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NOMETRIC POLYNOMIALS

RICHARD P. GOSSELIN

The usefulness of Diophantine approximation in achieving both posi-
tive and negative results in the subject of trigonometric interpolating
polynomials is well established (cf. e.g. [1], [4]). The trigonometric
polynomials, hereafter called simply polynomials, which we shall con-
sider mainly and designate by In,u{x;f) are those of order n taking
on the values of a given function / at the points u + 2πkj{2n + 1),
k = 0,1, ...,2w. Thus

2n

sin

2
+ 1
(2n-

271

V f(v

•f l)x/2

- u -

Cw) = 2πk

*D (χ)

2 sin (a/2) ' * 2n + 1

It is assumed that / is periodic and defined almost everywhere so that
for almost every u, InΛb(x; f) is defined for all n. Marcinkiewicz and
Zygmund [4] have shown that each p, 1 fg p < 2, there is a function /
of class Lp such that for almost every point of the square 0 ^ x <£ 2π,
0 ^ w <Ξ 2π, IntU(x;f) diverges. They made strong use of the following
classical result of Diophantine approximation: for each x there are in-
finitely many rationale p/q such that | x — p\q \ ̂  1/g2.

Our aim in this paper is to generalize the result of Marcinkiewicz
and Zygmund. The chief tool of proof is a result proved in the next
section, concerning the approximation of reals by rationale in which the
range of the denominators is restricted. In the third section we give
our main theorem to the effect that for any increasing function ψ
defined on (0, oo) there is an / such that ψ ( | / | ) is integrable over
0 <̂  x ^ 2π and such that In,u(x;f) diverges for almost every (x, u).
In the last section we show this result holds for Jackson polynomials.

2. We begin with a preliminary lemma. If F is a measurable set,
\F\ will denote its measure. We shall let C,CU and C2 denote con-
stants, independent of the values of the integers N, M, and m.

LEMMA 1. Let N, M, and m be three integers such that 0 ̂  N< M fg
m/2. Let F be the subset of (0, 1) such that for each x in F there is
an irreducible rational pfq, Q<Cp<q,N<q^M satisfying \ x — pjq \ rg
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1/gm. Then

12JM-N) _ J l l o g 2 ( M + 1 ) < ; | F | < c 12JM-N) + ^
π2m m π2m m

// only 0 ^ ΛΓ < M 5g m, ίfcβw £/̂ β second inequality above holds.
F is the union of intervals of the form (pjq — 1/gm, p\q + 1/gm).

The number of irreducible rationals with denominator g of the above
form is φ(q) where φ is the Euler function. The contribution to the
measure of F from a given q is no more that 2φ(q)jqm so that the
measure of F does not exceed

A Σ - ^
m β-jv+i g

Let i/r(0) = 0, ψ(w) = ΣJ=iΦ(g). Applying AbeΓs transformation to the
above sum, we obtain

(1) \F\<-*- v ΉQ) I 2 I t W V K ) I
TO «-^+i ?(? + 1) TO I M + 1 (JV + 1) 1 '

By a known theorem (cf. e.g. [3, p. 120])

(2) - | f l - CΛ log (« + 1) ^ ψ<?) ^J^L + ClQ log (g + 1) .

Substitution of (2) into (1) gives

2 g + 1+ 1 π2m π2m(N + 1) m

This implies the second statement of the lemma. In case M ^ m/2,
there is no overlapping of the (open) intervals (pίq — 1/gm, p\q + 1/gm).
For otherwise, there are distinct rational r/s, p\q (let us say r/s > pjq)
of the required form such that

0 < ϋ - JL < J L + _JL and 0 < rq - ps < q + s ^ 1 .
s q sm qm m

This contradicts the fact that rq — ps is an integer. Thus

Σ

m Q=^+I g

Now the inequality (2) implies the lemma.

