
ORDERINGS OF THE SUCCESSIVE
OVERRELAXATION SCHEME
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l Introduction* One of the more frequently used iterative methods
[11, 14, 18] in numerically solving self-ad joint partial difference equa-
tions of elliptic type:

n

( 1 ) Σ aijχj = ki9 aiΛ Φ 0, 1 <Ξ i ^ n ,
j = l

is the Young-Frankel successive over relaxation scheme [16, 4]. If super-
scripts denote the iteration indices, then the successive overrelaxation
scheme is defined by

( 2 ) xψ+ι) = ω { Σ bt jX{rλ) +
U = 1 j =

where

\-aitJlaltl,
(2 ' ) & ]

The parameter α) is the relaxation factor.
Since the introduction of this method, there has remained the ques-

tion of the effect of different orderings of the equations of (1) on the
rate of convergence of the overrelaxation scheme. Young [16] introduced
the concept of a consistent ordering of the unknowns for a class of
matrices satisfying his definition of property (A), and he conjectured
[17] that, with certain additional assumptions, these consistent orderings
were optimal1 in the sense that, among all orderings, the consistent
orderings give the fastest convergent iterative scheme for the case of
ω = 1 of (2).

The problem of the relationship between orderings and rates of
convergence has been recently investigated by Heller [6], whose approach
was combinatorial. Assuming the nxn matrix A = \\aitj\\ of (1) to be
multi-diagonal, Heller concentrated on the problem of finding all order-
ings whose associated Gauss-Seidel iterative method, the special case of
(2) with ω = 1, had the same eigenvalues as the eigenvalues of the
Gauss-Seidel method based on the "usual ordering/'

Our approach to the question of orderings is based on the Perron-

Received October 3, 1958. Presented to the American Mathematical Society April 18,
1958.

1 For some preliminary results on this conjecture for optimum orderings, see [17].
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Frobenius theory of non-negative matrices.2 Our main result (Theorem 4)
contains as a special case a proof of Young's conjecture. On the
other hand, while certain orderings may produce faster convregent itera-
tive schemes than others, we prove (Theorem 5) that, for the case
ω — 1 of (2), different orderings have vanishingly small effect on the
rate of convergence of the Gauss-Seidel iteration method for slowly con-
vergent problems. This last result proves a conjecture by Shortley and
Weller [10, p. 338] who observed this phenomenon in the numerical
solution of the Dirichlet problem.

2. Preliminary definitions. We first define the class S of matrices.
We shall later show in § 5 that the results, based on this class of mat-
rices, hold for a large number of matrix problems (1) arising from the
numerical solution of certain partial differential equations of elliptic type.
We let B denote the square matrix of coefficients bitJ defined in (2').

DEFINITION 1. The matrix BeS if and only if B satisfies the fol-
lowing conditions:

(i) B = \\buj\\ is a non-negative nxn matrix, with zero diagonal
entries, i.e., bitJ ^ 0 for i Φ j , and biA — 0 for all 1 ^ i, j ^ n

(ii) B is irreducible [5, p. 458], i.e., there exists no permutation
matrix A such that

ΛBΛ" = C BB) •
where Bx and J53 are square submatrices.

(iii) B is symmetric.
For any permutation, or ordering, φ of the integers 1 ^ i ^ n, let

Λφ denote the corresponding nxn permutation matrix and let BΦ=ΛΦBAΦ —
ΛφB/iφ\ where in general A! denotes the transpose of the matrix A.
For BeS, Bφ is symmetric with zero diagonal entries, so that we can
decompose Bφ into:

where Lφ is a strictly lower triangular matrix.3 We define

( 4 ) Mφ(σ) = σLφ + L'φ, a > 0 .

It is clear that Mφ(σ) is a non-negative irreducible matrix for every
σ > 0 and ψ. Thus, by the Perron-Frobenius theory [8, 5] of non-nega-
tive matrices, Mφ(σ) possesses a positive simple eigenvalue, mφ{σ), which

2 A similar approach was employed Kahan [7r] in generalizing the results of Young
[16]. Although Kahan was not directly concerned with the question of orderings, many
of his results, stated without proof in [7], are nevertheless similar.

