SOME CHARACTERIZATIONS OF A CLASS OF
UNAVOIDABLE COMPACT SETS
IN THE GAME OF BANACH
AND MAZUR

H. HANANI* AND M. REICHBACH**

1. Introduction. The game of Banach and Mazur is understood
here® as follows:

Two players A and B choose alternately nonnegative numbers t,,
(n=0,1,2, --.) in the following manner: B chooses a number ¢, such
that 0 < ¢, <1. Aftert, ¢+ =0,1, ---,2n) have been chosen, A chooses
tyn1 Such that

(a) 0 <ty <t (if t, = 0, t, is arbitrary)
and subsequently B a number ¢,,,, such that
(b') 0 < t2n+2 < t2n+1 ) (n = 0’ 1’ 2y *e ') .

Given a set S < [0, 1], A will be said to win on S if s = 37.;t,€S;
otherwise B wins.

We shall deal in this paper with a generalization of this game,
consisting in replacing (b') by

(b) 0< t2n+2 <k't2n+1 y (’[’L:O’ 1, 2’ .a.)

where &k > 0 will be referred to as the game constant.?

We say that the set S is unavoidable, or that B cannot avoid it, if
there exists a sequence of functions ¢,(¢,), tu(to,t1,t0), * * + Conri(tosboy s v o, Ean), o+ v,
satisfying (a) and such that s = >,7.,¢, € S whenever (b) holds. If, on
the other hand, there exists a sequence of functions ¢, t,(t, t,), «--,
ton(toy tyy = o+ tyny), +++ satisfying (b) and such that s = 337.,¢, € S, when-
ever (a) holds, then S is said to be avoidable.

The sets. In this paper we shall consider closed subsets of [0, 1]
exclusively. Let S be an arbitrary closed set on the interval f = [0, 1]
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and suppose that 0 and 1 belong to S® The complement [0,1] ~ S =
Ui-.9. is a union of open and disjoint intervals g.. Denote by g the
greatest of them. (If several such intervals of the same length exist,
g will denote the one lying to the right of all others). Then f~ g =
SoUSi is a union of two closed intervals f;, and f,, where f, denotes the
left and f, the right one. Suppose now the closed intervals f ...,
8,=0,1 are already defined and denote by g, ...,, the greatest of the
intervals g, contained in f; .., (if any). The set fi . ..5, ~ gs...5, =
So8y0 U5 05,1 18 @ union of two closed intervals, where f5..s,.0
denotes the left and f; ..., . the right interval (Fig. 1)

fsl.--~,sn,o Gs,.--8, f«sl.m,an

It is clear that S = Mo Us,=oafs, 5, ©=1,2, c+, 0 ((fo,..5,)n0
denotes the interval f = [0, 1]).
The class C of sets satisfying*

lgl _ [ 95,5, | _ 19l _ [ 95,8, | _
() T T Thaay ~ a2 0end S = e =6 >0

where ¢, and ¢, are constants (independent of 8, ---,8,) is called the
Cantor class.

Evidently, each set belonging to C is perfect and its Lebesgue-
measure is 0 (it is consequently also nowhere dense). We shall denote
z2=|fi, y=1]9|land a =1 —2x —y =|f.]. We can establish a one-to-
one correspondence between the sets of C and the points of the triangle:
0<2<], 0<y<1—2x (see Fig. 2). A set of C corresponding to (x, ¥)
is denoted by S,,. The sets S,, of C for which |f,| =|fi], i.e. the
sets for which ¥y = 1 — 2z, are called symmetric sets. In particular, the
Cantor discontinuum S,,;.;, is a symmetric set.

Outline of results. S. Banach posed the problem of finding necessary
and sufficient conditions which make a set S unavoidable.

In §2 we find for every k = 1 sufficient conditions for an arbitrary
compact set S to be unavoidable for the constant k. These conditions
are also necessary if the following additional condition (a) is stipulated.
(a) t, =<e, where > 0isanumber chosen by Bsuch that (¢, ¢, +¢] U S+ 0.

The condition (2) implies a uniform structure (from the point of view
of the game) of the set S; and under this restriction a solution of the
problem of Banach in the case of compact sets is given.

