ON DIOPHANTINE APPROXIMATION AND TRIGO-
NOMETRIC POLYNOMIALS

RICHARD P. GOSSELIN

The usefulness of Diophantine approximation in achieving both posi-
tive and negative results in the subject of trigonometric interpolating
polynomials is well established (cf. e.g. [1], [4]). The trigonometric
polynomials, hereafter called simply polynomials, which we shall con-
sider mainly and designate by I, .(x;f) are those of order n taking
on the values of a given function f at the points w + 2xk/(2n + 1),
k=0,1,---,2n. Thus

2__ S Fu+ 2Dy — u — z),

bl =T &

D,(x) = sin (2n + 1)x/2 o — 27k
g 2sin (z/2) " 2n+1°

It is assumed that f is periodic and defined almost everywhere so that
for almost every w, I, . (x; f) is defined for all n. Marcinkiewicz and
Zygmund [4] have shown that each p,1 < p < 2, there is a function f
of clags L” such that for almost every point of the square 0 < x < 2r,
0=<u<2nI,,x; f) diverges. They made strong use of the following
classical result of Diophantine approximation: for each x there are in-
finitely many rationals p/q such that |z — p/q| = 1/¢%

Our aim in this paper is to generalize the result of Marcinkiewicz
and Zygmund. The chief tool of proof is a result proved in the next
section, concerning the approximation of reals by rationals in which the
range of the denominators is restricted. In the third section we give
our main theorem to the effect that for any increasing function
defined on (0, ) there is an f such that +» (| f|) is integrable over
0 < 2 < 27 and such that I,.(x;f) diverges for almost every (z,u).
In the last section we show this result holds for Jackson polynomials.

2. We begin with a preliminary lemma. If F'is a measurable set,
|F'| will denote its measure. We shall let C, C,, and C, denote con-
stants, independent of the values of the integers N, M, and m.

LEMMA 1. Let N, M, and m be three integers such that 0 < N< M <
m[2. Let F be the subset of (0,1) such that for each x in F there is
an rreducible rational plq, 0 < p< q, N < ¢ = M satisfying |2 — p/q| =
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1/gm. Then

LM =N) _ C g1y < |p|<2M=N)

: Clog2(M+1).
w'm m °m

If only 0 < N < M < m, then the second inequality above holds.

F is the union of intervals of the form (p/q — 1/qm, p/q + 1/qm).
The number of irreducible rationals with denominator ¢ of the above
form is ¢(q) where ¢ is the Euler function. The contribution to the
measure of F' from a given ¢ is no more that 2¢(q)/gm so that the
measure of F' does not exceed

2 %"; Pq)

m a=N+1 @

Let (0) = 0,y(n) = D2 .d(q). Applying Abel’s transformation to the
above sum, we obtain

v V@ 2 (M) Y(N) )

By a known theorem (cf. e.g. [3, p. 120])

3¢ 3¢*
(2) - —Clqlog(q+1)§w1r(q)§—ﬂ2——+Clqlog(q+1)-

Substitution of (2) into (1) gives

6 < q 6M 6N’ C,
Fl<_°_ + — +~—1 M+1
Fl= m qzv:n q+1 'm *m(N + 1) oz ( )

This implies the second statement of the lemma. In case M < m/2,
there is no overlapping of the (open) intervals (p/q — 1/gm, p/q + 1/qm).
For otherwise, there are distinct rational r/s, p/q (let us say r/s > p/q)
of the required form such that

o< _ P <—-+—and 0<rg—ps<IFS <1,
s q sm am m

This contradicts the fact that rq¢ — ps is an integer. Thus

IFIZ“?" i #(9)

m a=N+1 q

Now the inequality (2) implies the lemma.