3 An nxn matrix L — | | ^ j | | is strictly lower triangular if and only if hj = 0 for
i-<L j , 1 ^
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is greater than or equal in modulus to all other eigenvalues of Mφ(σ),
and to mk(σ) can be associated an eigenvector with positive components.
It can be shown, based on further results of the Perron-Frobenius theory,
that mφ(σ) has the following properties:

j(i) mφ(σ) is a strictly increasing function of σ [3, p. 598].

l(ii) mφ(σ) is an analytic function of σ, for all σ > 0.4( 5 )

Before proceeding, we briefly state some of the terminology and
conclusions of the Perron-Frobenius theory, which we shall frequently
use. If C is an arbitrary non-negative irreducible nxn matrix, we say,
following Frobenius [5], that C is primitive if the positive eigenvalue r
given by the Perron-Frobenius theory is strictly greater in modulus than
all other eigenvalues of C. If there are k(>l) eigenvalues of C with
modulus r, then C is said [9] to be cyclic of index k. In particular, if
C is cyclic of index k(> 1), then [9] there exists a permutation matrix
A such that

( 6 )

Ό 0

C2 0

0 C,

\0 0

0 C,\

0 0

0 0

c,. o /
where the diagonal blocks of AC A'1 are square submatrices with zero
entries. For any matrix C, we shall let β\C~\ denote the spectral radius
of C, i.e., μ[C] = maxlλjl, where Xj is an eigenvalue of C.

3* Spectral radius as a function of ordering.

LEMMA 1. // BeS, then mφ(σ) = ]ϊ[B]σll2hφ(lnσ), where hφ(a) =
hφ( — a) for all real a, and hφ(0) = 1.

Proof. For σ > 0, there exists an eigenvector x with positive com-
ponents such that Mφ(σ)x = mφ(σ)x. From definition,

Mφ(σ) = σLφ + L'φ =

Thus, M'J --- )x = -l^i^J-x. Since M,,, and M',, have the same eigenvalues,

then

( 7 ) σmφ(—) = m^σ), a > 0 .

4 Since mφ(σ) is simple root of det [Mψ(σ) — λl] = 0, the analyticity of mΦ(σ) can be
proved by means of the implicit function theorem.
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If

hφ(lnσ) Ξ ^ f f σ-v\ σ > 0 ,

then equation (7) shows that hφ(a), a = Inσ, is an even function of a.
For <7 = 1, mφ(l) = μ[J3] by definition, and thus hφ(0) — 1, which com-
pletes the proof.

From (5) and Lemma 1, it follows that hφ(a) is an analytic function
of a for all real values of a.

LEMMA 2. Let A(a) = e*L + D + e~aL', where L is a non-negative
strictly lower triangular matrix, and D is any non-negative diagonal
matrix. If L + Lf is irreducible, and 0 fg aλ <̂  a2, then

Proof. If C = L + D + L' = \\cttJ\\, then by assumptions stated in
the lemma, C is non-negative and irreducible. Assume now that C is
primitive, and consider any non-zero cycle v of C of length m > 1:

v = ci0i<1c<li<2 cim_iΛm^, where cijιtj+i > 0, i = 0, ., m - 1 .

It is clear that the corresponding cycle for A(a) is t = e^y, where g is
an integer. From the symmetry of C, there is another cycle V of A(α:)
of the form: V — e~qav. Since t and £' are contained in the io-th diagonal
entry of Am(a), it follows that the trace of Am(a) is composed of terms
of the form: 2v cosh(gα). Using the monotonicity of cosh(^), we obtain,
for 0 fg aλ ^ a2,

( 8 ) ίrfA771^)] ^ ίr[^lm(α2)] ,

for all m ^ 1. By assumption, C is primitive, which implies that A(a)
is primitive for all real a. Since the trace of a matrix is equal to the
sum of its eigenvalues, then

( 9 ) tr[Am(a)] ~ (μ[A(a)J)m, m -> oo .

Combining the results of (8) and (9), and taking mth roots, we obtain
the desired result, under the additional assumption that C is primitive.
But if C is not primitive, then C = C + βl, β > 0, certainly is, and
since

μ[A(a) = e«L + D + βl + e-«L'~\ = μ[A(a)] + β ,

the desired result again follows.

