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1* Introduction^ This paper is an extension of the preceding paper
"Markov Operators and their Associated Semi-groups'' (hereafter referred
to as MO) by R. K. Getoor. Throughout this paper we will retain the
terminology, notations, and all the assumptions of §2 of MO. Let G be
an open subset of X with m(dG) = 0 and suppose that for each t > 0,
f{t, x, y) is in L2(G x G, m x m). This is condition (K) in §6 of
MO. Assume further that f(t, x, y) = f(t, y, x) for all t, x, y and, for
simplicity, that f(t, x, y) > 0 for all ί, x, y. These assumptions will be
retained throughout this paper. It is proved in §6 of MO that under
these conditions there is a non-decreasing sequence {X3} of non-negative
numbers tending to infinity and a complete orthonormal set {<Pj} in
L2(G> m) such that the series

converges absolutely. It is further proved that if k(t, x, y) denotes this
sum (with fc(ί, x, y) = 0 if x or y is not in G) then K(V, G; t, x, A) —

1 Jc(t, Xj y)dm(y) for all t > 0, x in G, A in &(X).

Intuitively one can think of k as the transition density of a Markov
process that is obtained from x(t) by "killing" x(t) at the boundary of
G and upon which a "local death rate" V(x) is imposed. From this
interpretation one would expect k(t, x, y) to behave, in some sense, like
f(t, x,y) at least for small t and y close enough to x, provided x is in
G and V is bounded. In the terminology of Kac [4] "the boundary and
death rate aren't felt for small V\ In §2 we make this statement
precise by proving that if V is bounded and a certain regularity condi-
tion is imposed on /, then for all x in G, k(t, x, y)f(t, x, y)'1 -> 1 as
t -> 0 for almost all y in a suitable neighborhood of x (Theorem 2.1).
From this we are then able to show the somewhat surprising fact that
k(t, x, x)f(t, x, x)"1 -> 1 as t -> 0 for all x in G (Theorem 2.2). Using
these facts we derive the asymptotic distribution of the eigenvalues {λ̂  }
for a wide class of processes (Theorem 2.3). In §3 we apply this theory
to the symmetric stable processes on the real line and to the Ornstein-
Uhlenbeck processes.
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2. The main theorems. Let {{t\ & (,6)> Px)}xeχ b e the proba-
bility spaces constructed in §2 of MO. Let G(t) = {x(-): x(τ) eG O ^ r ^ t)
and let H(t) be the complement in ctf of G(t), that is

H(t) = {x(-): α(τ) 0 G for some τ ^ ί} .

It was shown in MO that G(ί), and hence iϊ(£), are in &( /, ).
From the definition of k above and the orthonormality of {φό} it

follows that

(2.1) k(t + s, x, y) = \k(t, x, z)k(s, z, y)dm(z)

for all t, s, x, #, and that &(£, #, /̂) = k(t, y, x) for all t, x, y. Since
K(V, G; ί, #, A) ^ p(ί, α?, A) it follows that for each t and x, 0<^k(t, x, y)<^
f(t, x, y) a.e. (m), and from (2.1) and the symmetry of k and / it fol-
lows that these inequalities hold for all y. From now on we will
assume that V is bounded on G. In this case we have, for x in G,
e-MtK(0, G; ί, a, A) ^ iΓ( V, G; ί, a?, A) £ K(0, G; ί, x, A) where ikf is any
upper bound of V on G. If, for the moment, we let k and k* denote
the densities of K(V, G; t, x, A) and K(0, G; ί, a?, A) respectively, defined
by the corresponding series above, then for each t and x

(2.2) e-Mtk'(t, x, y) ^ k(t, x, y) ^ k'(t, x, y) a.e. (m)

and since k and &' each satisfy (2.1) and are symmetric these inequal-
ities hold for all y.

