CORRECTON TO "EQUIVALENCE AND PERPENDICULARITY OF GAUSSIAN PROCESSES"

J. Feldman

It has been kindly pointed out to me by D. Lowdenslager that, as it stands, the argument in [1] only works when $\boldsymbol{L}_{2}(\mu)$ and $\boldsymbol{L}_{2}(\nu)$ are separable. In particular, the theorem of von Neumann from [2], which is used there, only holds in separable Hilbert spaces. Our theorem nevertheless holds in the non-separable case; an argument will be supplied here enabling one to go from the separable to the general case. We retain notation and terminology of [1].

For any countable subset \boldsymbol{C} of \boldsymbol{L}, let \mathscr{S}_{c} be the σ-subalgebra of \mathscr{S} generated by $\boldsymbol{C}, \boldsymbol{L} \boldsymbol{c}$ the linear subspace of \boldsymbol{L} spanned by \boldsymbol{C}, and μ_{c}, ν_{c} the restrictions of μ, ν to $\mathscr{S c} . \mathrm{U}_{c} \mathscr{S}_{c}$ is a σ-algebra contained in \mathscr{S}, and, since each $x \in \boldsymbol{L}$ is in some $\boldsymbol{L} c$, each x in \boldsymbol{L} is measurable with respect to $\mathrm{U}_{c} \mathscr{S}$. . Therefore $\mathscr{S}=\mathrm{U}_{c} \mathscr{S}_{c}$. Now, suppose, under the assumptions of the theorem of [1], that μ and ν are not equivalent. Then there is some set in \mathscr{S} with μ-measure 0 and ν-measure >0 (or vice versa). This set is in some \mathscr{C}_{c}. So μ_{c} and ν_{c} are not equivalent. By the separable case of the theorem, they are mutually perpendicular, i.e., there is some set in \mathscr{S}_{c} with μ-measure 0 and ν-measure 1. Thus μ and ν are mutually perpendicular.

Next we show that $\mu \sim \nu$ implies that the correspondence $x^{\nu} \xrightarrow{T} x^{\mu}$ between equivalence classes of functions has the property that T extends to an equivalence operator between the linear subspaces $\overline{\boldsymbol{L}}_{\mu}$ and $\overline{\boldsymbol{L}}_{\nu}$ of $\boldsymbol{L}_{2}(\mu)$, $\boldsymbol{L}_{2}(\nu)$ generated by \boldsymbol{L}. Assume, then, that $\mu \sim \nu$. By using the separable case, we easily see that T and T^{-1} are bounded. An argument on p .704 of [1] still works to show that the extension of T to an operator from $\overline{\boldsymbol{L}}_{\mu}$ onto $\overline{\boldsymbol{L}}_{\nu}$ still has the property that, given ξ in $\overline{\boldsymbol{L}}_{\mu}$, there is an \mathscr{S}-measurable x such that $x^{\mu}=\xi$ and $x^{\nu}=T \xi$. Write $T^{*} T$ as $\int \lambda d F(\lambda)$. Let $E_{n}=$ $F\left(1+\frac{1}{n}\right)-F\left(1-\frac{1}{n}\right), n=2,3,4, \cdots$ Let $E=\bigcap_{n} E_{n}$. I now assert $(I-E) \overline{\boldsymbol{L}}_{\mu}$ is separable. For otherwise $\left(I-E_{n}\right) \overline{\boldsymbol{L}}_{\mu}$ would be inseparable for some n, and one could therefore find a countable orthonormal infinite set ξ_{1}, ξ_{2}, \cdots of elements of $\overline{\boldsymbol{L}}_{\mu}$ for which $\left\|\left(T^{*} T-I\right) \xi_{\|}\right\| \geqq \frac{1}{n}\left\|\xi_{i}\right\|$, all i. Let \boldsymbol{H} be the Hilbert space spanned by the ξ_{i}. Let $\tilde{\boldsymbol{L}}$ be the set of μ-measurable functions x on S such that $x^{\mu} \in \boldsymbol{H}$. Let $\tilde{\mathscr{S}}$ be the σ-algebra spanned by them. Let $\tilde{\mu}$, ν be the completions of μ and ν, restricted to $\tilde{\mathscr{S}}$. Then the Hilbert spaces $\overline{\tilde{\boldsymbol{L}}}_{\tilde{\mu}}, \tilde{\tilde{\boldsymbol{L}}}_{\tilde{y}}$ are isometric to \boldsymbol{H} and $T(\boldsymbol{H})$,
respectively, in a natural way. Therefore they are separable, and, since $\tilde{\mu} \sim \tilde{\nu}$, the operator \tilde{T} induced by the correspondence $\tilde{x^{\mu}} \longrightarrow \tilde{x^{\nu}}$ is an equivalence operator. But T is unitarily equivalent to $T \mid \boldsymbol{H}$, and $T \mid \boldsymbol{H}$ was constructed so as not to be an equivalence operator, giving a contradiction.

To show T is an equivalence operator, it suffices to show this for $T \mid(I-E) \overline{\boldsymbol{L}}_{\mu}$. Since $(I-E) \overline{\boldsymbol{L}}_{\mu}$ is separable, we can reduce to the separable case exactly as in the last five sentences of the previous paragraph, with $(I-E) \overline{\boldsymbol{L}}_{\mu}$ playing the role played there by \boldsymbol{H} to show that T is an equivalence operator.

Finally, suppose that, for $x \in \boldsymbol{L}, x^{\mu}=0 \Longleftrightarrow x^{\nu}=0$, and that the one-to-one operator T from \boldsymbol{L}_{μ} to \boldsymbol{L}_{ν} induced thereby extends to an equivalence operator from $\overline{\boldsymbol{L}}_{\mu}$ to $\overline{\boldsymbol{L}}_{\nu}$. It must be shown that $\mu \sim \nu$. If μ is not equivalent to ν, then as shown in the first paragraph (and using the notation established there) there is some countable subset \boldsymbol{C} of \boldsymbol{L} such that μ_{c} and ν_{c} are not equivalent. But the operator T_{c} induced by sending x^{μ} to x^{ν} for $x \in \boldsymbol{L}_{C}$ is precisely the restriction of T to those elements in \boldsymbol{L}_{μ} which come from $\boldsymbol{L}_{\boldsymbol{c}}$. Now, the restriction of T to a subspace is again an equivalence operator, so T_{c} extends to an equivalence operator from ${\overline{(L C})_{\mu}}^{\text {to }}{\overline{(L C})_{\nu}}_{\nu}$, which contradicts the separable case of the theorem.

Also, in reviewing [1], E. Nelson noticed that Lemma 1 is misstated. It should read "positive" instead of "self-adjoint," and, in (b), " $A^{2}-I$ '' rather than " $(A-I)^{2}$."

Bibliography

1. J. Feldman, Equivalence and perpendicularity of Gaussian processes, Pacific J. Math., Vol. 8 No. 4, 1958.
2. J. von Neumann, Charakterisierung des spektrums eines integral-operatoren, Actualites Sci. Ind. 229, Paris, 1935.