THEOREM 1. If B e S, then hφ(a) is non-decreasing for a ^ 0.
Moreover, for any a Φ 0,

(10) 1 ^ hφ(a) < cosh(α/2) .
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Proof. For σ > 0, consider the matrix

By definition, μ[Pφ(σ)] = hφ(lnσ). For any α2 ^ αx ^ 0, hφ(a2) ^ ^(a a ) if
and only if ^[Pψ(e*2)] ^ βlPφie"1)'], and thus the first conclusion follows
from Lemma 2, with D the null matrix.

To prove the second part of the theorem, we write Pφ(σ) in the form

(12) Pφ(e*) = cosh(α/2) . Tφ + sinh(α/2) Kφ ,

where

For any real a, Pψ(β*) is a non-negative, irreducible matrix. If x is the
eigenvector of Pφ(eΛ) with positive components corresponding to the
eigenvalue hφ(a), so normalized5 that (JC, x) = 1, then

(Pφ(β*)jc, JC) = Λφ(α) = cosh(α/2) (TΦJC, JC) + sinh(α/2) . {Kφx, x) .

Since Kφ is skew-symmetric, then hφ(a) — cosh(α/2) {Tφx, x). But, Tφ

is symmetric, non-negative, and irreducible, so that {Tφx, x) ^ ~μ[Tφ] = 1.
Thus, from the first part of this theorem and Lemma 1, we have that
1 ίg hφ(a) ίg cosh(α/2) for all real α. Assuming a Φ 0, suppose that
(Tφjc, x) = μ[Tψ] = 1. This is true only if x is also an eigenvector of
Tφ, and thus, from (12), JC is an eigenvector of Kφ. But since Kφ is a
skew-symmetric matrix, the eigenvalues of Kφ are pure imaginary num-
bers. By the irreducibility of B, there exists at least one positive entry
in the first row of L'φ, and thus the first component of Kφx is a nega-
tive real number, which contradicts the fact that JC is an eigenvector of
Kφ. Thus, for a Φ 0, (ΓΦJC, X) < 1, and we have the inequality of (10),
which completes the proof.

Since hφ(a) is analytic for all real α, we conclude the

COROLLARY. If BeS, then either hφ(a) = 1 for all real a, or hφ(a)
is strictly increasing for a ^ 0.

DEFINITION 2. If B e S, then φ is an h-consistent ordering for B if
and only if hφ(a) = 1 for all real a. Otherwise, φ is a non-consistent
ordering for B.

We remark that the above definition of an /^-consistent ordering
generalizes for the class S the definitions of a consistent ordering given

5 Here, (JC, y) denotes, as usual, the scalar product of the vectors JC and y. If the
n

components of JC and y are x%,y%, respectively, then (x,y) =
ί
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both by Young [16] and Arms, Gates, and Zondek [1]. To show this,
assume that BeS satisfies Young's property (A), and that ψ is a con-
sistent ordering for B in the sense of Young. Then, as shown by Young
[16, p. 97], both Mψ(σ) and σll2B have the same characteristic polyno-
mials, and hence the same eigenvalues. Thus, mφ(σ) = σll2μ[B], from
which it follows that hφ{a) = 1, proving that ψ is also an /t-consistent
ordering in the sense of Definition 2. That consistent orderings in the
sense of Arms, Gates, and Zondek for matrices BeS also satisfy De-
finition 2 can be proved in a similar manner.

THEOREM 2. If B e S, then there exists an h-consistent ordering φ
for B if and only if B is cyclic of index 2.

Proof. If B is cyclic of index 2, then by (6) there exists an order-
ing ψ and a permutation matrix Aφ such that

/ 0 B,
(13) W - Bt = (B_ 0

where the diagonal blocks are square submatrices. Thus,

0 B1

7B2 0

and

B,B% 0

0 aBβJ '
M%(σ) =

and thus M%{σ) = σMφ(l). It follows then that mφ(σ) = μ[B]σ1/2, and
hφ(a) = 1, proving that ψ is an ^-consistent ordering.