In the remainder of this section we will assume that the density /
satisfies the following condition:

(D) for every compact set A and every η > 0 there are numbers
ί0 > 0 and M > 0 such that f(σ, x, y)f(t, x, z)-1 ^ M for all σ S t ^ t0, x
in Ay y and z in X with /?(#, ̂ /) ^ η, p(x, z) < ^. (p is the metric on X )

In the applications, where X is the real line and p is the usual
metric we will verify this condition for certain familiar process densities.

THEOREM 2.1. For each x in G there is an open neighborhood
UaG of x such that k(t, x, y)f(t, x, y)~τ -> 1 as t —> 0 for almost all y
in U. (Note that an assumption of MO is that the support of m is X
and hence m(U) > 0 whenever U is open and non-empty.)

Proof. In view of (2.2) and the remark following it we may assume

V=0. Let q(t, x, y) = /(ί, x, y) - k(t, x, y). Then

jj?(ί, x, y)dm(y) = Px[H(t) n {»(•): α?(ί) e A}]

= Q(G; t, x, A) .
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Fix x in G and let S,(x) be an open ε-neighborhood of x which is wholly
contained in G. Let δ > 0, be such that 4δ < ε and S2S(x) has compact
closure. Now if {xk} is a countable dense subset of X then for every
r0 ^ 1 {Sirr(xk.)) r ^ r0, k ^ 1} is a countable family of sets which gen-
erates O7(X). Thus we can construct a sequence {. //^ of finite parti-
tions of X into .^}(X) sets such that for every n, , //n+1 is a refinement
of . //n, /s? (X) is generated by the sets in these partitions, and any
set in any of these partitions which intersects Sδ(x) is contained in
S2 (x). Since Q(G; t,x, •) is absolutely continuous with respect to p(t, x, •)
and since q(t> x, y)f{t, x, y)'1 is the derivative of Q with respect to p,
it follows from known theorems on derivatives (see [2], pp. 343-344)
that for almost all y in the sense of p(t, x, •) and hence for almost all
y in the sense of m

(2.3) lim Q ( £ ; t> χ> Bn) = Q(t> χ> v)
n-^oo p(t9 x, Bn) f(t, x, y)

where Bn denotes that element of ._.S/n which contains y. (The quotients
on the left are taken to be 0 whenever the denominator vanishes.)

Given any t > 0 let {Tk} (Tk = {tkl < < tkk}) with tkl = 0 and
tkk = t be an increasing sequence of subsets of [0, t] becoming dense in
[0, ί] as k -> oo. Let

Λki= {x( ):x(tkj) $ G,x(tkl)eG;l = l, ..., j - 1}

Tc

and let Ak = \J Λkj. For each k the ΛkJ'a are disjoint and ΛkczΛk+1.
oo

Moreover U Λk — H(t) so that for any Be &(X) we have

Q(G, t, x, B) - lim Σ Px[Λt, f] {x( •): x(t) e B}] .

For each x in G and A in &(X) define (p(0,05, A) = /4(α5))

μfcJ(α, A) = l_ Lί)(ίΛ1, a?, d^) p(£fcJ - 4 O -D, XJ-19 A) .

Then μkJ(x, X - G) = P,[^fcj] and

= _/4u(α, d^)l /(ί - ίfcj, xJ9 y)dm(y)
JX-O Jβ

provided tkJ < t. On the other hand if tkJ = t and BaG the left side
of this last equation is 0, so for convenience we define the right side to
be 0 in this case. If Bn is in ^//n and Bn(zG
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Q(G; ί, x, Bn)(2.4)
p(t,x, Bn)

Σ I -faAtt* dχj)\ f(P — tkj> χj> z)drn(z)
= lim J-iJ*-*

I /(ί, x, z)dm(z)
J w

We wish to apply condition (D) with A = S2δ(x) and 37 = 28. Let 2/ be
in Sκ(%) and let 2?n be that element of ^fn which contains y. By con-
struction BnaS28(x) so if z is in Bn and ccj is in X — G then p(x,z)<28
and jOφj, 2;) > 28. Thus for sufficiently small t the right 'side of (2.4)
does not exceed M Px\H{t)~\. This estimate depends on Bn only through
the fact that BnaS2s(x) so combining this with (2.3) we see that

?(*, x, y)f(t, x, y)-1 ^ MPx[H(ty]

for almost all y in S8(x) provided t is small enough (how small not de-
pending on y). Then for almost all y in Ss(x) we have

(2.5) *(* g y )

1 ^ ^ 1
/ ( * , Xf V)

By the right continuity of the paths Px[J3"(i)] -> 0 as ί -> 0 and so if we
take U = Sfi(ίc) the proof of Theorem 2.1 is complete.

