TESTS FOR PRIMALITY BASED
ON SYLVESTERS CYCLOTOMIC NUMBERS

MORGAN WARD

Introduction. Lucas, Carmichael [1] and others have given tests for
primality of the Fermat and Mersenne numbers which utilize divisibility
properties of the Lucas sequences (U) and (V); in this paper we are
concerned only with the first sequence;

U: U, U, U, ---, U, = X =6 ...
a—p

Here a and A are the roots of a suitably chosen quadratic polynomial
x* — Pr 4+ @, with P and @ coprime integers. (For an account of these
tests, generalizations and references to the early literature, see Lehmer’s
Thesis [2]).

I develop here a test for primality of a less restrictive nature which
utilizes a divisibility property of the Sylvester cyclotomic sequence [3]:

2nir
n = —_ , oo
Il (@ —enpB)
1<r<n

(ryn)=1

(Q):QOZ 09 Q1 =1, Qz; e, Q

Here a and /3 have the same meaning as before. (U) and (Q) are
closely connected [4]; in fact

(L.1) Un=11Q0 .

The divisibility property is expressed by the following theorem
proved in § 3 of this paper.

THEOREM. If m is an odd number dividing some cyclotomic number
Q, whose index n is prime to m, then every divisor of m greater than
one has the same rank of apparition m in the Lucas sequence (U)
connected with (Q).

Here the rank of apparition or rank, of any number d in (U) means
as usual the least positive index x such that U, =0 (mod d).

The following primality test is an immediate corollary.

Primality test. If m is odd, greater than two, and divides some
cyclotomic number Q, whose index n is both prime to m and greater
than the square root of m, then m is a prime number except in two
trivial cases: m = (n — 1%, n — 1 a prime greater than 3, or m = n* — 1
with n — 1 and n + 1 both primes.
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The primality tests of Lucas and Carmichael are the special case
when n =m + 1 is a power of two (which allows @, to be expressed
in terms of V,) with X* — Px 4 @ suitably specialized.

2. Notations. We denote the rational field by R, and the ring of
rational integers by I. The polynomial

2.1) fxy=o2"—Px +Q, P, Q, in I and co-prime

is assumed to have distinct roots « and pS.

We denote the root field of f(x) by & and the ring of its integers
by _#. Thus .o is either R itself, or a simple quadratic extension
of R.

Let p be an odd prime of I, and p a prime ideal factor of p in
_#. Every element p of .9 may be put in the form p = a/a with «
in _# and a in I. The totality of such p with (¢, p) =1 forms a sub-
ring 4, of .o/, Evidently o> 7D #2I. If we extend p into 7,
in the obvious way, we obtain a prime ideal 3. The homomorphic image
of 7, modulo P is a field, .%,. We denote the mapping of ._#, onto
Fp by (P).

Let F,(2) denote the cyclotomic polynomial of degree ¢p(n). F,(z)
has coefficients in I, and if n is greater than one, then (Lehmer [2],
Carmichael [1])

(2.2) Q@ =pr(S),

Furthermore

(2.3) ¢ —1=T1F\) -

3. Proof of theorem. Let m be an odd number greater than one
which divides some term of (Q) whose index = is prime to m, so that

3.1) Q. =0 (mod m), (n, m)=1.

Throughout the next three lemmas, p stands for a fixed prime factor
of m.

LEMMA 1. If b is any ideal factor of p in _#, then
(3.2) @ p=(a, =B p=Q1).
Proof. 1t suffices to prove that (Q, p) = (1). Assume the contrary.

Then (p, P) = 1. Since U, =1 and U,,, = PU,,, — QU, = PU,., (mod p),
it follows by induction that U, = 0 (mod p). Then by (1.1), @, % 0
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(mod p). But p divides m so that by (3.1) @, = 0 (mod p) a contradic-
tion.

LEmMMA 2. The rank of apparition of p in (U) is n.

Proof. Since U, =0 (mod p), p has a positive rank of apparition
in (U), r say. Then # divides n. But by (1.1), U, = [la. Q.. Hence
Q. =0 (mod p) for some d dividing both # and #%. Clearly, if d =n,
then » = n and we are finished. Assume that d is less than n.

The number «/B = a?/Q is in ./, by Lemma 1. Let t be its image
in ./, under the mapping (). Then by (2.2) and Lemma 1 F,(r) =
F(r) =0 in ../,. Consequently the resultant of the polynomials F,(z)
and Fy(z) is zero in &#,. Therefore its inverse image under the mapp-
ing is in P. But this resultant is evidently in I. Therefore it must
be divisible by p. But by formula (2.3), since d < n the resultant of
F(2) and Fy(z) must divide the diseriminant +n"-' of 2" — 1. Thus
n =0 (mod p) so that (n, m) =0 mod p which contradicts (3.1) and
completes the proof.

LEmMMA 3. The rank of apparition in (U) of any positive power
of p which divides m is n.

Proof. Let p* divide m, k > 1 and let the rank of p* in (U) be 7.
Now U, = 1]an @: =0 (mod p*). But by Lemma 2, each Q, withd <n
is prime to p. Hence r must equal n.

The theorem proper now follows easily. For let m' be any divisor
of m other than one. By Lemma 3, every prime power dividng m’ has
rank of apparition »n in (U). But the rank of apparition of m’ in (U)
is the least common multiple of the ranks of the prime powers of maximal
order diving m'. (Carmichael [1]). Hence m’ also has rank of appari-
tion » in (U).

4, Proof of primality test. Assume that (3.1) holds for some =

greater than Vm. If m is not a prime, it has a prime factor <1 m.
Let p be the smallest such factor, and let

(4.1) m = pq, q=>3.

Then p has rank n in (U) by Lemma 3. But by a classical result
of Luecas, U,., =0 (mod p). Hence n divides p + 1. If n is less than
p+1, Vm < p<1Vm, a contradiction. Hence n=p+1. If p=1"m,
then m = (n — 1) and n — 1 is a prime. Since m is odd, n > 4. This
is the first trivial case.

If p<Vm, then ¢ > p + 2and m > p(p + 2). Butif m > p(p + 2),



1272 MORGAN WARD

then n* > m > (p + 1)* = #?, a contradiction. Hence m = p(p + 2) where
» + 2 has no prime factor smaller than p. Hence p + 2 is a prime and
m =mn?—1 with both » —1 and »n + 1 primes. This is the second
trivial case. In every other case then, m must be a prime.

5. Conclusion. The two trivial cases can actually occur. For if
P=22 and @ =3, then Q;, = a* — aB + B* = P> — 3Q = 475. Hence
Qs =0 (mod 25) and 256 = (6 — 1)*. Again, if P=17 and Q@ =3, then
Q; = 280. Hence Q, =0 (mod 35) and 35 =6>— 1 =5 x 7. Itis worth
noting that these trivial cases cannot occur if « and B are rational
integers. (See [1], Theorem XII and remark.)

To illustrate the theorem, note that if P=2 and @ =1, Q,= 73.
Since 173 < 9 and (9, 78) =1, 73 is a prime. But for P=38and Q =1,
Q, = 91. But 9 < V91 so the test is inapplicable. As a matter of fact,
91 is the product of two primes. Evidently the test may be extended
to cover such a case. That is, if Q,=0 (mod m), (», m) =1 and
n > 1Pm, m will usually be either a prime, or the product of two primes.
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