Since B e S implies that B is non-negative and irreducible, then B
is either primitive or cyclic of index k, k > 1. Since B is moreover
symmetric, it follows from (6) that B is either primitive or cyclic of
index 2. We shall now that if B is primitive, no ordering of B is an
/^-consistent ordering. With B primitive, let φ be any ordering, and
consider

(14) Aφ{a) ^ =~{<PLΦ + e-«L'φ},a ^ 0 .
μγB\

Following the notation of Lemma 2, suppose that every cycle of Aφ(a)
of length m has q — 0, for all m ^ 1. This implies that every non-zero
cycle of Aφ(a) contains precisely the same number of terms from above
the diagonal as from below the diagonal of Aφ(a). Since Aφ(a) has zero
diagonal entries, then every non-zero cycle of Aφ(a) has an even number
of terms. Thus, the greatest common divisor γ of the lengths of these
non-zero cycles is evidently 2. It is known [9] that γ = 2 if and only
if Aφ(a) is cyclic of index 2, and, for any real α, Aφ(a) is cyclic of index
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2 if and only if B is cyclic of index 2. This being a contradiction to
the assumption that B is primitive, there than exists a positive integer
m0, and a positive integer q0 such that the tr[Ap(a)] contains a term
v cosh(g0α), v > 0, while tr[Aφo(O)] contains the corresponding term v. As
in the proof of Lemma 2, it follows that, for a ^ 0,

(15) ίrβo(α)] ^ tr[A%o(O)] + v[cosh(g0α) - 1] .

Since this particular cycle of length m0 can be repeated cyclically, then

(150 tr[Aι

φ

mo(cx)] ^ ίr[AJTO°(0)] + vl[cosh(q0la) - 1] .

Since B is primitive, so is Aφ(a) for all real α, and from (9) and the
definition of hφ(a), we have

oo(16) hφ(2a) = /i[Aφ(α)] - (ίr[A£(α)])1/ίn, m

For or sufficiently large so that veQo* > 1, we obtain from (15') and (16)

(17) hφ{2a) ^ (ve%*)llmo > 1 .

Thus, if B is primitive, no ordering φ of ΰ is an ^-consistent ordering,
which completes the proof.

We finally remark that it has already been pointed out [2] that, in
general, Young's property (A), on which Young's definition of consistent
ordering depends, for the matrix of coefficients of (1) implies that the
matrix B of (2) is cyclic of index 2. The same is true of its general-
ization [1] to property (A*). This relationship to cyclic matrices has led
to a further generalization [15] of the Young-Frankel overrelaxation
scheme to matrices B of (2) which are cyclic of index p, p ^ 2.

Returning to the successive overrelaxation scheme of (2), if x ( w )

denotes the vector with components xf\ then for B symmetric, we can
write (2) equivalently as

(18) χ(n+1> - . S ^ w +

where

(19) ^,ω HE (/

and

(190 f

Accordingly, we make the

DEFINITION 3. J2φ>ω = (I — ωLφ)-1{ωL'φ + (1 — ω)I} is the successive

overrelaxation matrix, corresponding to the matrix B and ordering φ.
The quantity ω is the relaxation factor.

LEMMA 3. Let BeS. If, for ω > 0, there exists a positive real τ
for which
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ω

then τ is an eigenvalue of -Sφιω. Moreover, if 0 < ω ^ 1, μ[-£φ,ω] is the
unique positive value of τ for which

mφ(τ) = τ + ω - 1

ω

Proof. It is known6 that for ω > 0, -£ψ,ωϋ = Xv if and only if

(20) (λLψ + L;)ϋ =

from which the first part of the lemma follows. Since Lφ is a strictly lower
triangular matrix, then (/ — ωLφ)-λ — I + α>Lφ + + ω71'1^'1. Clearly,
If or 0 < ω < 1, J^ t W is a non-negative irreducible matrix.7 Thus, the
argest in modulus eigenvalue of j££ι<0, jδ[ώφ,ω], is positive, and its corre-
sponding eigenvector ϋ can be chosen to have positive components. From

V, we have, by (20), that raΦ(<7) and + ω ~ inter-

sect in /^[=δφ,ω]. By continuity, the result is true also for ω = 1, which
completes the proof.

We remark that —{σ + ω — 1}, graphed against σ, defines a family

of straight lines through the point (1, 1). Figure 1 illustrates the second
part of Lemma 3.

Figure 1

DEFINITION 4. If BeS, and 0 < ω < 1, then ξ(β[B']f ω) is the

unique positive value of σ for which μ[B]σ112 — ί

For the class of matrices S, the following theorem sharpens results
due to Stein and Rosenberg [12], and Kahan [7,7'].