3 This will be assumed throughout the paper.
4 | g| denotes the length of the interval g.
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Fig. 2

In §3 we give moreover a numerical solution of the problem of
Banach f(_)_r sets belonging to the Cantor class C. Namely, we define a
function k(x, y):

_ 0 for y=«
k(x, y) =1 a1l — zar)

Y + xoPtt for wart sy <za®, (p = 0’ 17 2; °e ')

=1—2—9y, 0<2<1, 0<y<1l—2x), such that the set S,, is
unavoidable if, and only if, the game-constant k satisfies k < k(x, y). It
can be easily seen that the lines y = za?, (p =0,1, --+) are lines of
discontinuity of this function and that a necessary and sufficient condition
for a set S,, of C to be avoidable for every k¥ > 0 is that the point
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(z,y) be on or above the diagonal y = x. In this sense the line ¥y =
separates the avoidable sets for every k from the others, and especially
the Cantor discontinuum S,;;,; has this property with regard to the
symmetric sets. The results of this section also include a generalization
of a result obtained in [2], where, in answer to a question by H. Steinhaus,
an unavoidable perfect set of measure 0 with the game-constant k =1
was constructed. Since, as it turns out this is a set S, and k(3, §) =
39/25, it is unavoidable if, and only if, k < 39/25.

NoTaTION. We denote by p(h,, k,) the distance between the intervals
h, and h,; by (k) and 7(h) the left and right endpoints of the interval
h; we also put s, = 37, t;.

Furthermore introduce the following definition:
(d) Let z be any point of the set S and {g"},-.... & sequence of open
intervals defined as follows ¢° = (1, ) and g"** the greatest interval g,
lying between 2z and g (if several such intervals of the same length
exist, g"** will denote the one lying to the right of all the others). The
sequence {g"} and {f"} (where f" = [r(g"*"), l(¢™)]) may be finite e.g. if
2z = l(9,,) for some m. The most interesting case is however when the
sequence {9"} is infinite. It converges then to some point z'of S, 2’ = 2
and will be referred to as a descending sequence: g" — 2’.

2. Arbitrary compact sets. In this section we consider arbitrary
compact sets S in the interval [0,1]. In addition to the assumptions (a)
and (b) we also assume that () holds. For every game-constant k =1,
we shall give necessary and sufficient conditions for the set S to be
unavoidable. We shall namely prove, that the three properties (p,), (p.)
and (p.), defined below, are equivalent. By means of a small modification
of the proof it can be shown that (p,) and (p;) are equivalent for every
k> 0 (not only k = 1).

By ¢, § (with or without subscripts (or superscripts)) we denote the
open intervals g, and the two intervals (—,0) and (1, ). We now
choose a fixed k¥ = 1 and define for it the properties (p,), (p,) and (p,).
(p) A compact set S is said to have the property (p,) if the following
conditions (p{) and (p}’) hold.

(p}) If 7 is an interval lying between two intervals g’ and ¢” at least
one of which is other than (—oo,9) and (1, ) such that »(g') = I(f)
and 7(f) = l(g") then either k-|g'| < |f| or |¢”| < |f| (Fig. 3)

Q\
2
QQ‘

----------------

Fig. 3

(p) If g" — 2, then there exist infinitely many integers » such that for
every m, m < n either k-p[z, r(¢")] < p(g”, g™) or | g™| < o(g*, g™).
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Regarding sets having property (p,) we note:

(1) If S satisfies (p,) and f is a segment lying between the intervals
9" and ¢g"' which belong to some descending sequence {9"},-,.... then
o(g”, §) > | G| holds for every interval § contained in f.

Indeed, let f' be the interval defined by f' = [r(g"), I(§)] (i.e. the
interval lying between g” and §). If k-|¢*| > |f'| then by (pi) there
is|g|<|f'|=plg", §). If however k:|g"| < |f’| then by the definition (d)
of a descending sequence of intervals | §| < |g”| and by the assumption
k=1 we have |§| < |f'| = p(g", 7).

We now introduce the following definition:

(h) A set S is said to have the property (h) in the interval (z,z + ¢)
if for each interval § such that § N (z, 2z + ¢) # 0 there is p(z, 9) > |[7].