THEOREM 1. (i) Let m be a sufficiently large positive integer, and
let γ be a real number such that 0 < y < 7Γ2/12. Let E be the subset of
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(0,1) such that for each x in E there exists an irreducible rational
PIQJ 0 < p < q, γm < q <̂  m for which \ x — pjq | <̂  1/γm2. Then there is
an absolute constant C such that

- Cm~ι log2 m .^

(ii) Let γ be a real number such that 0 < γ < τr2/24. Let Eλ be
the subset of (0, 1) such that for each x in Eλ there exists an irreduci-
ble rational p\q, 0 < p < q, γm < q ^ m, ^ i t t g odd for which
\x — p/q\ ^ 2/γ2m2. T%βw ίfcβrβ is an absolute constant C such that

1^1 ^ 1 - ^ L - C m - M o g ' m .
7Γ2

As in the proof of the theorem mentioned in the introduction (cf.
[6, p. 43]) we may find for each x in (0, 1) an irreducible rational p\q
such that

(3) \x~Plq\ ^ — , 0 < q^m .

If a; is restricted to the (open) interval I = (1/m, 1 — 1/m), then 0 <
p < q. We shall say g and x are associated if (3) holds with x in J
.and with pjq irreducible, 0 < p < q, 0 < q ^ m. Let Fx be the subset
of / for which all q associated with x do not exceed γm. Since each
x is associated with some q, the set F1 is a subset of the set F of
Lemma 1 for which N = 0 and ikf = [γm], the greatest integer not ex-
ceeding γm. We may assume without loss of generality that γm > 1.
Let E be the complement of Fλ with respect to /. Since the measure
of F does not exceed 12γ/7r2 + Cm~ι log2 m, part (i) follows from (3) and
the inequality q > γm.

Let F2 be the subset of I for which all q associated with an x in
F2 are such that (1 — γ)m < q ^ m. F2 is a subset of the set i*7 of
Lemma 1 for which M == m, iV = [(1 — γ)m]. Let £Ί be the comple-
ment of Fλ U F2 with respect to /. Then | Eλ \ ̂  1 - 24γ/π2 - Cm-1 log2 m.
If x belongs to Eu there is a g associated with x such that γm ^ q ^
m(l — γ). If q is even, we may find integers η and ξ such that

where )? must be odd, and automatically ξjη is irreducible. Let ηQ be
the least positive solution of (4) (cf. [1] for a similar argument). If

it follows that

qτ]0
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and

(5) X -A X —

Q
+ JL

q
_ j ^

qm γ 2m 2

If η0 < γm, let ηι — ηϋ + q. Then γm ^ g ^ ^ ^ γm + g ^ m, and (5)
holds with ξolηo replaced by ξγ\r}λ. We may assume that γ2 > 1/m so that
0 < | < ?? ̂  m as required.

3* We begin this section with a lemma which is related to the
results of the preceding section, but it contains only as much informa-
tion as will be used in the proof of the next theorem.

LEMMA 2. Let m be a sufficiently large integer, Am a real satis-
fying 1 ^ Am ^ logm, and d logm an integer with 8 < d < 10. Let ^i^
be the set of odd positive integers 2n + 1 not exceeding m and such
that

( 6 ) μm - (2n
AΛ1/2

for some (μ, v) such t h a t

0 < μ <J v g: d log m.

Let G be the subset of (0, 1) such that for x in G, there is a 2n + 1 in

Λ* and ak,0<k<2n + l for which \ x - kj(2n + 1) | ^ 2Aιi2jm\ Then

, G | ^ 3βcZ2log3m
== m

For a given μ and v, no more than 1 + 8A1Jι

2/v integers 2n + 1
satisfy (6). For a given v, no more than v + 8AH2 integers may satis-
fy (6) for some μ <; v. Hence N, the number of distinct integers in
Λζ does not exceed d2 log2 m + 8dA]i2 log m. If x belongs to G, x is con-
tained in an interval of length AA]^jm2 centered about some point
kj{2n + 1). For each 2w + 1, the total length of the intervals is no
more than 4A^2/m. Thus,

log 3 m

m m

THEOREM 2. Let ψ be a monotone increasing function defined on

(0, co). There exists a function f such that ψ ( | / | ) is integrable on

(0, 2π) and such that the sequence InΛ
x:>f) diverges for almost all

points of the square 0 ^ x rg 2τr, 0 ^ u ^ 2π.