6 See, for instance, [16, p. 99J.
7 It is, moreover, primitive.
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THEOREM 3. Let BeS, and assume 0 < ω ̂  1. // μ[J3] < 1, then
for φ a non-consistent ordering for B,

and for φ an h-consistent ordering for B, ξ(μ[B], ω) = μ[~Sφ,ω]. If
Jt[B] = 1, then [-δψ,ω] = 1. If μ[B] > 1, ίΛew /or φ cm non-consistent
ordering of B, ξ(μ[B~], ώ) < jδ[-Sφ>ω], emd /or φ αw h-consistent ordering
for B, ξφlBl ω) = j δ [ δ £ ]

Proof. We consider only the case when μ[.B] < 1, since the other
cases follow similarly. If φ is an /^-consistent ordering for B, then
mφ(σ) = /5[J3]<71/2. From Definition 4 and Lemma 3, it follows that
ξ(μ[B], ώ) — ]i[J2φtω\. If φ is a non-consistent ordering for j?, then,
from Theorem 1 and its corollary, hφ(a) is strictly increasing for a Ξ> 0,
and 1 < Λφ(α) < cosh(α/2) for α Φ 0, these inequalities giving directly

(21) μ[B]σ^ < mφ(σ) < μ[B]σ^cosh(^J = μ[B]

Consider the function fcφ(o ) defined by

(22) kφ(σ) = mφ(σ) - ( ( 7 + ω ~ 1 ) , ω > 0 .

For I = ξ(p\BΊ, ω), it follows from Definition 4 and the first inequality
of (21) that kφ(ξ) > 0. On the other hand, kφ(ΐ) < 0 since kφ(l) = μ[B]-l.
Thus, since kφ(σ) is continuous in σ for all σ ^ 0, there exists a τ with
ξ < τ < 1 for which fcφ(τ) = 0. By Lemma 3, ~μ[^,ω] = τ, so that
ξ(μ[B~\, ω) < jw[-Sφ,ω]. Using the second inequality of (21), we have that

0 = M ϊ ) = «φ(r,

from which it follows that

( 1 - ω)

τ - 2 -

which completes the proof.
The special case ω = 1 gives rise to inequalities like that of Stein

and Rosenberg [12]. Since ξ(μ[B']9 ω = 1) = ]Ϊ2[B], we have the

COROLLARY.8 For the Gauss-Seidel method, ω = 1 of (2), ifμ[B] < 1,
then

8 If # e S and Jl[B] < 1 , Young conjectured [17] that for ψ a consistent ordering of
B,μ[£ψ,i]^μ[£φ,i] for all orderings φ of # . Applying the first part of this corollary,
we have a proof of this conjecture.
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πm s ptavj <

equality holding if and only if φ is an h-consistent ordering for B. If

μ[B] = 1, then jΰ[j2£J = 1. If μ[B] > 1, then μ2[B] ^ ~fll &φtl~\, equality

holding if and only if φ is an h-consistent ordering for B.

We now consider the subclass of matrices BeS for which Jt[B] < 1.

Following Young [16], we define the quantity:

so that 9 1 < ωb < 2. In Figure 1, it can be shown t h a t ωb is the unique

value of the parameter ω, 0 <̂  ω ^ 2, for which the straight line

—— j through the point (1, 1) is tangent to the curve Ji[B]σ112.

Thus, for 0 ^ ω <£ ωb, the quantity ξ(μ[B], ω) can be defined as the

largest positive value of σ for which

+ ω -
ω

It is known [16] that if the matrix B e S satisfies Young's property (A),

with fi[B] < 1 and φ a consistent ordering (in the sense of Young) for

B, then ωb is the overrelaxation factor which minimizes μ[=Sφ,ω], and thus

gives the fastest convergence in (2). A similar conclusion is obtained

for the generalization of [1]. Thus, for certain matrices, ωb is the

optimum overrelaxation factor.

THEOREM 4.10 Let B e S, and assume ~μ[B] < 1. Then ξ{JtB, ώ) ^

βί^Φ,ωi for 0 < ω ^ ωb, with equality if and only if φ is an h-consis-

tent ordering for B. For ωb ^ ω < 2, μ[~Sφ,ω] ^ o> — 1, with equality

for all ω in this range if and only if φ is an h-consistent ordering

for B.