We define the property
p() A set S is said to have the property (p,) if the following two condi-
tions (p;) and (p)) are satisfied:

(p}) The set S has the property (h) in each interval (v(g), r(g) + k- g ).
(py) For each z € S and z = I(§) there exists a point 2’ > z arbitrarily close
to z and such that S has the property (h) in the interval (z', 2’ + k-p(z, ')).

Finally
(ps) A set S is said to have the property (p,) if it is unavoidable (for
the game constant k).

We shall now prove that for compact sets S the properties (p,), (p.)
and (p;) are equivalent. This will be done by proving the implications
(pl) - (pz) - (pﬁ) - (pl)'

(2) (p)) — (p.)

Indeed, let § and § be intervals such that § N (»(g§), 7(g) +k|g]|) # 0.
Thus 0(g, §) < k+|§|; (p) holds by the condition (p}) used for g’ = g,
9" =§ and f=[r(g), (§)]. Thus (p,) — (p}). It remains to prove (p).
Let z € S be a point such that z = I(§). If S contains an interval with
the left endpoint® in z, then choosing 2z’ sufficiently close to z, (p)) is
satisfiled in a trivial way. We therefore may assume that there exists
an infinite sequence ¢" — 2. By (p}’) there are points 2’ = 7(g") arbitrarily
close to z such that for each interval g™ lying to the right of 2’ there
is either ko(z, 2') < p(2', g™) or | g™| < (2, g™). Let m < n be the greatest
integer such that |g™| = p(#, g™). Such a number exists, since for ex-
ample there is always |g°| = p(z/, ¢°). We have then by (p!'): ko(z, 2') <
o', g™) and for each ¢ such that m <t <m, |g'| < p(#, g%). By (1) we
thus conclude, that S has the property (h) in the interval (2, 2’ + o(2’, g™))
which contains (2, 2’ + ko(z, 2’)). Thus (p,) — (p)), and (2) is proved.
We now prove that

5 z may evidently be also an interior point of some interval contained in S.
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(3) (,) — (po)

Indeed, let 0 < ¢, <1 be an arbitrary number chosen by B. We then
show that A can choose a number ¢, satisfying (a) and (a) such that s, € S and
that(h) holds in (s, s, + kt)): If t,e§ or t,=I(§) A can choose s, = 7(§)
and our condition is satisfied by (p;). In the case t, € S and ¢, # I(9),
A chooses s, = 2’ and (p}) applies. Similarly A may after each step ¢,,
of B (satisfying (b)), choose t,,,;, obtaining in particular s,,,, € S. By
the compactness of S we then have s = lim,,_,.. $;,4; € S and thus (p,) holds.

REMARK 1. Note that the assumption k& = 1 is not used in the proof
of (3). Hence, by (3) the property (p,) (for &k > 0 and not only for &k = 1)
suffices for the unavoidability of the compact set S. It is easy to see,
using (a), that the condition (p,) is also necessary for k& > 0.

Before proving the implication (p;) — (p,) we note that
(4) If for some n there is s,,_, € S or s,,., = I(J) then B can avoid S,
by choosing the numbers t,,, ty,4s, +++ sufficiently small.

We finally prove that

(5) (D) — (D) -

The proof is indirect. If (p}) does not hold, then there exists an
interval = [r(g"), lg")]. (Fig. 8) such that k-|g’| > | 7| and |¢”| = | F|.
B can choose t, = I(¢’') and ¢ = |¢’|. Then by (a) and (4) A has to choose
s, = 7(g'). Now B chooses t, = |f| < k|g'| =Fkt, and from |g"|=|f]|
and (a) follows s, € ¢”’. Hence by (4) B avoids S.

If, on the other hand, (p{’) does not hold, then there exists a point z,
a sequence g" — 2z and an integer m,, such that for every n = m, there
exists m = m(n) < n with the property: ko(z, r(g™) > po(g", g™) and
g™ | = p(g", g™).- B chooses t, = z and ¢ < p(z, g™). By (4) it is sufficient
to consider the case 7(9"*!) < s, < l(g") (Fig. 4) for some n = n,. In this
case, however, B can, choosing ¢, = o(s;, g™), satisfy (b) and by (a) there
must be s; € g™. Thus by (4) the set S is avoidable.