THEOREM 1. (i) Let m be a sufficiently large positive integer, and
let v be a real number such that 0 < v < 7*/12. Let E be the subset of
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(0, 1) such that for each x in E there exists an irreducible rational

/g, 0 < p < q,ym < q < m for which |x — plq| < 1/ym*. Then there is
an absolute constant C such that

|E|gl—1—227—— Cm~"'log*m .
T

(ii) Let v be a real number such that 0 < v < w*/24. Let E, be
the subset of (0,1) such that for each x in K, there exists an irreduct-
ble rational plg,0 <p<gq,vm < q=<m, with q odd for which
|z —plq] < 2/y*m*. Then there is an absolute constant C such that

Bl =1— 2—421 — Cm~'log*m .
T
As in the proof of the theorem mentioned in the introduction (ef.

[6, p. 43]) we may find for each « in (0, 1) an irreducible rational p/q
such that

(3) o —plgl <1, 0<qg=m.
qm

If x is restricted to the (open) interval I = (1/m,1 — 1/m), then 0 <
p < q. We shall say ¢ and x are associated if (3) holds with x in I
.and with p/q irreducible, 0 < p < ¢,0 < ¢ < m. Let F, be the subset
of I for which all ¢ associated with # do not exceed vym. Since each
x is associated with some ¢, the set F, is a subset of the set F of
Lemma 1 for which N =0 and M = [ym], the greatest integer not ex-
ceeding ym. We may assume without loss of generality that ym > 1.
Let E be the complement of F, with respect to I. Since the measure
of F' does not exceed 12v/z* + Cm~'log® m, part (i) follows from (3) and
the inequality q > ym.

Let F, be the subset of I for which all ¢ associated with an x in
F, are such that 1 —vym < q<m. F, is a subset of the set F of
Lemma 1 for which M =m, N =[(1 - v)m]. Let E, be the comple-
ment of F, U F, with respect to I. Then |E,| > 1 — 24v/7* — Cm~*log*m.
If x belongs to E,, there is a ¢ associated with 2z such that ym < ¢ <
m(l — 7). If ¢ is even, we may find integers » and £ such that

(4) 7p—Eq=1

where 7 must be odd, and automatically £/y is irreducible. Let 7, be
the least positive solution of (4) (cf. [1] for a similar argument). If
7, = ym, it follows that
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and

< Lt 4 1 2

gm vm? v2m?

(5) [x—i—

<lo-2]4+]|2 - &
q q 7o

If n,<oym, let », =7, +q. Then ym<q=7n <vym+ qg=m, and (5)
holds with &, replaced by &/7,. We may assume that v* > 1/m so that
0 < £<7n=m as required.

3. We begin this section with a lemma which is related to the
results of the preceding section, but it contains only as much informa-
tion as will be used in the proof of the next theorem.

LEMMA 2. Let m be a sufficiently large integer, A, a real satis-
fying 1 < A, < logm, and d logm an integer with 8 < d < 10. Let _4~
be the set of odd positive integers 2n + 1 mot exceeding m and such
that

441
Y

for some (g, v) such that

(6) f‘uﬂ—(zwrng

O<pu=svy=<d logm.

Let G be the subset of (0,1) such that for x in G, there is a 2n + 1 in
A and a k,0 < k< 2n+1 for which |x — k/2n + 1)| < 24¥*/m*. Then

G| < 36d* log® m )

m

For a given ¢ and v, no more than 1 4 8A4Y*v integers 2n 4+ 1
satisfy (6). For a given v, no more than v + 8A4* integers may satis-
fy (6) for some ¢ < v. Hence N, the number of distinct integers in
-4, does not exceed d*log®>m + 8dAYlog m. If x belongs to G, x is con-
tained in an interval of length 4AY*m? centered about some point
k/(2n + 1). For each 2n + 1, the total length of the intervals is no
more than 4AY*/m. Thus,

ANA;? _ 86d”log® m
m m :

IA

|G|

THEOREM 2. Let +» be a monotone increasing function defined on
(0, ). There exists a function f such that  (|f]) is integrable on
(0, 27) and such that the sequence I,.(x;f) diverges for almost all
points of the square 0 < x < 27,0 < u < 2.

