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1. Introduction* We consider a simply connected two dimensional
domain D with a nonhomogeneous membrane M stretched across D and
fixed at the boundary Γ. Let p(x, y) > 0 be the density function of
the membrane. We shall be concerned with the first eigenvalue λ0 of
the equation

(1) uXχ + uyv + Xp(x, y)u = 0

subject to the condition u — 0 on Γ. Let K be the circle with boundary
C on which a homogeneous membrane Mx of the same mass as M is
stretched. Let \ be the first eigenvalue of

( 2 ) Vχχ + Vyy + XV = 0

with v = 0 on C. In a recent paper Nehari [1] established the following
interesting result.

THEOREM. (Nehari) If \ogp(x,y) is subharmonic then

(3) λ0 > \ .

Nehari further showed that relaxation to the condition that p(x, y) be
subharmonic is not possible. In fact for the case that D is a circle and
p(x, y) is superharmonic the inequality in (3) is shown to be reversed.

It is the purpose of this paper to establish comparison theorems for
the first eigenvalue of homogeneous and nonhomogeneous membranes of
the same shape. That is, we shall consider the first eigenvalue of
equations (1) and (2) in the same domain D subject to the boundary
condition u — 0 and v — 0 on Γ respectively. We denote the first eigen-
value of the latter problem by μ and consider comparisons between λ0

and μ. We of course have the completely trivial comparison

λ0 > μ

if 0 < p(x, y) < 1 throughout D. Nehari's result pertained to the case
where p(x, y) had average value 1 and thus we wish to obtain relations
between λ0 and μ for density functions which may become large.

A general technique for obtaining lower bounds for the first eigen-
value for a homogeneous membrane in a domain D follows from the
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inclusion principle. If D is contained in Do then the first eigenvalue
for D is larger than that for Do. It D is bounded then we can enclose
D in a rectangle or circle for which the first eigenvalue is known. This
technique is also possible for nonhomogeneous membranes as will be
readily seen from the basic inequalities established in § 2. In § 3 com-
parison theorems are established when the density function is assumed
to satisfy various conditions involving the behavior of the second deri-
vative of p(x> y). Section 4 discusses comparison theorems between two
nonhomogeneous membranes.

2 Basic inequalities. Let u be any function which vanishes on Γ,
and let a(x, y) be an arbitrary C2 function in D. We apply Green's
theorem to the expression

11 au(uxx + uyy)dxdy

and obtain

( 4 ) 1 1 au(uxx + Uyy)dxdy — — i 1 a(u% + uy)dxdy + —11 u\axx + ayy)dxdy
D D D

The boundary integrals vanishing in virtue of u — 0 on Γ. Further
we let P(x, y), Q(x,y) be arbitrary C" functions in D and note that

( 5 ) JJ [Pu% + (Qu\]dxdy - 0 .

Performing the differentiations in (5) and adding the result to (4) we
get

— 11 an(uxx + uyy)dxdy
V
= + HI a(M* + u

2Puu*

~

If u were the first eigenfunction and λ the first eigenvalue of the
nonhomogeneous membrane, then (1) would hold and the above expres-
sion would be

+ 2Puux + 2Quuy

_ 1 , ) - λ 1 2l d i - 0
2 xx yy J
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On the other hand this integrand is a quadratic form in uχy uy, u. It
will be a positive definite form if a > 0 and

( 7 ) Px + Qy> — (P2 + Q2) + \{axx + ayv) + apX .

If a, P, Q,X happen to satisfy (7) then clearly it is impossible that

(6) holds. However if (7) holds for any value λ, it obviously holds for

0 < λ < λ and thus (6) cannnot hold for any function u{x, y) with

0 < λ < λ. This implies that λ is a lower bound for the first eigenvalue

of (1).

We shall therefore be concerned with the possibility of selection of

functions P, Q, a such that inequality (7) holds for some value λ. For

convenience we assume the bounded domain D is in the first quadrant.

We select the function α(x, y) to be

a(x, y) — sin ax sin βx

where a and β are constants selected so that a(x, y) is positive throughout

D. We define the quantities

m0 = minα
Ί)

and MQ = 7ΠQ\ Inequality (7) is implied by the inequality

(8 ) Px + Qy> M0(P2 + Q2) + A(α x x + ayy) + apX

and if we define

Pλ = M 0 P, Qx = M0Q

(8) is equivalent to

(9 ) Plx + Qly > PI + QI + \MQ{axx + ayy) + Moap\ .