— o oo S AU N

2 gt s 9" g 9"
Fig. 4

From (2), (3) and (5) we obtain

THEOREM 1. The properties (p,), (p.) and (p;) are equivalent.
This theorem solves the Banach problem in the case of compact sets
on the additional assumption (a).

3. Sets of the Cantor class. In this section we deal with sets S,
of the Cantor-class C, only. We find for them a function k(x, ) defined
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within the triangle 0 < 2 < 1; 0 < y <1 — x, such that the set S, is
unavoidable if, and only if, the game-constant & satisfies: k& < k(zx, ¥).

We Dbegin with a few remarks. Denoting, as in the introduction,
x=|fil, y=|g| and a =1 —x — y = | f,| we obtain by (c) (s. Fig. 1)
(6) |fs,..s,] =@ a* and|gs, .., | = yra* where ¢t = 23,8, andv=mn— f;
it follows

(7) fgsl.---.anl > Igsl,n-,sn,snﬂl , (n=0,1,--+).

Hence, if 9" — 2z and for some m, 9" = g;,,....5, then g"*' = g; .., 0L
m m

9

where ¢,, = 0 (i.e. the interval g™*' is obtained from ¢™ by adding one
0, or one 0 and several 1’s, to the subscripts &, -++, 6, of g").

By (c) we also have
(8) If y<w, then for every interval g, contained in f; .., there is
] < P[l(fsl'....sn), sl

We now introduce the following definition:
(d) Let g"— 2z be a descending sequence such that there exist two
infinite sequences {m’} and {m"}—of integers with the property | /™| < | g™|
for m € {m'} and |f™| > |g™| for m e {m'}, and such that for sufficiently
large integers m, m € {m'} implies m + 1e {m"} and m —1e {m'}.
Hence there exist an integer m, and an infinite sequence {r,} of integers
such that m, e {m'}, (m,+9)e{m"}, A=t =7r), (m+ 7 +1)e{m’},
mey+7r+1+0D)em”, A=i=Z7r), (mg+ 7+ 1, + 2)e{m'}, and so on.
If lim», = » is finite, then z is said to be a point of order r. If other-
wise, fil—nrj = oo then z is called a point of order oo.

We prove now the following lemma.

LEMMA. Let g"—z and y < x. Denote by p the integer satisfying
(9) reobt Sy < xeat

and put

then

(10) at any arbitrarily small distance from the point z there exists
a point 2" > z such that the imequality o(z', g,) > | 9:| holds for each
wterval ¢, satisfying the condition

GeN@, 2 +k-0(z72)+0, (e (p)) holds).

Proof. By definition of the intervals g™ and f™,
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(11) if gm = gsll...‘%m then< fm = f31-”'v5zm-°v1;,;;" qm _Z 0
PMES

and ¢"*' = Goy.-5, 0.1

Im

From (7) follows that lgal,...,st »0,1_.;1! > |g™*| for ¢, > 0 and for ¢, =0

holds |G| > | g™*'| where § is the interval satisfying 7(§) = I( fsl__“,stm).
In any case we have

12) Z € fo..s

¢ ,0,1---1
m Anad
Im

The following cases will be considered:
(a) For infinitely may m, q,, > p.
(b) For every sufficiently large m, q,, < p
(ba) For every sufficiently large m,q,, = »
(bb) For every sufficiently large m, q, <p
(bc) There are two infinite sequences M’ and M" of integers such that
for m e M', q,, = p, and for me M", q,, < p.
By (11), (6) and (9) follows that

(13) qn = p is equivalent to |f™| < | g™
(14) qn < D is equivalent to |f™| > |g™|.

(bca) for infinitely many m holds
(15) meM’ and ¢,=1

(bcb) for every sufficiently large m e M"”, ¢, =0
(bcba) For infinitely many m,
m+1leM and m+2e¢ M

(bcbb) For every sufficiently large m, from
m+1e M follows m+2e M,

We shall now prove the lemma for each of the above cases separately:

(a) From (12) follows ko(z, fs,...5, 1) < E({fﬁp--w%mvv-ull + 10wl

Im

— xa?
N Z—(—ll—_x—-ié% |f51"".5tm| '(fl}a{qm + y) .