Let Am be a positive number satisfying the inequality 16 ^ Am g

(logm) 1 / 2. A more exact specification of Am will be given a t a later
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point. The function / will be a sum of periodic, step functions fm

the following form. When x belongs to one of the intervals
of

x — 2πjlm | ^ j = 0, 1, , m — 1

let fm(x) = Am; when x belongs to one of the complementary intervals
of (0, 2π) let fm{x) = 0. Let Eλ be the set of Theorem 1, part (ii), cor-
responding to m and γ = A^l!\ and expanded to the interval (0, 2π) on
the u axis. For m sufficiently large, | JÊI ^ 2ττ(l - 25lπ2A1Ji

4). Let G be
the set of Lemma 2 expanded to the interval (0, 2π) on the u axis. Let
Em be the difference set Ex — (G U Ĝ ) where G1 is the set of u such
that |w| ^ 2ττ/(log m)1/2. By our above estimates

( 7 ) £L > 2τr 1 - 25 36d2 log3 m
11/4 m (log m)1/2 J

Let EmJ be the set Em translated by — 2πjlm, j = 0, 1, , m — 1:
i.e. % belongs to EmJ if and only if u + 2πj/m (modulo 2τr) belongs to Em.
Let — u belong to EmJ We may assume that — u + 2πj/m belongs to
the interval (0, 2π). Since £7m is a subset of £Ί, there exists, according
to Theorem 1, part (ii), an odd integer, 2n + I, mjA)lΐ <̂  2n + 1 ^ m,
and an integer fc,0</b<2w + l, such that

( 8 ) u —
2πj
m

2πk

2n
AπA

m2

1/2

This inequality implies that fJu + 2πkj(2n + 1)) = Am. Since — u + 2πjlm
does not belong to the set G, the integer 2^ + 1 cannot belong to the
set ^ r defined by (6). If fJu + 2π(k + μ)\(2n + 1)) = Am for some
nonzero integer μ, then there must be a nonzero integer v such that

( 9 ) u —
2π(j + v) , 2π(k

2% + 1 m

We may assume that μ > 0, v > 0. The inequalities (8) and (9) imply
that

(10)
2n + l m

11/2

m2

and (10) implies that μ^v. For if μ > v, then

μ v ^ 1 ^ 44
2n + 1 m

It also follows from (10) that

+ 1 m3
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1)

Comparison of this inequality with (6) shows that \v\ > c£(logm). Our
analysis shows, in fact, that if fm(u + Xin)) = Am, then fm(u + x[%) — 0
when | v \ ̂  d(log m) and 2n + 1 does not belong to ,sK For each
j" = 0, 1, , m — 1, let 7̂  be the set of the x axis defined by

π x —
2πj_
m

π
m

If x belongs to Iu and if — u belongs to EmJ, then we find from (8)

that

x — u —
2πk

2n + 1
/y

π
m

I

2πk
~ 2n +

Sπ

2πj

m

m 2m

for some k and for some n for which m/A]^ <: 2n + 1 ^ m. Furthermore

2πk
2n + 1

> x —

π
mAϊ

m
u +

2πk
2n + 1

π

2πj

m

These inequalities imply that

(11) X

2n

m
ΊΓ

sin (n + — )(x — u)

Now we are ready to estimate In,u(x fm) with x in /j and — u in

(12)

s in— (x — u — x[n))
Li

sin 4 W ) ) ( - 1)'

