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E. Phragmen [2; p. 360] showed that under certain assumptions of
boundedness for F(x),

lim (V(τ)[l - exp ( - e"-^8)] dτ = Γ F{τ)dτ .
S-> + ooJθ JO

If we write 1 - e x p ( - es{t~τ)) = Σ Γ ( - l)w + 1 cnx{t^\n\ in the above for-
mula, and interchange sum and integral, we formally obtain

lim = Γ F(τ)dτ .
Jonl

G. Doetsch [1; pp. 286-288] showed that for reals s, if f(s) = ί°°e~sτF(τ)dτ
Jo

converges absolutely in some half-plane, then

(' F(τ)dτ = lim ΣΓ ^~ ^^ f(ns)enst for t > 0 .
Jθ S->+oo W !

This paper will generalize this result to Laplace-Stieltjes transforms

(I) f(s)

and will eliminate the assumption of absolute convergence. Unless
specifically written otherwise, all integrals will be evaluated from 0
to + oo and all summations from 1 to oo, We shall need the following
two propositions [3; pp 39,41]:

LEMMA 1. If the integral

/(so) = je-'o dα(t)

converges with Rs0 > 0, then

f(s0) = sQ jβ-'o« a(t)dt - α(0)

and \e~SQt a(t)dt converges absolutely if sQ is replaced by any number

with larger real part.
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Lemma I remains valid for Rs0 < 0 if we insist that α(oo) = 0. In
this paper we shall make the following

Assumption. In (I), s is real and positive, and a(t) is of bounded
variation in (0, R), for every R > 0.

LEMMA 2. If the integral

e~^ da(τ)

converges for s = s0 and if the real part <y of s0 is positive, then

a(τ) = 0(e7τ) as τ —• oo.

We shall now prove some useful lemmas.

LEMMA 3. 1/(1) converges in some half plane Γ, then

(a) Km I (" [1 - exp ( -
s^ool Jσ

(b) Mm I Γ [1 - exp ( -
σ->oo I J σ

= 0 for fixed a > 0 ,

= 0 for fixed s > 0 .

Proof. Since 1 - exp ( - e~Sτ) = O(e^) for s,τ > 0, a standard
argument involving integration by parts shows that

[1 - exp ( - e~"*)]da(τ) = O{e-' [ \a(σ)\ + s]}

for s e Γ and σ > 0. The desired result now follows from Lemmas 1
and 2.

LEMMA 4. // (I) converges in some half-plane Γ, then for s e Γ'
where Γf is a half-plane properly contained in Γ,

y = fd α ( Γ ) 2 ( " " J | ) W + 1 βws(ί - r) .

Proof. Upon integration by parts, application of Lemma 2, and

some algebra, the desired equality takes the form

1 {% - 1)! Γ α ( T ) d T ~ ) ̂  (» - 1)! ( } '

To verify this latter equality, it suffices to show that

Σβ" (n - 1)1 leMS(ί~τ) | a ( T ) | d T < °° '

but this follows from Lemma 1.

LEMMA 5. If (I) converges in some half-plane Γ, then
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a(t) - α(0) = Km Σ (~ I)"*1 f(ns)enst

s-*+oo nl

for all non-negative t which are points of continuity of a(t).

Proof. We have

(_ iy*+l p / 1\w +

Σ ( γ /(nβ)β»" - Jdα(r) Σ ( γ

= f[l - exp(- es(t~^)]da(τ) ,

the interchange in the order of summation and integration being jus-
tified by Lemma 4. For t = 0 (ί > 0) and a point of continuity of α(ί),
write the integral on the right as

5δ p~/ pt-δ ft-δ foo \

+ (or, for t > 0, + + ) ,
o Jδ \ Jo Jc-δ Jt+δ/

with 0 < δ < t chosen that the total variation of a on [0, δ] (respectively.
(resp.,\ ).

δ\ J t + δ /

S δ / Γί+δ\

(resp., \ ) is less than ε for all s > 0. (For t > 0,
0 V Jί-δ/

= α(ί - δ) - α(0) - I " exp [- es(ί~τ)]dα(τ), and this clearly tends
o Jo

to a(t - δ) - α(0) as s -» oo. Thus the integral f°° is a(t) - α(0) + o(l)
Jo

as s—> oo).

We can now prove our main result.

THEOREM If a(t) — \a(t+) + α(ί")]/2 /or t > 0 αmϋ (I) converges
for some s > 0,

l ί m y ( - D , ( ) , ί W ° ) « ( ° ) 1 a * ) » - * =

Proof. Define

a(τ) - [a(0+) - «(0)] sign τ, τ > 0

* < r ) = W 0 )

for t — 0, and

„, , ί«(τ) - [α(ί+) - «(«-)] sign (r - t), τ > 0

(a(t) , τ = 0

for ί > 0, /3 is then continuous at t, and



312 DANIEL SALTZ

\f(s) - [a(t+) - a(t-)]e~s\ t > 0 .

Now apply Lemma 5 with β and F substituted for a and /, respec-
tively.
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