Thus for m satisfying ¢q,, > »,
E'P(z,fal,-mscmﬁ <a |f51.---‘8,ml = If&,---.s,m.ll .
If moreover m is sufficiently large then the distance p(z, fal,..,azm‘l)

is arbitrarily small and thus choosing 2’ = I( fél---w%md) we conclude by (8)
that (10) holds.
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(ba) By (13) and (11) we have for m sufficiently large

m - m+l
f - fsl,-u,st 01019 G = Gs,.--.8; 011
m e m A ad
p+1 »

and ¢g™***(¢ = 0) is obtained from ¢g™** by adding one 0 and p 1’s to
the subscripts of g™**. Hence

P+l

P(z’f51,~--.scm,1) = lgsl.---,a,ml + Ifsl,-.‘s,m,o,x;;ll + lgsl,u-,stm,m;j[ +
P

+ lf81,~~',85m,0,1;;;1,0,1;;;‘1, T =

» p+1

D+1

= | Foveate, | W+ 007+ g2 @ ) = | fy g, |
Therefore E-p(z,fsl,...,stm,l) = al|fs,..s, | = |fo,s,,4]. Thus taking m
sufficiently large (i.e. fslw-.szm.l sufficiently near to 2z) and putting
2= l(fsl,-'u%m,l) we see, by (8), that (10) holds.
(bb) By (14) there exists a nlimber o, such that for m = g, [ /™| > |g™|.
Now take m = p, such that ko(z, I(f™)) < |f*|. Thus putting 2’ = I(f™)
and taking m sufficiently large we obtain that (10) holds for every interval
9, = 9" where m = n = t,. Now for other intervals g, (i.e. for g, < f*
(m = n = ) (10) evidently holds by (8). Hence (10) holds in general.
(bca) Let m satisfy (15) and let » be the smallest integer such that

m + re M (evidently  =1). Then, by (11) it follows that fm*f,
(1=t =7) are of the form

m+i —
f - fsl,-ns,m,m1..-1,0,1~-~1,o,1---1,o,~~,o,&;1

N N —~—
Im  Tm+1 Im+2 I+ 1

where 0 <¢q,,,;, <p for 1 <4 <7 and ¢,,., = p, and the g™’ are of the
form g™+ = 95,8, 0110110011 10r 1 =7 =7. By analogy with

(12) we have

Im Im+1 Im+j—1

Z e fal‘...,st ,0,1-+41,0,1°++1,0,+++,0,1-++1
m —— Nm— N
Im Im+1 Im+r=P

Therefore by (6)

r

def. p+T£1qm+i Z_lqm+i
(16) P = p(, ) = | fopomae, | (o5 4 yareai=e ™)
< lf%vm%m | (2% P+ 4 yxpo™) |

Now evidently

r—1
@am) lfsl,.,.,atm,ll + 1;; (g™ | + | frott ) = |f51,~~-.8;m,1| + g™ + |f,,,,,[
= |f51-"'5;m| (@ + y + zaimtl) |



954 H. HANANI AND M. REICHBACH

By (15)
a(l — xa?)(x?-a? m + yra'n) < (@ + 9y + cxam) (ot 4 y)
holds. Dividing both sides by ¥ + xa®** we obtain
k(x?a?tim + yxatm) < a + y + waint
and therefore by (16) and (17)

E r—1
ko = lfsl,..lszmvll + §(| gm‘Hl + | fmors .

Thus, putting 2’ = I(f™""') we see, by |f™"| > |g™*|for 0 <7 < r and
(8), that (10) holds.
In the case (bcb) we have for every sufficiently large m ¢ M"

lg™| = |gsl,-~-,stml < |fal,.--,a,m‘o,1| =[f"l.