THEOREM 2.2. For all x in G, k(t, x, x)f(t, x, x)'1 -> 1 as t -> 0.

Proof. If a; and 8 are as in the preceding proof then

f(2t, x, x)

By (2.5) the expression in the numerator is not less than (1 — MPx[H(t)~\)\
Applying condition (D), with A = {x} and η — 8 to the second term in
the denominator we find that for sufficiently small t it does not exceed
N p(t, x, X — Sδ(α;))p(ί, x, Ss(x))"1 where ΛΓ is a fixed positive number.
The right continuity of the paths implies that this last expression ap-
proaches 0 as t -> 0, and since Px\H(t)\ -> 0 as t -> 0 Theorem 2.2 is
established.

Let N(X) be the number of the eigenvalues {λ̂ } which do not exceed
λ, that is N(λ) = Σ 1. We next prove the following theorem concern-

x .<λ

ing the asymptotic behavior of N(\).
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THEOREM 2.3. Suppose

m(G) < oo, \ fit, x, χ)dm{x) < oo
JG

for all sufficiently small t, and

\_\/2(t, x, x)dm(x)J^Gf(t, x, x)dm(x)J1

remains bounded as t -> 0. Then

ί /C \-l

k(t, x, x)dm{x)[ \ f(t, x, x)dm(x)) -> 1 as t -> 0.

If in addition \ f(t, x, x)dm(x) ^ At~Ί as t —• 0 /or some A and γ > 0
JG

then N(X) ~ AXy(Γ(l + γ))"1 as λ -> oo.

Proof. We have

( A * * L t , x, x)dm(x)

1 f(t, x, x)dm{x) \ fit, x, x)dm{x)
)G JG

f\t, x, x)dm{x)

^ W<t'x'x[dm(χh ,
\jGf2(t, x,x) I Γ ,,.

JG

m{G) is finite, q(t, x, x)f(t, x, x)~ι is bounded by 1 and by Theorem 2.2
approaches 0 as t -> 0 for all x in G. The second factor in the last
expression in (2.6) remains bounded as t —> 0, so

q(t, Xj x)dm{x) \ f(t, xy x)dm{x)) -> 0 as t -> 0 .

This yields the first assertion of Theorem 2.3. From the definition of
k it follows that

k(t, x, x)dm(x) =
j-1

Thus by the first part of the theorem and the additional hypothesis of
the second part we have

ί°VλίdΛΓ(λ) ~ f /(ί, x, x)dm(x) ~ At'
Jo J G

as t -> 0 .

The conclusion of the theorem then follows by applying the Karamata
tauberian theorem [6. p. 192].
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3. Applications. In this section we apply the results of §2 to the
symmetric stable processes and the Ornstein-Uhlenbeck processes on the
real line. First consider the symmetric stable process of index a
(0 < a <Ξ 2). Here X = R\ m is Lebesgue measure, and f(t, x, y) —
g(t, x — y) where

(3.1) g(t, x) = — Γ eixue-tlu]*du .

It is well known that the symmetric stable processes satisfy the condi-
tions of §2 of MO and clearly / is symmetric in x and y. For each
t, /(*> %> V) i s uniformly bounded so condition (K) in §6 of MO is satisfied
if m(G) is finite (in particular if G is compact). We wish to verify con-
dition (D) for the density /. To this end we state three lemmas.

LEMMA 3.1. For each t > 0, g(t,x) decreases as \x\ increases.

