TESTS FOR PRIMALITY BASED ON SYLVESTERS CYCLOTOMIC NUMBERS

MORGAN WARD

Introduction. Lucas, Carmichael [1] and others have given tests for primality of the Fermat and Mersenne numbers which utilize divisibility properties of the Lucas sequences (U) and (V); in this paper we are concerned only with the first sequence;

$$(U): U_0, U_1, U_2, \cdots, U_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}, \cdots$$

Here α and β are the roots of a suitably chosen quadratic polynomial $x^2 - Px + Q$, with P and Q coprime integers. (For an account of these tests, generalizations and references to the early literature, see Lehmer's Thesis [2]).

I develop here a test for primality of a less restrictive nature which utilizes a divisibility property of the Sylvester cyclotomic sequence [3]:

$$(Q): Q_0 = 0, \ Q_1 = 1, \ Q_2, \dots, \ Q_n = \prod_{\substack{1 \le r \le n \\ (r,n) = 1}} (\alpha - e^{\frac{2\pi i r}{n}} \beta), \dots$$

Here α and β have the same meaning as before. (U) and (Q) are closely connected [4]; in fact

$$(1.1) U_n = \prod_{d \mid n} Q_d \; .$$

The divisibility property is expressed by the following theorem proved in § 3 of this paper.

THEOREM. If m is an odd number dividing some cyclotomic number Q_n whose index n is prime to m, then every divisor of m greater than one has the same rank of apparition n in the Lucas sequence (U) connected with (Q).

Here the rank of apparition or rank, of any number d in (U) means as usual the least positive index x such that $U_x \equiv 0 \pmod{d}$.

The following primality test is an immediate corollary.

Primality test. If m is odd, greater than two, and divides some cyclotomic number Q_n whose index n is both prime to m and greater than the square root of m, then m is a prime number except in two trivial cases: $m = (n - 1)^2$, n - 1 a prime greater than 3, or $m = n^2 - 1$ with n - 1 and n + 1 both primes.

Received January 14, 1959.

The primality tests of Lucas and Carmichael are the special case when $n = m \pm 1$ is a power of two (which allows Q_n to be expressed in terms of V_n) with $X^2 - Px + Q$ suitably specialized.

2. Notations. We denote the rational field by R, and the ring of rational integers by I. The polynomial

(2.1)
$$f(x) = x^2 - Px + Q$$
, P , Q , in I and co-prime

is assumed to have distinct roots α and β .

We denote the root field of f(x) by \mathscr{A} and the ring of its integers by \mathscr{I} . Thus \mathscr{A} is either R itself, or a simple quadratic extension of R.

Let p be an odd prime of I, and p a prime ideal factor of p in \mathscr{I} . Every element ρ of \mathscr{A} may be put in the form $\rho = \alpha/a$ with α in \mathscr{I} and a in I. The totality of such ρ with (a, p) = 1 forms a subring \mathscr{I}_p of \mathscr{A} . Evidently $\mathscr{A} \supset \mathscr{I}_p \supset \mathscr{I} \supseteq I$. If we extend p into \mathscr{I}_p in the obvious way, we obtain a prime ideal \mathfrak{P} . The homomorphic image of \mathscr{I}_p modulo \mathfrak{P} is a field, \mathscr{I}_p . We denote the mapping of \mathscr{I}_p onto \mathscr{I}_p by (\mathfrak{P}) .

Let $F_n(z)$ denote the cyclotomic polynomial of degree $\phi(n)$. $F_n(z)$ has coefficients in *I*, and if *n* is greater than one, then (Lehmer [2], Carmichael [1])

(2.2)
$$Q_n = \beta^{\phi(n)} F_n\left(\frac{\alpha}{\beta}\right),$$

Furthermore

3. Proof of theorem. Let m be an odd number greater than one which divides some term of (Q) whose index n is prime to m, so that

(3.1)
$$Q_n \equiv 0 \pmod{m}$$
, $(n, m) = 1$.

Throughout the next three lemmas, p stands for a fixed prime factor of m.

LEMMA 1. If \mathfrak{p} is any ideal factor of p in \mathscr{I} , then (3.2) $(Q, p) = (\alpha, \mathfrak{p}) = (\beta, \mathfrak{p}) = (1)$.

Proof. It suffices to prove that (Q, p) = (1). Assume the contrary. Then (p, P) = 1. Since $U_1 = 1$ and $U_{x+2} = PU_{x+1} - QU_x \equiv PU_{x+1} \pmod{p}$, it follows by induction that $U_n \not\equiv 0 \pmod{p}$. Then by (1.1), $Q_n \not\equiv 0$

1270

(mod p). But p divides m so that by (3.1) $Q_n \equiv 0 \pmod{p}$ a contradiction.

LEMMA 2. The rank of apparition of p in (U) is n.