*n -r ί w* s i n — ( a ; - u - x i H ) )
Li

Denote the first and second terms on the right by Dx and D2 respectively.
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By (8) and (11)

(13) 1 Al ^ 2 | s i n ( W + V2){X - U ) l m A m ^ |Hin(n + l/2)(x , ) |
S(2n + 1) 3

We may assume that for the terms of D2, | x$n) — x(

k

n) | ^ π so that ex-
cept possibly for one term of the sum which can be ignored, | x — u —
x(tn)\ ^ π. Hence for the terms of D2y\sin2-1(x-u-x?)\
and

\D I < ^lsin(^ + l/2)(x-^)l y fju
2 + 12π + 1 «*i I a; - % - α ί n ) |

The denominator of the terms in the sum increases with | i — k \. Fur-
thermore if i and ir are distinct values of the index for which the
numerator is nonzero, then \i — k\ > cίlogm, \ir — k\ > dlogm, and
I ί — ir\ > cΠogm. Thus we find that

2π 1 sin (n + l/2)(a? - ^) 1 Am | , 2^ + 1
2n + 1 ? =i 2τrrd log m

2n + 1 \
cZ log m \ 2cZ log m /

We denote by <j/> the least integer ^ y. From this inequality and from
(11), (12), and (13), we deduce that if x belongs to Ijy and if — u be-
longs to EmJ, there exists an integer, 2n + 1, and a positive constant
C such that

(14) I /„,„(» /„) I ̂  CI sin (w + l/2)(x - tt) \Am ^ j

The product set I3 x £7m>j of the αm-plane has two dimensional
measure equal to 27r|2?m|(l — A^'A)jm. There are m such mutually dis-
joint sets, and the total measure of their union, Hm, is 2π\Em\(l — A~1/4).
Thus if (x, — u) belongs to HmJ then (14) holds for the proper n. We
note here that lim | Hm \ = 47Γ2 if lim Am = oo.

Let

(15) f(x) - Σ/»(«(»)
i = l

We shall impose various conditions on the sequence of positive integers
m(ΐ), all related to the rapidity of its growth. Let {BJ be a sequence
of reals going to co so that Yxj<iBj ^ B\f\ Let m(i) increase so rapid-
ly that log m(ϊ) ^ B\ and that

(16) t ( 2 i ? t )

m(ΐ)
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Let Am(i) = Bt so that Am{i) <: (logm(ΐ))1/2 as required. Now fm(x) is 0
except on a set of measure not exceeding kπA^jm g 47r(logm)1/7ra. Let

ij m{%) j i

It follows that the series in (15) converges almost everywhere and that
Έι7=ifmu)(χ) i s 0 outside a set of measure Aπp^ Let JBΓ€ be the set of
x values for which fm(i)(x) Φ 0, and fmU)(x) — 0 when j > i. The iΓ/s
are mutually disjoint, and their union is, except for a set of measure
0, the set where f(x) Φ 0. Moreover, \Kt\ <J 47r(logm(Ό)1/7rn(i). When
α? is in Kiy

ψ(I f ( x ) \ ) ^

Thus by (16)

\^ψ(\f(x)\)dx£±ψ(2Bi)\Ki\ < ex, .
Jo i=i

In the estimation of the interpolating polynomials, we shall require
certain other conditions. Thus we assume that / belongs to Lp for some
p > 1 and that

^ 2 " J j>i

From this it follows that

(17) ['{Zf^iWdx ί£ Σ 1̂ 1(2̂ )" ̂  --f.r
J ji jι m(%)

Furthermore we note that ^%\fmU){x) is a function of bounded
variation so that, for each u, the interpolating polynomials converge to
the function at every point of continuity, i.e. outside a finite set [6; p.
36]. Thus, given m(l), m(2), , m(i — 1), we choose m(i) so large that
for 2n + l^ m(i)IB\14,