Now turn to the case
(bcba) By (11) and (13) we have

m+1l m+1l
g = 05,8, ot =fs e, 8p 10,0151
1 m 1 m e
P

m+2
g - gsl,---,s, ,0,0,1:-1
m Anad
P

and

m+2 —
f —fal.-‘-,stm,o,m“-l,o.1--'1 .
P p+1

Therefore, as in (12)

z€ fﬁl,“',tstm,ﬂ,o,ul,o, Iw—-l .
P Vg

Thus
(18) o, f™) < lfsl.--ustml c(@Peat? + yxta? + a4 yx) .
Now, since for p = 1, #’a*** < z’a’"?, we have

a(@*a’® + yx'a? + o’ + yx) < (y + za? M) (e + y + ) .

Dividing both sides by (y + xa®*') we obtain from (18) (since 1 — za® < 1)
that
koG, f™) < 1F™1 + 19" + | foesopal -

Taking now m sufficiently large and putting 2’ = I(f™) we see, by (8),
that in this case again (10) holds.
We go over to the case
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(bcbb) By (d) there are two possibilities

z is a point of order 7,
z is a point of order oo .

In the first case let m,, m,, --- be the sequence {m'} = M'. By
dm, = D We have f™ =f51,...,36m.,0,1...1. If now for every sufficiently large 1,

+1
m;, —m; = r + 1 then for suchpi we have in view of (bcb)

=1+1

ol £y = S [Slgmt ]+ S| =

=0
y<1 + a? ixj> + xa?t Zr‘,oc’
1

= g™ Ha? 0
e oo,

(see Fig. 5 where ¢ = [fsli...,atmii and r = 3)

5 2p+1 4 4 p+l 3 3 p+1 2 2 p+l +1

xap+¢ w;ap.;b a;ap [ m;a% :cap ¢ yzapcﬁ zap [ y:capq& :m’ [} Y }

mel g'”'i+1 f'mi+3 gmi+3 f‘mi+2 gmi+2 fmi+l gmz--H fmi g”‘i fmi-l
Fig. 5

Generally, there exist infinitely many integers 4 such that m,,, — m, =
r + 1 and since r = lim r, we have for such integers 1

y<1 + a? Zr‘xj> + xa?t? ﬁ:‘ 2!
1 0

1 - xT+lap

oGz, f) < e

|f51"""5‘mi

On the other hand

s, v ™) = @y 5o’ + wa B« iy, |
(see Fig. 5). Hence by {(1 — za?)/(1 — 2""'a?)} < 1, we have

ko(z, f™7) < p(U(f™+7), r(f™)) .

Putting 2’ = I(f™*") we see, considering ¥ < xza?® and (8) that (10) holds.
Let finally z be a point of order . We have y =y(x + y + a) =
2y + y(y + a) and hence by (9) vy < xy + za®(y + «), i.e. y —axy =
A — 2)y < yxa® + xa*™. Thus for r sufficiently large also (1 — x)y <
yra® + xa? Tt — yxrHa? — 2" e,
1— gz 4 o 1 — grit

19 oL
19)  y <yzarT— —

= ap<y Erxf + za 2:&) .
Jj=1 Jj=0

Since z is a point of order o, there exist arbitrarily large integers
r and m such that me {m'}, m +r +1e{m'} and m + 1 € {m"} for
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1 <47 =<7r. Now taking m and r sufficiently large and noting that
‘O(l(ferr), r(f™) = ap<y,2=1xj + xa Zf,xj>|f51v""5tml

we obtain by (19) that there exist arbitrarily large integers m and 7
such that

(20) g™ | < (™), g™)

We have also

OGS, 1(Fopnn, D) Z Sy, al + 19"+ [ ] =
=(@+y+xa®)|fs .5 |-

Further by (13) we have, by analogy with (16), (where r should be
replaced by » + 1) that

oz, f™tr) = o(z, I(fm)) < lfsl,---,s,ml (@ a® + yz'ar)
and therefore
ko(e, £7) £ pUF™), 7oyt D) -

Thus putting 2’ = I(f™") we see by (8) and (20) that (10) holds in this
case again. The proof is completed.
We are now able to prove the following:

THEOREM 2. Let k(x,y) be a function defined within the triangle
0<a<l 0<y<1—2 by the formula:

0 for y=«
k(xz, y) = { a(l — za?)

A+ gart for za*t <y < za®
Yy + 2

where « =1 —x —yand p=20,1,2, -+
A set S=S,, e C is unavoidable if, and only if, the game-constant
k = k(z, y).