LEMMA 3.2. Suppose φ, a real valued function defined on [0, oo),
has N continuous derivatives and that φ, <p(1), , φίN) are all absolutely
integrable on [0, oo). Suppose that for each n <̂  N — 1, φin){u)-* 0 as
u —> CXD . Then if 0 < λ < 1 we have

(3.2) \ uλ~1φ(u)cosbudu
Jo

λ - 2)Vn )(0)6-n- λ + 0(6-^) as 6 -
w=o n\

LEMMA 3.3. For each x Φ 0, g(t, x) is an increasing function of t
in the domain 0 < t < B^x]* where BΛ is a positive constant independent
of x.

Lemma 3.1 is reasonably well known and a proof may be found in
[7, Th. 11.8, p. 32]. Lemma 3.2 is a trivial modification of a theorem
of Erdelyi [3, p. 48], to which we refer the reader. Lemma 3.3 is
doubtless well known, but we are unable to find an explicit reference
to it in the literature and so we give a proof.

Proof of Lemma 3.3. We fix x Φ 0 and look at the derivative

dgjdt — — {πyA (cos xu)uea-tVj(*du. Making the change of variable tu°° — y°°
Jo

we obtain

(3.3) 4" = -~t-^«hχb)
dt π

where 6 = \x\t-ιloύ and

ha(b) — I ^ e - Λ os bydy .
Jo



THE ASYMPTOTIC DISTRIBUTION OF THE EIGENVALUES 405

If 0 < a < 1 we apply Lemma 3.2 with N ~ 2, λ = α, and <p(y) = ye~y(*.
φ clearly satisfies the assumptions of Lemma 3.2 and φ(ϋ) — 0, φr(0) = 1
so we obtain

(3.4) K(b) = - Γ ( l + α)cos Γ—(a - l jV 1 -* + O(&~2)

= -A(α)&-1-α; + O(δ-2) as 6 -> oo

where A(a) = Γ(l + α)cos [~(a — 1)Ί > 0. If 1 < a < 2 we take N= 3,

λ = a — 1, and ^(^/) = y2e-yO/ and obtain

(3.5) hjb) = -A(a)b-l-a + O(δ-3) as 6 -> oo .

If 0 < a < 1 then (3.4) implies that there are constants MΛ and ba such
that |ΛΛ(6) + AίαOδ-1-*! ^ M"α6-2 if 6 > δα. Thus

dt π

provided \x\t~u« > ba or equivalently 0 < t < K\x\\ Then dg/dt will be
positive if Mr

a\x\-2t-1+llΛ<A{a)π-ι\x\-ι'Λ or equivalently if Q<t<M*\x\*.
Thus if we take BΛ = min (b'a, M") Lemma 3.3 is established for 0 < a < 1.
If 1 < a < 2 a similar analysis beginning with (3.5) yields the desired
result. Finally g(t, x) = π-H{t2 + x2)'1 if a = 1 and

(/(ί, x) — (2i/πί)~1exp ( —x2/4ί)

if a — 2 and the conclusion of the lemma is easily verified in these
cases.

Now to verify condition (D) let A, a compact subset of R1, and
Ύ] > 0 be given. If t0 < B^ where BΛ is the constant of Lemma 3.3,
if \x — y\>η and if 0<σ<t<t0 then f{(?,x,y) = g{o,x~y)^g(t,x — y),
and if 1 x — z \ ̂  ^ then

the last inequality being a consequence of Lemma 3.1. In this case these
estimates do not depend on x being in A.

Since

f(t, χ,χ) = g(t, 0) = (πy^e-^du = (aπYH'll%Γ(Ha) ,
Jo

if m(G) < co then the conditions of Theorem (2.3) are satisfied and we
have
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(3.6) N(X) ~ ^—-m(G) .
π

This is the asymptotic distribution of the eigenvalues for the symmetric
stable process of index a on an open set G of finite Lebesgue measure
with V bounded. This should be compared with the results of Kac [5].
(Kac's V is different from ours. His V=l yields our results with our
V=0.)