Let A, be a positive number satisfying the inequality 16 < A4,, <
(log m)"*, A more exact specification of A, will be given at a later



ON DIOPHANTINE APPROXIMATION AND TRIGONOMETRIC POLYNOMIALS 1075

point. The function f will be a sum of periodic, step functions f,, of
the following form. When x belongs to one of the intervals

|z — 27j/m| < 4T AV m?, j=0,1,---,m—1

let f.(x) = A,,; when « belongs to one of the complementary intervals
of (0, 2r) let f,(x) = 0. Let E, be the set of Theorem 1, part (ii), cor-
responding to m and v = A, and expanded to the interval (0, 27) on
the u axis. For m sufficiently large, |E\| = 27(1 — 25/72AY*). Let G be
the set of Lemma 2 expanded to the interval (0, 27) on the u axis. Let
E,, be the difference set E, — (G U G,) where G, is the set of w such
that |#| < 27/(log m)'*. By our above estimates

(7) ]E|22rr[l— 26  36d’log’m 2 }
"= TEAY m (log m)"?

Let E, , be the set E, translated by — 2zj/m,j=20,1,.--,m — 1:
2.e. u belongs to E,, ; if and only if u + 275/m (modulo 27) belongs to E,,.
Let — u belong to E,; We may assume that — u + 27j/m belongs to
the interval (0, 27). Since E,, is a subset of E,, there exists, according
to Theorem 1, part (ii), an odd integer, 2n + 1, m/AY' < 2n + 1 < m,
and an integer %k, 0 < k£ < 2n + 1, such that

2] 2k 4T ALP
8 _— S m .
(8) }u m + 2n +11 7 m?

This inequality implies that f,.(u + 27k/(2n + 1)) = A,,. Since — u + 27j/m
does not belong to the set G, the integer 2n 4+ 1 cannot belong to the
set 4~ defined by (6). If f.(u + 27k + p)/(2n + 1)) = A,, for some
nonzero integer ¢, then there must be a nonzero integer v such that

(9) o Bk | Bald ) | o AmAL
m 27’1/—}»— 1 m?

We may assume that ¢ > 0,v > 0. The inequalities (8) and (9) imply
that

(10) l L L' < 447
2n +1 m |

and (10) implies that ¢ < v. For if g > v, then

| S 1 445"
on + 1 m - 2n+1 m:

It also follows from (10) that



1076 RICHARD P. GOSSELIN

4ALEn +1) _ 44y
ym = vy

s (op 1)<
)

Comparison of this inequality with (6) shows that |v| > d(log m). Our
analysis shows, in fact, that if f,(u -+ z{”) = A,, then f,.(u + x{%),) =0
when |v| =< d(logm) and 2n + 1 does not belong to .7 For each
j=0,1,---,m —1, let I, be the set of the x axis defined by

27y
m

T S’x—

< ( <.
mAL m

If « belongs to I;, and if — u belongs to K, ;, then we find from (8)

that
. 2rk ‘<l 27273[ ’ k 2mq
R i 1 et A +u+2n—|—1 po»
2
§l+4ﬂA}n < 3
m m? 2m

for some k£ and for some n for which m/Al* < 2n + 1 < m. Furthermore

T — 2tk ‘z,x 27:‘7‘_} _ 2mj
2n + 1 2% —|— 1 m
T AmA)p T
= mAY m? 2mAY*
These inequalities imply that
1 m . 1
(11) e > 2 lsm<n + —)(m — u)l
Isinl<x oy 2Tk ). 3 2
2 2n +1
>sin- " > 1 .
- 4417 = 241

Now we are ready to estimate I,.(x;f,) with # in I, and — » in
E, ;.

