TESTS FOR PRIMALITY BASED ON SYLVESTERS CYCLOTOMIC NUMBERS

Morgan Ward

Introduction. Lucas, Carmichael [1] and others have given tests for primality of the Fermat and Mersenne numbers which utilize divisibility properties of the Lucas sequences (U) and (V); in this paper we are concerned only with the first sequence;

$$
(U): U_{0}, \quad U_{1}, U_{2}, \cdots, U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, \cdots
$$

Here α and β are the roots of a suitably chosen quadratic polynomial $x^{2}-P x+Q$, with P and Q coprime integers. (For an account of these tests, generalizations and references to the early literature, see Lehmer's Thesis [2]).

I develop here a test for primality of a less restrictive nature which utilizes a divisibility property of the Sylvester cyclotomic sequence [3]:

$$
(Q): Q_{0}=0, Q_{1}=1, Q_{2}, \cdots, Q_{n}=\prod_{\substack{1 \leq r \leq n \\(r, n)=1}}\left(\alpha-e^{\frac{2 \pi i r}{n}} \beta\right), \cdots
$$

Here α and β have the same meaning as before. (U) and (Q) are closely connected [4]; in fact

$$
\begin{equation*}
U_{n}=\prod_{d \mid n} Q_{d} \tag{1.1}
\end{equation*}
$$

The divisibility property is expressed by the following theorem proved in § 3 of this paper.

Theorem. If m is an odd number dividing some cyclotomic number Q_{n} whose index n is prime to m, then every divisor of m greater than one has the same rank of apparition n in the Lucas sequence (U) connected with (Q).

Here the rank of apparition or rank, of any number d in (U) means as usual the least positive index x such that $U_{x} \equiv 0(\bmod d)$.

The following primality test is an immediate corollary.

Primality test. If m is odd, greater than two, and divides some cyclotomic number Q_{n} whose index n is both prime to m and greater than the square root of m, then m is a prime number except in two trivial cases: $m=(n-1)^{2}, n-1$ a prime greater than 3 , or $m=n^{2}-1$ with $n-1$ and $n+1$ both primes.

[^0]The primality tests of Lucas and Carmichael are the special case when $n=m \pm 1$ is a power of two (which allows Q_{n} to be expressed in terms of V_{n}) with $X^{2}-P x+Q$ suitably specialized.
2. Notations. We denote the rational field by R, and the ring of rational integers by I. The polynomial

$$
\begin{equation*}
f(x)=x^{2}-P x+Q, \quad P, Q, \text { in } I \text { and co-prime } \tag{2.1}
\end{equation*}
$$

is assumed to have distinct roots α and β.
We denote the root field of $f(x)$ by \mathscr{A} and the ring of its integers by \mathscr{I}. Thus \mathscr{A} is either R itself, or a simple quadratic extension of R.

Let p be an odd prime of I, and \mathfrak{p} a prime ideal factor of p in \mathscr{I}. Every element ρ of \mathscr{A} may be put in the form $\rho=\alpha / a$ with α in \mathscr{J} and a in I. The totality of such ρ with (a, p) = 1 forms a subring \mathscr{I}_{p} of \mathscr{A}. Evidently $\mathscr{A} \supset \mathscr{S}_{p} \supset \mathscr{F} \supseteq I$. If we extend \mathfrak{p} into \mathscr{F}_{p} in the obvious way, we obtain a prime ideal \mathfrak{s}. The homomorphic image of \mathscr{J}_{p} modulo $\mathscr{S}^{\mathfrak{S}}$ is a field, \mathscr{F}_{p}. We denote the mapping of \mathscr{F}_{p} onto \mathscr{F}_{p} by (\mathfrak{F}).

Let $F_{n}(z)$ denote the cyclotomic polynomial of degree $\phi(n) . \quad F_{n}(z)$ has coefficients in I, and if n is greater than one, then (Lehmer [2], Carmichael [1])

$$
\begin{equation*}
Q_{n}=\beta^{\phi(n)} F_{n}\left(\frac{\alpha}{\beta}\right), \tag{2.2}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
z^{n}-1=\prod_{a \mid n} F_{n}(z) \tag{2.3}
\end{equation*}
$$

3. Proof of theorem. Let m be an odd number greater than one which divides some term of (Q) whose index n is prime to m, so that

$$
Q_{n} \equiv 0(\bmod m), \quad(n, m)=1
$$

Throughout the next three lemmas, p stands for a fixed prime factor of m.

Lemma 1. If \mathfrak{p} is any ideal factor of p in \mathscr{F}, then

$$
\begin{equation*}
(Q, p)=(\alpha, \mathfrak{p})=(\beta, \mathfrak{p})=(1) \tag{3.2}
\end{equation*}
$$

Proof. It suffices to prove that $(Q, p)=(1)$. Assume the contrary. Then $(p, P)=1$. Since $U_{1}=1$ and $U_{x+2}=P U_{x+1}-Q U_{x} \equiv P U_{x+1}(\bmod p)$, it follows by induction that $U_{n} \not \equiv 0(\bmod p)$. Then by (1.1), $Q_{n} \not \equiv 0$
$(\bmod p)$. But p divides m so that by $(3.1) Q_{n} \equiv 0(\bmod p)$ a contradiction.