(18)
i-l

Σ

for (α;, u) outside a set of two dimensional measure not exceeding 2~\
Finally since lim | Hm \ = 4π2, the m(ί) can be spread out so sparsely that

(19) Σ | f l i (« l<«>
i = l

where i?4 is the complement of Hm.
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To estimate In,u(x;f), we let m(i)!B\14 £ 2n + 1 ̂  m(i). Then

\Δ\J) lnίU(X\ J ) = lnv\X ] 2^Jm(j)) ~Γ ίn,u\% > / m(ί)) ~Γ ^w,ιΛ ̂ > Z-jJm(j))
j<i J>i

Let #(x, tt) be the maximum of the absolute value of the last term on
the right for 2n + 1 ̂  m(ί). A result of Marcinkiewicz and Zygmund
[4] implies that

W> u)\»dxdu g Σ

and the last term on the right does not exceed Cp2~ι by (17). Cp is
a constant depending only on p. Thus

max

outside a set of measure 2~\ This, together with (18) and (20), implies

=

outside a set of measure 2~ί+1. Combining the above with (14) implies
that for each (x, — u) outside a set of measure \H'n{i)\ + 2~i+1, there
exists an n and a positive constant C such that

\ -*-n,u\X] J )\ ~ ^Aiι(i)

From (19) this inequality is true for almost every (x, — u) with sufficient-
ly large i and appropriate n, and the theorem follows.

4 That Theorem 2 holds for Jackson polynomials is relatively easy
to prove. We have

(n + I)2 *-o * ΐ sin 2"1(> - w - ί^) ) ' * n + 1

(21) / i x / ) ̂  f'(u + ^> : > ̂  S ί n 2 ' 1 ( W + 1 ) ( X ~ M ) Γ

Thus all of the previous proof devoted to showing that there was not
undue interference with one dominant term is now unnecessary. The
rest of the proof is very much like the previous one. With some adjust-
ments in the function, we gain additional information.
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THEOREM 3. Given ψ as before, there exists f such that ψ(\f\) is
integrable over (0, 2π) and such that the sequence Jn,u(x>f) diverges for
almost every point of the square 0 ^ x tί 2π, 0 ^ u ^ 2π. Further-
more for any p ^ 1 and ε, 0 < ε < 1, there is a function f of class Lp

such that for almost every point (x, u)

lim

Let α, β, and Am be positive reals to be specified at a later point.
Let fm be a periodic step function of the following form. When x be-
longs to one of the intervals

x —
2πj

m m2
j = 0, 1, •••, m - 1

let fm(χ) — Am when x belongs to one of the complementary intervals
of (0, 2τr), let fjx) = 0. Let Em be the set E of Theorem 1, part (i),
corresponding to m and ym = A~α, expanded to (0, 2π) of the u axis.
Let EmJ be the translation of Em by — 2πjlm; and let Ij be the set of
the x axis such that for some j satisfying 0 ^ j S m — 1,

mAt
x —

2πj

m
π
m

Given — u in Em>j and x in Ijf there exists an n, mAm

a <: n + 1 ^ m,
and a fc such that

m m2

For proper choice of Am9 we have as before

π 3ττ
2m

so that from (21) Jn,u(
χlf) exceeds Air2^/10. Since | | / T O | | | = 4πAi+"lm,

we need only have Aζ+(* = o(m) to write /(#) = ΣΓ-i/OTci)(«) with the
m(i) spread out sufficiently. If a and β are small, the result follows.

Since the sequence of Jackson polynomials corresponding to a con-
tinuous function converges uniformly to that function [6; p. 47], it is
essentially only for the class of bounded functions that the question of
the behaviour of the Jackson polynomials on the square 0 ^ x <̂  2τr,
0 ^ u S 2π is unresolved. However this is no longer true for the or-
dinary polynomials IntU(x;f) which may act in a quite irregular way
(cf. [2], [5]); and the behaviour of In,u(x\f) for / continuous still pre-
sents a problem of considerable interest.
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