Proof. Proof of necessity: If y = x, B can choose t, = l(g) and
wins for every game constant k.

In the case y < x, there exists an integer p=0 such that za?" < y>xa®.
We assume that & > k(x, y) and prove that B can avoid S. Let {g"},~,, ...
be a descending sequence of intervals defined as follows:

g =(1,0)0 =909= go,l_»;ly g = 90,1;;1,0,1;1; e

P P g

(i.e. g*** is obtained from g” by adding one 0 and p 1’s to the subscripts
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of g"). Let now ¢g” — 2. We then have ko(z, f*) = |f*|, for n =0,1, -+
and therefore, by k > k

(21) ko(z, ) > | f"| .
By xa?™ < y, we have
(22) lg"l = 1f"].

Now B chooses t, = z. If A makes s, € g, (for some k) or s, = l(g,),
then B avoids S by choosing &, ¢, -+ sufficiently small. Otherwise,
s, € f* for some n. B then moves to s, = (") which by (21) satisfies (b).
Evidently £, < |f™|, and therefore from (22) and (a) follows s, € g".
Thus, choosing t,, ¢, --- sufficiently small, B wins.

Proof of suffictency. By Remark 1 it suffices to show that the set
S, , satisfies (p,). Now, since y <  and ky < a, (p}) is satisfied and by
the lemma also (p}) is satisfied. Therefore (p,) holds.

Theorem 2 solves the Banach problem for sets belonging to the Cantor
class C. Putting p = 0 in the theorem we find, in particular, that the
sets S,, for y = x are avoidable for each k£ > 0. On the other hand
the sets S,, with ¥ < x are unavoidable for each k < k(z, ). This can
be formulated as follows:

REMARK 2. Sets S, , for which y = x separate, in the Cantor class C,
all sets which are avoidable for every k£ > 0 from the others.
Since further, for p = 0 there is

oy = L=-2—ywl-9 1-z—y
y+ol—2—y) T+ Yy

we can obtain k(x,y) arbitrarily large (it is sufficient to choose x and
y < « sufficiently small). From Theorem 2 we thus obtain

REMARK 3. For every game-constant k& > 0 there is a set S,, e C
which is unavoidable.

Considering the symmetric sets, i.e. the sets S,, for which y =
1 — 2z, then for x sufficiently close to & (of course x < %) the condition
za?tt <y < xa®, i.e. the condition z?** <1 — 2x < «?™ holds for suf-
ficiently large p only (evidently p = p(x)). Hence & = k(z,y) = k(z,1 — 2x) =
[{x(1 — 2>}/ — 22 + 2*™*)] — o for © — 4. From Theorem 2 we thus
obtain the following

REMARK 4. For each k > 0 there exists a symmetric unavoidable
set.
Finally, since the only symmetric set for which y = « is the Cantor
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discontinuum S,j;,;, We obtain from Remark 2 the following

REMARK 5. The Cantor-discontinuum S,5;,; separates, in the class of
symmetric sets, the sets which are ayoidable for each k > 0 from the others.
The graph of the function k(x,1 — 2x) is given in Fig. 6. The

% 1
M(0.475, 4.25)
4 e
L: b= 22 (geeg1-20<a™),
4 1"2x+w’“ (p:—]., 0, 1) ‘“) .
p_Se—1 L
: b= iz
2
mI: B=o"r
M;(0.453, 3.0)
3 -
Al M(0.453, 1.92)
M2 -1,v7) 11
1 -
0

Fig. 6
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points of discontinuity of this curve lie on the curves k = (3¢ — 1)/(2 — 4x)
and k = 2¢*/(1 — x — 22?). The points M, and M,, (p =0,1,---) are
the points of discontinuity of k& = {x(1 — x**)}/(1 — 2z + 2?**) which lie
on these curves respectively.

Note also that from the definition of k(x, y) it follows (see Fig. 2)
that the lines y = xa®, p=10,1, .-+ are lines of discontinuity of this
function.

Finally, since for x = 1/2, y = 1/8 there is za* < y < za and thus
k(1/2, 1/8) = 39/25, we obtain

REMARK 6. The set S;,,; constructed in [2] is unavoidable if and
only if k < 39/25.
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