Next we turn to the Ornstein-Uhlenbeck processes. It is well known
[1] that these processes satisfy the conditions of §2 of MO (in fact the
paths can be taken to be continuous.) The transition density relative
to Lebesgue measure of the 0 — U process with parameter β > 0 is
given by

(3.7)
V2τr(l - ρ2) L 2 1 -

where p = ρ(t) = e~^\ β > 0, t > 0. This density is not symmetric, but
if we introduce the measure m defined by dm(y) — e~y2'2dy then the
transition density relative to m is

(3.8) f(t, x, y) = - 1 e x p Γ - i > V - 2 ^ + ^ 2

i/2π(l - ρ2) L 2 1 - ρ2

which is symmetric. We now verify condition (D) for this density. Let
the compact set A and number η be given. Then

(3.9) / ( ( T ' x> y)

f(t, x, z)

(1
(1

- pr^2

— Θ2)-1'2

exp

exp

1
2
1
2

(y-xf-
l-p\

(z — xf
1 /}2
JL — ϋ

exp I -

expĵ -

1

1

xy Ί

xz
+ θ

exp

exp

Γx2

[x2

1 2

jexp

exp

[
1"

2
Z2~

2

where p = e~β<r and θ = β~βί. The fourth factors in the numerator and
denominator cancel. If we consider only x, y, and z such that x is in
Af \x — z\ < Ύ] and \y — x\ ^ η then the third and fifth factors in the
denominator are bounded away from 0 and the second factor is no smaller

than exp _ — -—y-7— L Thus there exists a positive constant JVΊ such
L Δ L — U J

that

(3.10) Aσ> x> y)

f(t, Xy Z)

r_i (y -

( 1 — θ2)-112

exp
[__ 1 Ϋ Ί
L 2 1 - 6>2 J
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The product of the exponentials in the numerator is precisely

L 2 1exp
-F

If \y\> 2max \x\ + 2η and p > 1/2 then (py - xf > η\ But for any
164

other y such that \x — y\^η, the second and third exponentials in
the numerator of (3.10) are uniformly bounded while the first exponential
does not exceed exp — ^—- . Thus if ί0 is such that <rβto > 1/2,

L ^ 1 p J
then for σ < t <£ ί0, x in A, |cc — 3/| ̂  r;, and |x — z\ < ΎJ we have

(3.11) 1 -2Γ

where iV2 is a positive constant. The right side of (3.11) is easily seen
to be uniformly bounded for 0 < σ < t g t0 and thus condition (D) is
verified.

For this density/(ί, x, x) = 6(ί)exp (ioχ2/l + io) where δ(ί) = [2π(l-|02)]-1/2

and p = p(t) — e~βt. One verifies easily that if μ(G) < 00, where μ de-
notes Lebesgue measure, then condition (K) as wτell as all the hypotheses
of Theorem 2.3 are satisfied. In particular since p increases to 1 as,
t -> 0 we have

\ f(t, x, x)dm(x) = b(t)[ ecp^/i+p
Jβ Jσ

βLt as ί -> 0 .
21//37Γ

So applying Theorem 2.3 we obtain for the 0— U process with parameter β

(3.12) N(\)~-t4@^L.
πvβ

If G is the open interval (α, 6) then the infinitesimal generator Ω'Q is
given by the differential operator Ω'Qφ = /9[<p;' + (a?^)'] — Vφ on an ap-
propriate domain in L2[G, m] subject to the boundary conditions φ(a) —
φ(b) = 0. If β = 1 notice that (3.12) reduces to (3.6) with α = 2. If
α = 2 in (3.6) the corresponding infinitesimal generator is given by
φ" — Vφ on an appropriate domain with the same boundary conditions.
Thus the term (xφ)r does not affect the asymptotic distribution of the
eigenvalues, which is certainly what one would expect. The λ̂  are the
eigenvalues of — Ω'G in each case. See Theorem 6.3 of MO.
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