l ^ n ( λ , x)Wn(X, y)dμn{\)
l J

exists for all t, x, y. (The integrals exists as Lebesgue integrals and the
sum converges absolutely.) Moreover there exists a null set, S, such that
for all t>0and xφS the function h(t, x, •) is a density for K(V, G; t,x, )
with respect to m.

Proof. Let Tt = Tt[V,G] then exactly as in Theorems 6.1 and 6.3
it follows that each Tt is a positive definite self-adjoint operator and
|| Tt || < 1. Let Ωr

G be the infinitesimal generator of {Γt; t ^ 0}, then
~Ωr

G is a positive definite self-ad joint (but in general unbounded) ope-
rator. Moreover, if φ(λ) = e~λ then φ( — Ω'G)=T1. Since k(t,x,y)^
f(t,x,y) a. e. it follows that Tλ is a Carleman operator and thus — Ω'G
has a generalized eigenfunction expansion. Because each Tt and hence
— Ωf

G is a real operator, the isomorphism, U, between L2(G) and Σ c a n

be chosen to be real, i.e., Ucommutes with complex conjugation. Thus
the kernels Wn(X, x) in the generalized eigenf unction expansion of — Ω'G
can be taken to be real. Since U diagonalizes — Ω'G we have

(7.10) (UTtφ)n(\) = e-"(Uφ)n(\)

for all φ e L2(G).

From our general discussion of Garding's theorem we know that
there exists a null set, S, such that (S independent of n) U[k(l, x, )LW =
e~λWn{X, x) as elements of L2(μn) for x $ S. But

9 If m(G) < co then the hypothesis of Theorem 7.2 implies (K) of Theorem 6.2. Thus
Theorem 7.2 contributes to our knowledge only in the case m(G) = °°. If in Theorem 7.2
we assume δ(έ)<co for all x, it then follows that hit, aj, ) has the required properties for
all i and x. In this connection see, Lemma 2.2 of R. K. Getoor, An Analogue of
of Mercer's Theorem, Duke Math. J. 25 (1958), 615-624.
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[Ttk(s, x, •)](!/) = \k(t, y, z)k(s, x, z)dm(z) = k(t + s, x, y)

for almost all y for fixed (ί, s, #), see (6.8).

Thus (Uk(t + 1, a?, )]»(λ) - U[Ttk(h x, )L(λ)

as elements of L2(μn) for x $ S. On the other hand if

t < 1 and x <β S we have β-λTFn(λ, a?) = [Uk(l, x, )L( λ)

Mt, χ; )L

or

(7.11) [Uk(t, x, )]»(λ) - β-λίTFw(λ, x) .

Thus (7.11) holds for all t > 0 and x <£ S as elements of L2(μn). If we
define Wn(X, x) — 0 for α; e S (which does not effect the generalized
eigenfunction expansion) then

W= {e-^Wn(X,x)} = {[Uk(tl2,x, )L(λ)} € Σ

for x φ S and W — 0 for x e S and hence

II W\\*=± (V λ ί l Wn(X, x) Πμn{\) < co

for all x. Thus applying the Schwarz inequality twice we see that

Λ(ί, x, V) = Σ
l

W«l JO

exists for all t,x,y; the integrals exist as ordinary Lebesgue integrals
and the sum exists absolutely. Moreover

\h(t,x,y)\^h(t,x,xγ'*h{t,y,yγι*.

We next show that h(t, x, y) has the desired properties. Let A be a
set of finite measure, then

\ Σ ( V λ t I W"(χ> x) I I W»(χ> y) I dμn(X)dm(y)
JAra-1JO

^ fc(t,is,a;)yi( h(t, y, yyι*dm(y)

^ [m(A)h(t, x,x)\ Σ ί°°e-λί I WΛλ,
J ^ TO-1 JO

= \m(A)h(t, x, x)jj | {e-»i'WΛ(\, y)}

11/2

,2/, zydm(z)dm(y)J12

^ [b(t/2)h(t, x, x)Yt2rn{A) < oo ,
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where we have used the fact that U is an isomorphism between L2(G)
and X. Thus we have

f h(t, x, y)dm(y) = Σ ( V λ ί ϊ F n ( λ , x)\ Wn(X, y)dm(y)dμn(\)
JA w=ljθ JA

where the interchange is easily justified by the preceding calculation and

the Fubini theorem. But IA e Όo, therefore I WJX, y)dm(y)=(UIA)n(\)
JA

as elements of L2(μn) and hence for all ί > 0 and all x e X we have

(7.12) \ h(t, x, y)dm(y) = ± [°e^Wn(X, x)(UIA)n(X)dμn(X)
JA n = ljθ

The right side of (7.12) can be written in the form ({e~λtWn(X, x)},
{(UIA)n(X)})σ where ( , )σ is the inner product in X. According to (7.11)
there exists a null set S independent of t such that e~λtWn(X, x) —
[Uk(t, x, )L(λ) a s elements of L2(μn) for alH > 0 provided x 0 S. Com-
bining this with (7.12) and the fact that U is an isomorphism we obtain

(7.13) j ^ ( ί , x, y)dm(y) = (fc(ί, x, . ) , L) = \k(t, x, y)dm(y)

for all t > 0 and all x 0 S. We note that S is also independent of A.
Since (7.13) holds for all sets of finite measure the proof of Theorem 7.2
can now be completed by the standard approximation argument.

As in § 6 we may as well (and do) take k(t, x, y) — h(t. x, y) for all
t > 0, y e G, and x 0 S. Our last theorem in this section shows that
W^λ, ) is actually an eigenfunction (but not necessarily in L2) of an ap-
propriate integral equation.

THEOREM 7.3. Let the hypotheses of Theorem 7.2 hold, then for each

t > 0 and n there exists a μn null set, An9 and a m null set, S, (both depend-

ing on t in general) such that e~λtWn(X, x) = \ k(t, x, y)Wn(X, y)dm(y)for

X 0 Λn and x 0 S, That is, Wn(X, •) is an eigenfunction of the integral

equation e~κtf(x) — \f(y)k(t, x, y)dm(y) for almost all X for fixed t > 0.

Proof. Let b(t, x) = \k(t, x, yfdm(y) <̂  b(t) for almost all x, then £)0

is the set of φ e L2(G) such that 16(1, x) \ φ(x) \ dm(x) < oo. Let A be

a set of finite measure then IA e O0 and TJA e O0 since

f 6(1, x) I (TJA)(x) 1 dm(x) £ 6(l)f [ fc(ί, x, y)dm(y)dm(x) ^ b(l)m(A) ,

where we have used the symmetry of k. Thus for almost all λ
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(7.15) (UTJA)n(X) = \(TJA)(x)Wn(X, x)dm(x)

and

(7.16) (UTJA)n(X) = e-^{UIA)n{X) = e~^IA{x) Wn{X, x)dm(x) ,

where the integrals are ordinary integrals.
Since the integral in (7.15) exists absolutely we can change the or-

der of integration obtaining

{UTtIA)n{X) = j jfc(ί, x, y)Wn(X, x)dm(x)dm(y)

for almost all λ. Combining this with (7.16) we see that

Jjyλ eTΓn(λ, y) - j k(t, x, y)Wn(X, x)dm{x)\im{y) = 0

for almost all λ where, of course, the exceptional set depends on A.
Using the facts that m is σ-finite and S(X) is countably generated

it is a standard matter to conclude that for fixed t there exists a μn null
set, Jn, and a m null set, S, (both depending on t in general) such that

e~λtWn(X, y) = \k(t, x, y)Wn(X, x)dm(x) provided XφAn and yφS. This

completes the proof of Theorem 7.3.
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