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1* Introduction* Let G be a group, p a prime, and HP(G) the sub-
group of G generated by the elements of G which do not have order p.
In a research problem in the Bulletin of the American Mathematical
Society, one of the authors posed the following problem: is it always
true that HP(G) = 1, HP(G) = G, or [G : HP(G)] = pΊ This problem is
easily settled in the affirmative for p = 2, and a similar answer was
recently given for p — 3 ([5]). In this paper (Section 2) we give an
affirmative answer for the case that G is finite and not a p-group.
Furthermore (Section 3) we are able to give a rather precise description
of the structure of G in the most interesting case, when [G : HP(G)] = p.
This structure theorem depends heavily on the deep results of Hall and
Higman ([4]) and Thompson ([6]) on finite groups. If H (Φ l ) i s a finite
group and there exists a group G such that HJfi) is isomorphic to Hy

where HP(G) Φ G, then we call H an if^-group; it is seen that ί/^-groups
are natural generalizations of "Frobenius groups." By a Frobenius
group we mean a finite group G possessing an automorphism σ of prime
order p such that xσ = x if and only if x — 1. It is easy to show that
this implies

for all ίc in G. This last equation characterizes ifp-groups,1 and as a
generalization of Thompson's result ([6]) that Frobenius groups are nil-
potent, we show that iJp-groups are solvable, among other things.

Throughout the paper, if B is a group, A a subgroup of B, then
NB(A) and CB(A) mean, respectively, the normalizer and centralizer of A
in B. By Z(A) we mean the center of A.

2. The i^-problem. Let G be a group, and let H — HP{G). Suppose
( 1 ) G is finite,
( 2 ) G is not a p-group,
( 3 ) the index of H in G is greater than p,
(4 ) G is a group of minimal order satisfying (1), (2), (3). Note that

every element of G which is not in H has order p.
Let g be a prime dividing [G : 1], q φ p, and let Q be a Sylow q-

group of G; then Q is also a Sylow g-group of if. Let N ~ NG(Q); then
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1 Unless the group is a p-group; see Theorem 2.
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by the Frattini argument (see [1], p. 117, for instance), G — NH. Thus
[G : 1] = [NH:Y] - [N: 1JH: l]/[ΛΓn H: 1].

First, let us suppose N φG. Then clearly HP(N) c HP(G), so
#,(iV) ^HΠN. Since Q c # , ( # ) , it follows that HP(N) Φ 1, so
[ΛΓ: flp(iSΓ)] < p, and hence [N:Nf] H]<p. So p2 = [G : H] =
[G : ΐ]l[H :ΐ] = [N: 1]/[JV Π H : 1] - [JV: JV Π H] < p. This is impossible,
so we must have N = G, and thus Q is normal in G.

Now let Qx (^ 1) be any subgroup of Q, normal in G, and consider
Clearly H^G/Q,) = 1 or H^G/Q,) has index p in G/^, unless

is a p-group. Indeed, it is obvious that Hv{GIQλ) c fl/Qlβ But
:HIQJ} = \G:H] = p>, so [G/Qx: HP(GIQJ\ > [G/Q : fΓ/QJ = P2 im-

plies HP{GIQX) = 1. So G/Qi is a p-group.

LEMMA 1. 1/ [G : H] = p2, then Q is an elementary abelίan q-group,
none of whose proper subgroups (Φ 1) is normal in G, Q is normal in
G, and G = PQ, where P is a Sylow p-group of G.

Proof. We have shown that Q is normal. If Qx above is taken to
be the Frattini subgroup of Q, then Qτ is normal in G, since it is charac-
teristic in Q. Since QXΦ Q, GjQx cannot be a p-group, so we must have
Qx = 1. Thus Q is elementary abelian. Since G/Q is a p-group, it is
clear that G = PQ, and the rest of the lemma follows similarly.

In what follows, P is a Sylow p-group of G and Po c P is a Sylow
p-group of if; clearly [P: Po] = p2 and Po is normal in P, since P0 — Pf]H.

