CORRECTON TO "EQUIVALENCE AND PERPENDICULARITY OF GAUSSIAN PROCESSES"

J. FELDMAN

It has been kindly pointed out to me by D. Lowdenslager that, as it stands, the argument in [1] only works when $L_2(\mu)$ and $L_2(\nu)$ are separable. In particular, the theorem of von Neumann from [2], which is used there, only holds in separable Hilbert spaces. Our theorem nevertheless holds in the non-separable case; an argument will be supplied here enabling one to go from the separable to the general case. We retain notation and terminology of [1].

For any countable subset C of L, let \mathscr{G}_c be the σ -subalgebra of \mathscr{G} generated by C, L_c the linear subspace of L spanned by C, and μ_c , ν_c the restrictions of μ , ν to \mathscr{G}_c . $\bigcup_c \mathscr{G}_c$ is a σ -algebra contained in \mathscr{G} , and, since each $x \in L$ is in some L_c , each x in L is measurable with respect to $\bigcup_c \mathscr{G}_c$. Therefore $\mathscr{G} = \bigcup_c \mathscr{G}_c$. Now, suppose, under the assumptions of the theorem of [1], that μ and ν are not equivalent. Then there is some set in \mathscr{G} with μ -measure 0 and ν -measure > 0 (or vice versa). This set is in some \mathscr{G}_c . So μ_c and ν_c are not equivalent. By the separable case of the theorem, they are mutually perpendicular, i.e., there is some set in \mathscr{G}_c with μ -measure 0 and ν -measure 1. Thus μ and ν are mutually perpendicular.

Next we show that $\mu \sim \nu$ implies that the correspondence $x^{\nu} \xrightarrow{T} x^{\mu}$ between equivalence classes of functions has the property that T extends to an equivalence operator between the linear subspaces \bar{L}_{μ} and \bar{L}_{ν} of $L_{2}(\mu)$, $L_{2}(\nu)$ generated by L. Assume, then, that $\mu \sim \nu$. By using the separable case, we easily see that T and T^{-1} are bounded. An argument on p. 704 of [1] still works to show that the extension of T to an operator from \bar{L}_{μ} onto \bar{L}_{ν} still has the property that, given ξ in \bar{L}_{μ} , there is an \mathscr{S} -measurable x such that $x^{\mu} = \xi$ and $x^{\nu} = T\xi$. Write $T^* T$ as $\int \lambda d F(\lambda)$. Let $E_n = F\left(1 + \frac{1}{n}\right) - F\left(1 - \frac{1}{n}\right)$, n = 2, 3, 4, \cdots Let $E = \bigcap_n E_n$. I now assert $(I - E) \bar{L}_{\mu}$ is separable. For otherwise $(I - E_n) \bar{L}_{\mu}$ would be inseparable for some n, and one could therefore find a countable orthonormal infinite set ξ_1, ξ_2, \cdots of elements of \bar{L}_{μ} for which $||(T^* T - I)\xi_i|| \geq \frac{1}{n} ||\xi_i||$, all i. Let H be the Hilbert space spanned by the ξ_i . Let \tilde{L} be the σ -algebra spanned by them. Let $\tilde{\mu}, \tilde{\nu}$ be the completions of μ and ν , restricted to $\tilde{\mathcal{S}}$. Then the Hilbert spaces $\tilde{L}_{\mu}, \tilde{L}_{\nu}$ are isometric to H and T(H),

J. FELDMAN

respectively, in a natural way. Therefore they are separable, and, since $\tilde{\mu} \sim \tilde{\nu}$, the operator \tilde{T} induced by the correspondence $\tilde{x}^{\mu} \longrightarrow \tilde{x}^{\nu}$ is an equivalence operator. But T is unitarily equivalent to T|H, and T|H was constructed so as *not* to be an equivalence operator, giving a contradiction.

To show T is an equivalence operator, it suffices to show this for $T|(I-E) \ \bar{L}_{\mu}$. Since $(I-E) \ \bar{L}_{\mu}$ is separable, we can reduce to the separable case exactly as in the last five sentences of the previous paragraph, with $(I-E) \ \bar{L}_{\mu}$ playing the role played there by H to show that T is an equivalence operator.

Finally, suppose that, for $x \in L$, $x^{\mu} = 0 \iff x^{\nu} = 0$, and that the oneto-one operator T from L_{μ} to L_{ν} induced thereby extends to an equivalence operator from \overline{L}_{μ} to \overline{L}_{ν} . It must be shown that $\mu \sim \nu$. If μ is not equivalent to ν , then as shown in the first paragraph (and using the notation established there) there is some countable subset C of L such that μ_{C} and ν_{C} are not equivalent. But the operator T_{C} induced by sending x^{μ} to x^{ν} for $x \in L_{C}$ is precisely the restriction of T to those elements in L_{μ} which come from L_{C} . Now, the restriction of T to a subspace is again an equivalence operator, so T_{C} extends to an equivalence operator from $(\overline{L_{C}})_{\mu}$ to $(\overline{L_{C}})_{\nu}$, which contradicts the separable case of the theorem.

Also, in reviewing [1], E. Nelson noticed that Lemma 1 is misstated. It should read "positive" instead of "self-adjoint," and, in (b), " $A^2 - I$ " rather than " $(A - I)^2$."

BIBLIOGRAPHY

1. J. Feldman, Equivalence and perpendicularity of Gaussian processes, Pacific J. Math., Vol. 8 No. 4, 1958.

2. J. von Neumann, Charakterisierung des spektrums eines integral-operatoren, Actualites Sci. Ind. 229, Paris, 1935.

1296