_ Ju(u + ™) (= 1)*sin (n + 1/2)(x — u)
(12) L5 fu) = om £ 1

sin —-—(x — )

4 sin(m 4 2@ —u) o fulw + @)= 1)

2n +1 e sin%(m —u — x{™)

Denote the first and second terms on the right by D, and D, respectively.
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By (8) and (11)

2|sin (n + 1/2)(x — u)|mA,,

13) D = 3@n + D)

= [sin(n + 1/2)(x — u)| == An

We may assume that for the terms of D,, |#{" — x| < & so that ex-
cept possibly for one term of the sum which can be ignored, |x — u —
x| < mw. Hence for the terms of D,,|sin27(x—u—2a{|=|r—u—2a™|/x,
and

|D,| < 7r|s1n(n+1/2)(x—u)|z SFu(w + &™)
2n +1 i | —u —x ™|

The denominator of the terms in the sum increases with |7 — k|. Fur-
thermore if ¢ and 4’ are distinct values of the index for which the
numerator is nonzero, then [t — k| > dlogm, |’ — k| > dlogm, and
| ¢ —14'|>dlogm. Thus we find that

\D,| < 2r|sin (n + 1/2)(x — w)| A, & 2n + 1

- 2n +1 =1 2mrd log m
< ISin(n+1/2)(m_u)]Amlog(M—|—1),M=<2n+1>
dlog m 2d log m

We denote by <{y> the least integer = y. From this inequality and from
(11), (12), and (13), we deduce that if x belongs to I,, and if — u be-
longs to K, ,, there exists an integer, 2n + 1, and a positive constant
C such that
. CA112

(14) I L,(2; fn)| = Clsin(n +1/2)(x — )| A,, = —=

The product set I, x E, , of the xu-plane has two dimensional
measure equal to 27 |E,|(1 — A;**)/m. There are m such mutually dis-
joint sets, and the total measure of their union, H,, is 27| E,, |(1 — A,'").
Thus if (¢, — u) belongs to H,, then (14) holds for the proper n. We
note here that lim|H, | = 4x* if lim A4,, = .

Let

(15) @) = 3 Fucf@) -

We shall impose various conditions on the sequence of positive integers
m(z), all related to the rapidity of its growth. Let {B;} be a sequence
of reals going to o so that >,.;B, < BY". Let m(¢) increase so rapid-
ly that log m(t) = B? and that

(16) (2B, )__(10ng()@))/ <2
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‘Let A, = B; so that A,,,, < (log m(¢))"* as required. Now f,(x) is 0
except on a set of measure not exceeding 47wA}*/m < 4n(log m)"m. Let

_ < (logm@@)" & o
05 = ; o) .j;l ;< oo

It follows that the series in (15) converges almost everywhere and that
S fun(x) is 0 outside a set of measure 47p,. Let K, be the set of
x values for which f,,,(x) # 0, and f, () =0 when j > i. The K/s
are mutually disjoint, and their union is, except for a set of measure
0, the set where f(x) # 0. Moreover, |K,| < 47n(log m(¢))"*/m(7). When
x is in K,

WIS@)D) = 4 5 Fuisl@) = H2B)

Thus by (16)

[ s@de = Sy @B K] < o .

In the estimation of the interpolating polynomials, we shall require
certain other conditions. Thus we assume that f belongs to L? for some
» > 1 and that

2-J

K,|2B) < —=—, i>1.
| K;|(2B;) =G =1 ] >
From this it follows that
) (IS fusire < SR @By = 20
0 j>i Y m(z)

Furthermore we note that 3'Z}f,,(®) is a function of bounded
variation so that, for each u, the interpolating polynomials converge to
the function at every point of continuity, i.e. outside a finite set [6; p.
36]. Thus, given m(1), m(2), ---, m(t — 1), we choose m(z) so large that
for 2n + 1 = m(7)/ B},

i-1 =1
(18) L3 34 )| < 2max (S o)) < 248

for (x, u) outside a set of two dimensional measure not exceeding 2-%.
Finally since lim|H,, | = 4x?, the m(t) can be spread out so sparsely that

oo

(19) > Hyy| < oo

t=1

where H,, is the complement of H,.
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To estimate I, (x;f), we let m(:)/Bi"* < 2n 4+ 1 < m(i). Then

(20) Inu(x) f) - I’ﬂ,u(x; jz<ifm(j)) + [n,u(x;fnb(i)) +' In,u(x; -;_S\_J‘ifﬂb(j)) .