Proof. By Theorem 3, we need only consider the case ω ^ 1. If

φ is a non-consistent ordering for B, then hφ(a) > 1 for all real a Φ 0.

from this, it follows, as in the proof of Theorem 3, t h a t the straight

line (—— ~—] intersects mφ(σ) in a point whose abscissa is greater

than !(jδ[JB], ω)> f ° r a ^ ω w ^ h 1 = ω = ω& Thus, by Lemma 3, ..Sf,ω

has at least one eigenvalue greater in modulus than £(/^[S], ω)> s o t h a t

9 Since BθS,B is non-negative and irreducible, which implies that μ[B] > 0.
10 Without the discussion of the case of equality, this result was stated in [7], and

proved in [71].
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]> ω) < M=̂ Φ,ω] for 1 <£ ω ^ ωb. If φ is an /^-consistent ordering for
By it can be shown, using basically the proof of this as given originally
in [16], that the following functional relationship

(24) (λ + ω - I) 2 = Xω2μ2

holds, for ω Φ 0, between the eigenvalues λ of -S£iW and the eigenvalues
μ of B. From (24), it follows easily that ξ(μ[B~\, ω) = μ[^>ω] for
H ω ^ (Oj, which completes the proof of the first part of the theorem.

For ωb ^ ω ^ 2, we use a result of Kahan [7], which states that
for any ordering φ and any real value of ω, β[^iω\ *t co\ — 11. Thus,
for the indicated range of ω, 72[-Sφ,ω] ^ α> — 1. If φ is an ^-consistent
ordering for 5, it follows, using (24), that μ[jδ£iω] = α> — 1 for ωδ g ω ̂  2.
If φ is a non-consistent ordering for B, then by the first part of this
theorem, ~μ[^φ,ωb\ > ξ(μ[B], ωb) = ωb — 1, the last equality following
from (24) and the definitions of ξ and ωb. Thus, if φ is a non-consis-
tent ordering for f>, then μ[^φ,ω] ^ ω — 1 for ω& ̂  ω < 2, with strict
inequality for ω = ωb, which completes the proof.

COROLLARY. If B e S, and ]ϊ[B] < 1, then for all real ω and all

orderίngs ψ

(25) min{min μί^φJ) ^ ω6 - 1 ,
φ ω

with equality if and only if B is cyclic of index 2.

Proof. For ω >̂ 0, and ω > ωb, /ϊ[jδjιω] > α>δ — 1 for any ordering
Φ, by Kahan's result [7]. For /ϊ[β] < 1, we have that ξ(μ\E\, ω)
is a decreasing function of ω for 0 < ω ^ α>δ. Since, by Theorem 2,
there exists a consistent ordering for B if and only if B is cyclic of
index 2, the result follows directly from Theorem 4.

4. Asymptotic rates of convergence* If B e S and /̂ [JB] < 1, we
define, as usual [16], the rate of convergence of the iterative scheme (2) as

(26) Rφ>ω = -lnμ[^J .

In particular, we consider the Gauss-Seidel iterative scheme, the special
case of (2) with ω = 1. By the corollary to Theorem 3, in this case,

If iϋ =Ξ — lnμ[B]f we have

THEOREM 5. If B eS and μ[B] < 1, then for all orderings φ
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(27) 1 > J k i >JL
- 2R 2

> +
2R 2 -2lnμ[B]

Thus,

(28)

Proof, The inequalities of (27) follow directly from the discussion
above. Applying LΉospitaΓs rule,

lim

from which (28) follows.
The above result contains as a special case a proof of a conjecture

of Shortley and Weller [10], who observed, from numerical data, that
for the numerical solution of the Dirichlet problem in a rectangle on a
fine uniform mesh, the rate of convergence of the Gauss-Seidel iterative
method is virtually independent of the order in which the points are
swept. For illustration, we suppose, following Shortley and Weller,
that we are solving numerically the Dirichlet problem in the unit square.
Assuming that there are p equal intervals of subdivision in each coordi-
nate direction, we let ultj denote numerical approximation to u(x, y), the
analytic solution of the Dirichlet problem, where

p p

Making the well-known five-point approximation to Laplace's equation

(29) uitj = —{ui+1J + u^ltJ + utιj+1 + tt£|j-i}, l ^ ΰ ' ^ ( p - l ) ,

where uOίj, uPtj, utt0, and uttP, determined by the given boundary values
of the Dirichlet problem, are known, (29) is except for iteration super-
script of the form (2) with ω = 1. The corresponding (p — lfx(p — I)2

matrix Bu whose entries are one-fourth or zero, is obviously contained
in S, and, as is easily shown, jδ[J5J = cos(τr/p).