Let φ(x, y) be the first eigenfunction for equation (2) in the domain
D subject to the condition v = 0 on Γ'. That is,

ΦχX + Φyy + μΦ = 0 .

We make the following selection:

Φ Φ
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and obtain from (9)

(10) μ > Mosinαxsinβyϊ—— (a2 + β2) + Xp(x, y)\

L & _J

Define the quantity

No = max p(x, y) sin ax sin βy

and we obtain the following result.

THEOREM 1. Let λ0 be the first eigenvalue for the nonhomogeneous
membrane with density function p{x, y) spanning a domain D and μ
the first eigenvalue for the homogeneous membrane spanning the same
domain. Then

μ + γ(
(11) λ0

M0N0

The theorem is an immediate consequence of inequality (10) which ex-
hibits the positive definiteness of the integrand (6). Inequality (11) is
a statement that (10) must be violated.

We note that (11) is a useful relation if No is particularly small;,
hence this states that p(x, y) should be small near the center of the
membrane, but may be large near the outer edge and still (11) will be
a significant lower bound for λ0. The basic distinction between (11) and
other results lies in the fact that p(x, y) has no restriction except
positivity.

A word should be said about the selection of the function a(x, y).
We chose for this function the first eigenfunction for the equation (2)
applied to a rectangle which contains D in its interior. We could have
selected for a(x, y) the first eigenfunction for any including domain, e.g.,
a circle, equilateral triangle, etc. with a resulting inequality similar to
(11). Finally the selection a == 1 yields the standard result

λ0
JL

maxφ, y)

3. Bounds with condition on the density function. We return
to inequality (7) and the selection of a, P, and Q. We recall that these
functions may be arbitrary except that α(x, y) must be positive. We
make the choice
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Then (7) becomes

Px + Qv > p(x, y)(P2 + Q2) + ±4—) + λ

We

(13)

and

define

select

P -

pQ = max

Φx

PoΦ '

•P(x,

Q =

v)

— Φy

PoΦ

where, as before, φ is the first eigenfunction of (2) for the domain D.

We obtain

>
Po ~ 2 p

If we assume the function \\p is superharmonic and set

(14) Nλ= -max-i jμ

•B 2 \p

we obtain the following result.

THEOREM 2. Let λ0 be the first eigenvalue for the nonhomogeneous
membrane with density function p(x, y) and μ the corresponding first
eigenvalue for the homogeneous membrane spanning the same domain
D. If l[p is superharmonic in D we have the inequality

(15) λ0 > JL + N,
Po

where p0 and Nx are given by (13) and (14) respectively.

It is possible to obtain a comparison theorem for the case where
log p is subharmonic. To see this we make the choice

a(x, y) — log —
P

and we assume 0 < p(x, y) < 1 in D. With this selection we take

P Φx Γ\
— — -y W = —

Q
PoΦ ' PoΦ
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as before and obtain

JL > l Jlog —) + λplog -i- .
p0 2 V pi p

We assume logp is subharmonic and define

(16) N2 = — min z/(log p)

(17) N3 = max p log — .
D V

THEOREM 3. Let λ0 and μ be as in Theorem 2. If logp is sub-
harmonic in D then

0 ~ pQN3 N3

where N2 and N3 are given by (16) and (17).

A final application of this type which we exhibit results from the
selection

a = e«*<x'io

where a is a constant which remains to be chosen. If we suppose that
p is strictly superharmonic and select a so that

\ήp + a(pl + pi) < 0

we obtain the relation

λ0 > μ max
D p

4. Comparison of two nonhomogeneous membranes* Let q(x, y)
be a second density function corresponding to a membrane spanning D
and let v be the first eigenvalue for

(18) wxx + wyy + vq(x, y)w = 0

with boundary condition w = 0 on Γ. We denote the corresponding first
eigenfunction by ψ(x, y). It is possible to compare λ0 and v when the
functions p and q satisfy various relations. Let

(19) q0 = max q(x, y)
D
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(20) r0 - maxax

and

(21) JV4 = - max ΔiϊL) .
Ί) ^ p '

We make the selections

and find
2

THEOREM 4. Lei λ0 and v be the first eigenvalue corresponding to
density functions p and q respectively. If q\p is superharmonic then
we have the inequality

where q0, r0 and iV4 are given by (19), (20) and (21).
Additional inequalities, analogous to those obtained in §§ 2 and 3

may be obtained by other selections for a, P and Q.
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