Lemma 2. The rank of apparition of p in (U) is n.
Proof. Since $U_{n} \equiv 0(\bmod p), p$ has a positive rank of apparition in $(U), r$ say. Then r divides n. But by (1.1), $U_{r}=\Pi_{d \mid n} Q_{d}$. Hence $Q_{a} \equiv 0(\bmod p)$ for some d dividing both r and n. Clearly, if $d=n$, then $r=n$ and we are finished. Assume that d is less than n.

The number $\alpha / \beta=\alpha^{2} / Q$ is in \mathscr{S}_{p} by Lemma 1. Let τ be its image in \mathscr{F}_{p} under the mapping (\mathscr{F}). Then by (2.2) and Lemma $1 F_{n}(\tau)=$ $F_{d}(\tau)=0$ in \mathscr{F}_{p}. Consequently the resultant of the polynomials $F_{n}(z)$ and $F_{d}(z)$ is zero in \mathscr{F}_{p}. Therefore its inverse image under the mapping is in \mathscr{S}^{3}. But this resultant is evidently in I. Therefore it must be divisible by p. But by formula (2.3), since $d<n$ the resultant of $F_{n}(z)$ and $F_{d}(z)$ must divide the discriminant $\pm n^{n-1}$ of $z^{n}-1$. Thus $n \equiv 0(\bmod p)$ so that $(n, m) \equiv 0 \bmod p$ which contradicts (3.1) and completes the proof.

Lemma 3. The rank of apparition in (U) of any positive power of p which divides m is n.

Proof. Let p^{k} divide $m, k \geq 1$ and let the rank of p^{k} in (U) be r. Now $U_{n}=\prod_{a \mid n} Q_{a} \equiv 0\left(\bmod p^{k}\right)$. But by Lemma 2, each Q_{a} with $d<n$ is prime to p. Hence r must equal n.

The theorem proper now follows easily. For let m^{\prime} be any divisor of m other than one. By Lemma 3, every prime power dividng m^{\prime} has rank of apparition n in (U). But the rank of apparition of m^{\prime} in (U) is the least common multiple of the ranks of the prime powers of maximal order diving m^{\prime}. (Carmichael [1]). Hence m^{\prime} also has rank of apparition n in (U).
4. Proof of primality test. Assume that (3.1) holds for some n greater than \sqrt{m}. If m is not a prime, it has a prime factor $\leq \sqrt{m}$. Let p be the smallest such factor, and let

$$
\begin{equation*}
m=p q, \quad q \geq 3 \tag{4.1}
\end{equation*}
$$

Then p has rank n in (U) by Lemma 3. But by a classical result of Lucas, $U_{p \pm 1} \equiv 0(\bmod p)$. Hence n divides $p \pm 1$. If n is less than $p+1, \sqrt{m}<p \leq \sqrt{m}$, a contradiction. Hence $n=p+1$. If $p=\sqrt{m}$, then $m=(n-1)^{2}$ and $n-1$ is a prime. Since m is odd, $n \geq 4$. This is the first trivial case.

If $p<\sqrt{m}$, then $q \geq p+2$ and $m \geq p(p+2)$. But if $m>p(p+2)$,
then $n^{2}>m \geq(p+1)^{2}=n^{2}$, a contradiction. Hence $m=p(p+2)$ where $p+2$ has no prime factor smaller than p. Hence $p+2$ is a prime and $m=n^{2}-1$ with both $n-1$ and $n+1$ primes. This is the second trivial case. In every other case then, m must be a prime.
5. Conclusion. The two trivial cases can actually occur. For if $P=22$ and $Q=3$, then $Q_{6}=\alpha^{2}-\alpha \beta+\beta^{2}=P^{2}-3 Q=475$. Hence $Q_{6} \equiv 0(\bmod 25)$ and $25=(6-1)^{2}$. Again, if $P=17$ and $Q=3$, then $Q_{6}=280$. Hence $Q_{6} \equiv 0(\bmod 35)$ and $35=6^{2}-1=5 \times 7$. It is worth noting that these trivial cases cannot occur if α and β are rational integers. (See [1], Theorem XII and remark.)

To illustrate the theorem, note that if $P=2$ and $Q=1, Q_{9}=73$. Since $\sqrt{73}<9$ and $(9,73)=1,73$ is a prime. But for $P=3$ and $Q=1$, $Q_{9}=91$. But $9<\sqrt{91}$ so the test is inapplicable. As a matter of fact, 91 is the product of two primes. Evidently the test may be extended to cover such a case. That is, if $Q_{n} \equiv 0(\bmod m),(n, m)=1$ and $n>\sqrt[3]{m}, m$ will usually be either a prime, or the product of two primes.

References

1. R. D. Carmichael, On the numerical factors of arithmetic forms, Ann. of Math., $\mathbf{1 5}$ (1913-14), 30-70.
2. D. H. Lehmer, An extended theory of Lucas functions, Ann. of Math. 31 (1930), 419-448.
3. J. J. Sylvester, On certain ternary cubic form equations, Amer. J. Math. 2 (1879), 357-83.
4. Morgan Ward, The mappings of the positive integers into themselves which preserve division, Pacific J. Math. 5 (1955), 1013-1023.

California Institute of Technology

[^0]: Received January 14, 1959.