For completeness, we include also the well-known nine-point approxi-
mation to Laplace's equation,

(30) utij = —{uί+1J + u^j + uiJ+1 + uitj^}
o

+ — {Uι-lt3 + ι + Ui + 1J + 1 + ^ - i . j - i + ^ t + i j - i } , 1 ^ i,3 ^ (P - 1) ,
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corresponding to a (p — I)2 x (p — I)2 matrix B2 which is also contained11

in S. It can be shown that

The following table gives information about the quantity

(31)
2 I —lnμ[B]

V

10

25

50

100

ΆB

.951

.992

.998

.999

l]

057

115

027

507

Q(μ[Bl})

.976

.996

.999

.999

103

073

014

753

TAB,]

.941

.990

.997

.999

747

550

633

408

.971

.995

.998

.999

3
2
J)

595

065

818

704

TABLE 1

Thus, for either the five- or nine-point approximation, with p — 25 as
an example, there is less than one-half of one percent difference in the
rates of convergence of the Gauss-Seidel iterative scheme for all 576!
orderings of the 576 unknowns.

5 Elliptic partial difference equations* We now show how the
preceding results can be applied to the numerical solution of certain
partial differential equations of elliptic type.

Given a closed bounded region Ω in Euclidean n space with interior
R and boundary Γ, and given a function g(x) defined on Γ, we seek a
function u(x) defined in Ω which is continuous in Ω, twice differentiate
in Rf which satisfies

(32)

and

(33)

r + F(x)u - G(x), xeR,

u(x) = g(x), x 6 Γ

It is assumed12 that the functions F,G,Alf ---,An are given functions
of x which are continuous in Ω and twice-differentiable in R, and satisfy
the conditions

(34) Ak(x) > 0, F(x) ^ 0 , x e Ω, 1 £ k ^ n .

After a cartesian mesh is laid over the closed region Ω, the above
partial differential equation and boundary conditions are approximated
[16, 14] by the following system of N linear equations

11 For p ^ 3, the matrix B\ is cyclic of index 2, while Bz is primitive.
12 For the numerical solution of (32) where F, G, Λ\y , Λn are only piecewise

smooth, see. for example [14].
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(35) Σ,at,jXj = K l ^ i ^ N ,
j = l

where N is the number of mesh points interior to fl. If the mesh is
sufficiently fine, the discrete approximation can be derived in such a way
that the N x N matrix A = llα^ H satisfies the following properties:

(36) (i) A = \\aiyj\\ is symmetric and irreducible,
(ii) ait3 ^ 0 for iφj, 1 ^ i, j ^ N .

2V

(iii) Σ α π ^ 0 for all i, 1 ^ ΐ ^ N, with strict inequality
j = l

for some i.

The matrix A is thus positive definite [13]. If D is the N x N positive
diagonal matrix with entries α M , we may write (35) in the equivalent
form:

(35') (D~ll2AD~ll2)D112 =x D~ll2k ,

where x and k are column vectors with components x% and ku 1 ^ ΐ ^ JV,

respectively. If Dιl2x = y, D~ll2k = g, and D~ίl2AD-112 = A, (35') reduces

to

(37) Ay = ^ .

Since A has unit diagonal entries, we define the matrix B as B = I— A,
and (37) can be written in the form

(37') y = By + g .

It follows from the definition of B that B is a non-negative irreducible

and symmetric N x N matrix, which has zero diagonal entries. Thus,

B 6 S. Since A is positive definite, so is A, and from A — I — B, it

follows that β[B] < 1. Thus, the discrete numerical approximation to

(32)-(33) can be reduced to the form (37') where B e S, and the results

of the preceding sections are applicable.
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