Proof. Since $U_n \equiv 0 \pmod{p}$, p has a positive rank of apparition in (U), r say. Then r divides n. But by (1.1), $U_r = \prod_{a|n} Q_a$. Hence $Q_a \equiv 0 \pmod{p}$ for some d dividing both r and n. Clearly, if d = n, then r = n and we are finished. Assume that d is less than n.

The number $\alpha/\beta = \alpha^2/Q$ is in \mathscr{I}_p by Lemma 1. Let τ be its image in \mathscr{F}_p under the mapping (\mathfrak{P}). Then by (2.2) and Lemma 1 $F_n(\tau) = F_d(\tau) = 0$ in \mathscr{F}_p . Consequently the resultant of the polynomials $F_n(z)$ and $F_d(z)$ is zero in \mathscr{F}_p . Therefore its inverse image under the mapping is in \mathfrak{P} . But this resultant is evidently in *I*. Therefore it must be divisible by *p*. But by formula (2.3), since d < n the resultant of $F_n(z)$ and $F_d(z)$ must divide the discriminant $\pm n^{n-1}$ of $z^n - 1$. Thus $n \equiv 0 \pmod{p}$ so that $(n, m) \equiv 0 \mod p$ which contradicts (3.1) and completes the proof.

LEMMA 3. The rank of apparition in (U) of any positive power of p which divides m is n.

Proof. Let p^k divide $m, k \ge 1$ and let the rank of p^k in (U) be r. Now $U_n = \prod_{d \mid n} Q_d \equiv 0 \pmod{p^k}$. But by Lemma 2, each Q_d with d < n is prime to p. Hence r must equal n.

The theorem proper now follows easily. For let m' be any divisor of m other than one. By Lemma 3, every prime power dividing m' has rank of apparition n in (U). But the rank of apparition of m' in (U)is the least common multiple of the ranks of the prime powers of maximal order diving m'. (Carmichael [1]). Hence m' also has rank of apparition n in (U).

4. Proof of primality test. Assume that (3.1) holds for some n greater than \sqrt{m} . If m is not a prime, it has a prime factor $\leq \sqrt{m}$. Let p be the smallest such factor, and let

$$(4.1) m = pq , q \ge 3 .$$

Then p has rank n in (U) by Lemma 3. But by a classical result of Lucas, $U_{p\pm 1} \equiv 0 \pmod{p}$. Hence n divides $p \pm 1$. If n is less than p+1, $\sqrt{m} , a contradiction. Hence <math>n = p+1$. If $p = \sqrt{m}$, then $m = (n-1)^2$ and n-1 is a prime. Since m is odd, $n \ge 4$. This is the first trivial case.

If $p < \sqrt{m}$, then $q \ge p+2$ and $m \ge p(p+2)$. But if m > p(p+2),

MORGAN WARD

then $n^2 > m \ge (p+1)^2 = n^2$, a contradiction. Hence m = p(p+2) where p+2 has no prime factor smaller than p. Hence p+2 is a prime and $m = n^2 - 1$ with both n-1 and n+1 primes. This is the second trivial case. In every other case then, m must be a prime.

5. Conclusion. The two trivial cases can actually occur. For if P = 22 and Q = 3, then $Q_6 = \alpha^2 - \alpha\beta + \beta^2 = P^2 - 3Q = 475$. Hence $Q_6 \equiv 0 \pmod{25}$ and $25 = (6-1)^2$. Again, if P = 17 and Q = 3, then $Q_6 = 280$. Hence $Q_6 \equiv 0 \pmod{35}$ and $35 = 6^2 - 1 = 5 \times 7$. It is worth noting that these trivial cases cannot occur if α and β are rational integers. (See [1], Theorem XII and remark.)

To illustrate the theorem, note that if P = 2 and Q = 1, $Q_9 = 73$. Since $\sqrt{73} < 9$ and (9, 73) = 1, 73 is a prime. But for P = 3 and Q = 1, $Q_9 = 91$. But $9 < \sqrt{91}$ so the test is inapplicable. As a matter of fact, 91 is the product of two primes. Evidently the test may be extended to cover such a case. That is, if $Q_n \equiv 0 \pmod{m}$, (n, m) = 1 and $n > \sqrt[3]{m}$, m will usually be either a prime, or the product of two primes.

References

1. R. D. Carmichael, On the numerical factors of arithmetic forms, Ann. of Math., 15 (1913-14), 30-70.

2. D. H. Lehmer, An extended theory of Lucas functions, Ann. of Math. 31 (1930), 419-448.

3. J. J. Sylvester, On certain ternary cubic form equations, Amer. J. Math. 2 (1879), 357-83.

4. Morgan Ward, The mappings of the positive integers into themselves which preserve division, Pacific J. Math. 5 (1955), 1013-1023.

CALIFORNIA INSTITUTE OF TECHNOLOGY