If α; (=£ 1) is in Q, while α is in G, not in H9 and if α# = xa, then
α# has order pq. But α# is not in H, since α is not in H, and thus ax
has order p; hence ax Φ xa. If Po = 1, then P, of order p2, is an auto-
morphism group of H = Q such that no non-identity element of P fixes
any non-identity element of Q. But by ([2], pp. 334-335) this means
that P is cyclic, whereas P is clearly elementary abelian in this case
(for all its elements have order p). So P o ^ 1.

Since Po is normal in P, Po Π Z(P) Φ 1 (see [3], p. 35, for instance).
Let z be an element of Po Π Z(P), chosen to have order p, and let ZQ

be the subgroup (of order p) generated by z; note that z and Zo are
contained in H. Let K = 2Γ0Q, and observe that [iΓ: 1] = p[Q : 1]. Let
a be an element of G, not in iϊ, and Gx = {α, iΓ} = the group generated
by a and If. Then Q c fl^Gy c f f n f f ^ d , so [Gx: fl,^)] - p, by
induction. Hence J£o c if c HP(G^, so there must be an element y in K
of order pg. Then 2/p is in Q and ̂ /Q is in X^ZQX, for some α? in if,
since Zo is a Sylow p-group of if. By adjusting our choice of P, we can
assume that yq is in Zo; let u — yp, v — yq. Then u Φ 1, t; ̂  1, u is in
Q, t; is in ZQ, and ̂ v = vu. So if Qx = {u}, we have ^ 0 c CgiQJ. But
then α;""1^ c C^^"1©^), and if α? is in P, this implies Zo c ^(x"1^!^),
for all a? in P. But, from Lemma 1, the subgroup generated by all
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x^QiX, as x ranges over P, must be Q, and so ZQ c; CΘ(Q). Since ZQ is
in the center of P, it follows that ϋΓ0 is normal in G, so we consider
G/Zo. One easily sees that HP(GIZO) c ίZ/Z0, and Hp{GjZ0) equals neither
1 nor G/Zo. Hence p2 - [G : H] = [G/Zo: ff/Z0] < [G/Zo: HP(GIZO)] - p,
which is a contradiction. So:

THEOREM 1. // HP(G) φ 1 or G, and if G is finite and not a p-
group, then [G : HP(G)] = p.

If G is a p-group, or is infinite, the situation seems more inacces-
sible; as remarked earlier, Theorem 1 still holds if p = 2 or 3, no matter
what G is. But the proof for p = 3 (see [5]) utilizes the Burnside theorem
(for p = 3) and this strongly suggests that the infinite case at least is
considerably harder.

3* Structure of jEflΓgrouρs* Let us suppose that G is a finite group,
and that H—HP(G) has index p in G. Then we say that H is an iί^-group.

THEOREM 2. If H is not a p-group, then H is an Hp-group if and
only if H has an automorphism σ of order p such that

for all x in H.

Proof. If H = HP(G), let a be in G, a not in iί, and define xσ =
a^xa, for cc in ίZ". Since (α$)p = 1, while (ax)p — ap(x)(xσ) ••• (xσP~1),
the equation of the theorem follows immediately.

Conversely, if σ exists satisfying the hypotheses of the theorem, then
let G be the holomorph of H by the automorphism group {σ}. It is easy
to see that HP(G) Q H. Since HP(G) Φ 1 (for H is not a p-group), it
follows that [G : HP{G)~\ = p, from Theorem 1, so HP{G) = £Γ.

Note that if xσ = a?, then the equation of Theorem 2 implies xv = 1.
So if p does not divide the order of the iίp-group H, then i ί is even a
Frobenius group, and so is nilpotent ([6]).

THEOREM 3. If H is an Hp-group, then H = PK, where P is a Sylow
p-group of H, K is normal in H and is nilpotent, and P Π K — 1. In
particular, H is solvable.

Proof. We can assume that PΦ 1, and that H is not a p-group.
Inductively, suppose the theorem is true for all iJp-groups whose order
is less than the order of H, and (using Theorem 2) let j be an auto-
morphism of H, of order p, such that
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If A is a γ-invariant subgroup of if, then A is an if^-group or is a p-
group, while if B is a γ-invariant normal subgroup of Ή, then H/B is
an ifp-group or is a p-group.