Let g(x, #) be the maximum of the absolute value of the last term on
the right for 2n 4+ 1 < m(7). A result of Marcinkiewicz and Zygmund
[4] implies that

o ("2 2 (21
e wiasan = s Lt S )| dada

2n+1=<m(i) JO

2
0

< Cym(@)]"| S o2 *d

and the last term on the right does not exceed C,2-% by (17). C, is
a constant depending only on p. Thus

max 5 IInu(x; ;fm(j)” g C15/]]
13

2n+1=m(i

outside a set of measure 2-!. This, together with (18) and (20), implies
lIn,u(x;f)l Z |[uu(x’fm(i))l - 2A}n/gi) - Czlllp

outside a set of measure 2-¢*!, Combining the above with (14) implies
that for each (x, — u) outside a set of measure |H). |+ 27'*', there
exists an n and a positive constant C such that

[ Loz; f)] = CAVL,) -
From (19) this inequality is true for almost every (x, — w) with sufficient-

ly large ¢ and appropriate , and the theorem follows.

4. That Theorem 2 holds for Jackson polynomials is relatively easy
to prove. We have

1 Srw+ tg,x){ sin 27(n + 1)(@ — w — ") )* 4oy _ 270

b 13

(n + 1) = sin 27z — u — t{™) n+1"
If f(®) = ful®) =0,
. Sm(w + %) ( sin 27" (n + 1)(x — u))*
(21) Jn,u(m’f) = (n T 1)2 L Sin2 _l(x Y } .

Thus all of the previous proof devoted to showing that there was not
undue interference with one dominant term is now unnecessary. The
rest of the proof is very much like the previous one. With some adjust-
ments in the function, we gain additional information.
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THEOREM 3. Given » as before, there exists f such that (| f|) s
integrable over (0, 27) and such that the sequence J, .(x; f) diverges for
almost every point of the square 0 < x <27, 0= u < 2rx. Further-
more for any p=1 and &, 0 < e <1, there is a function f of class L?
such that for almost every point (x, u)

T | Faslzi )] 5 g
n ’}’I,'e

Let a, B, and A,, be positive reals to be specified at a later point.
Let f,, be a periodic step function of the following form. When x be-
longs to one of the intervals

]w_ﬂIg—Z%’ F=0,1,cc0,m —1
m m?

let f.(x) = A,,; when x belongs to one of the complementary intervals
of (0, 27), let f.(x) = 0. Let E, be the set E of Theorem 1, part (i),
corresponding to m and v, = A,% expanded to (0, 27) of the u axis.
Let E, ;, be the translation of E, by — 27j/m; and let I, be the set of
the x axis such that for some j satisfying 0 < j<m — 1,

Given —u in E,, ; and « in I, there exists an n, mA,”* <n 4+ 1= m,
and a k such that

For proper choice of A,, we have as before

mAE 2m

so that from (21) J, .(x; f) exceeds AL ?#/10. Since ||f,||5 = ATAL**/m,
we need only have A2** = o(m) to write f(x) = > %) fme(®) with the
m(t) spread out sufficiently. If o and B are small, the result follows.

Since the sequence of Jackson polynomials corresponding to a con-
tinuous function converges uniformly to that function [6; p. 47], it is
essentially only for the class of bounded functions that the question of
the behaviour of the Jackson polynomials on the square 0 < x < 27,
0 < u < 27 is unresolved. However this is no longer true for the or-
dinary polynomials I, ,(x; f) which may act in a quite irregular way
(cf.[2],[5]); and the behaviour of I,.(x;f) for f continuous still pre-
sents a problem of considerable interest.
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