Now let B be any γ-invariant subgroup of P, B normal in P, B Φ 1
let ΛΓ = NH(B). If N=H, then if/5 is an ί^-group, so H/B - (P/BXKJB),
where KJB is normal in HjB and is nilpotent. So Kx is normal in H
and since ίΓj/JB is γ-invariant in HjB, so is Kλ γ-invariant in if. So Kλ

is an iίp-group. If Kt Φ if, then i^ = BK, where K is normal in Kλ

and is nilpotent, and K Γ\ B — 1. But then K is characteristic in iΓx,
hence is normal in if; every Sylow g-group of if, q Φ p, is in K. So K
is characteristic in H and clearly if = PK, P Γi K — 1.

If JKi = if for every such i?, then B = P is the only γ-invariant
normal subgroup of P, other than 1. Hence in particular P is elementary
abelian. Then if/P is an if^-group, and even a Frobenius group, so is
nilpotent. Furthermore (since H is then solvable), if = PK, where K is
isomorphic to if/P. Let K = Q±Q2 Q{, where Qέ is a Sylow gΓgroup
of K (and of if) for distinct primes q19 q2, •••, qt.

Now let G be the holomorph of H with the group {γ}. Then, by
the Frattini argument, NG(Qt) Π H Φ NG(Qi), so by an appropriate choice
of 7i in G, yt not in if, we can assume that Qt is γΓinvariant. Thus PQt

is γΓinvariant and so it is an ifp-group (it is straightforward to check
that any element of G, not in H, can play the role of γ).2

If t > 1, then PQt has order smaller than if, so Qt is normal in PQt.
Thus both Pand K are contained in NH(Qi)f so Q4 is normal in if, hence
K, which is the direct product of the Qu is normal in if, so we are done.

If t = 1, let Q = Q19 and as above, choose γ in G, not in if, so that
Q is γ-invariant. If Qo Φ 1 is a γ-invariant normal subgroup of Q, then
PQ0 is an ifp-group, smaller than H = PQ if Q0Φ Q; thus P normalizes
Qo> so Qo is normal in if. Then by considering if/Q0> we find that Q/Qo

is normal, so Q is normal in if, and again we are done. Thus we can
assume that Q is elementary abelian with only trivial γ-invariant normal
subgroups.

Now we consider the holomorph G again. The maximal normal p-
group of G is P, since {γ} (as part of G) is not normalized modulo P
by Q. Then G\P is a solvable (and in particular, p-solvable) group of
automorphisms of the elementary abelian group P, and G\P has no normal
p-group (^1). Furthermore, this representation of G\P as a linear trans-
formation group on Pis faithful, since CH(P) π Q = l (otherwise CH{P) Π Q
would be a non-trivial γ-invariant normal subgroup of Q). Thus we can
utilize Theorem B of Hall and Higman ([4]); since Q is abelian, Theorem
B asserts that γ, as a linear transformation of P, has the minimal

2 In these references to the holomorph G, we are not making a distinction between an
element as an automorphism of H and as an element of G; the automorphism is actually
identified with an element of G which induces the prescribed automorphism in H.
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polynomial (x — l)p. But in fact, γ has a minimal polynomial which
divides 1 + x + + %v~\ since

for all b in P. Thus we have a contradiction, and so Q is normal in H,
and we are done.

Now we must consider the case that if B (Φ 1) is any γ-invariant
subgroup of P, normal in P, then N = NH(B) is never equal to H. Hence
N, being γ-invariant, is an Hp-gτowp or is a p-group, so N = PXKU where
Px is a Sylow p-group of N, Kλ is normal in N and is nilpotent, and
Kλ Π Pi = 1. Since 5 is normal in N, Kλ is contained in CN(B), and thus
contained in CH(B), so NH(B)ICH(B) is a p-group (i.e., is isomorphic to
PJP0, for some subgroup Po of P^. But then, since this holds for all
such J5, Thompson's theorem ([6]) asserts that P has a normal comple-
ment K in H; i.e., if = PK, where P Π K = 1 and if is normal in ϋ .
Since K consists exactly of the elements of H whose order is prime to
p, K is characteristic. Thus K is an ϋ^-group (even a Frobenius group)
and is nilpotent, so we are done.
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