BEST FIT TO A RANDOM VARIABLE BY A RANDOM
VARIABLE MEASURABLE WITH RESPECT
TO A +LATTICE

H. D. BrRuNK

1. Introduction and summary. Let (2, .9 ) be a probability space
and f a random variable, an S“measurable function from £ into the
space R of real numbers. Let ¢ be a sub-g-algebra of &2 Let f be
integrable; that is, let its expectation E(f) exist. Then the Radon-
Nikodym Theorem yields an .&%-measurable function g, the conditional
expectation of f given .&5: g = E(f|.94). The conditional expectation g
is, in a strong sense to be made precise below, the best fit to f by an .52
measurable function. The purpose of the present note is to show that
there corresponds to f a function with the same minimizing properties
when an arbitrary sub-c-lattice ¥ takes the place of &%

The conditional expectation ¢ = E(f|.%4) has the property that

|7 = gz =0

for .4-measurable % such that the integral exists. It is then immediate
that

S(f — hydy = S(f — grdp + S(g — hydp. .

More generally, the squared difference may be replaced by the W. H.
Young form 4,(o, o) determined by an arbitrary convex function @ (see §2):

|45, mdpe = |45, 9z + | autg,

for .&4-measurable h, provided appropriate integrals exist. (The function
dy(o, 0) is nonnegative and vanishes when the arguments are equal.)
Thus, for every @, g = E(f|.%%) is the solution of the minimizing prob-

lem: given f, to minimize SA,D( f, h)dp in the class of .&-measurable

functions. The conditional expectation therefore enjoys a powerful claim
to be.the “best”’ fit to f by an .S4-measurable function. (Blackwell [3]
has remarked that for square-integrable functions, the conditional ex-
pectation may be regarded as a projection in Hilbert space.)
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Let now & be a sub-c-lattice of &2 & is a class of sets in &7
containing the void set ¢ and the whole space 2, and closed under
countable intersections and countable unions. Let 2 be called -#“measur-
able if for every real ¢t {we 2: h(w) < t}e <. It will be shown that
given an integrable function f, there exists an “-measurable g such
that

(1.1) S(f —hydp = g(f —g)ydy + S(g — hydy,
and, indeed, such that
(1.2) |27 mage = {41, )age + {auta, W

for every @, provided appropriate integrals exist. Thus g is the ‘‘best’’
fit to f in the class of ““measurable functions. (When f is square-
integrable, g may be interpreted in L? as the point in the cone of &~
measurable functions nearest to the given point f.) To determine g
requires the specification not only of f but also of the probability measure
¢. Thus it seems appropriate to regard f (and g) as random variables.
On the other hand, the ‘‘best fit”’ to a sum need not be sum of the
“best fits’’, so a designation of g as a ‘‘conditional expectation given
<’ does not seem completely appropriate.

Methods used in this paper require that u be totally finite. It would
be of interest to relax this restriction.

The problem of maximum likelihood estimation of parameters sub-
ject to order restrictions led to a study of the problem of minimizing
SA,,,( fyh)dp in a special case ([5], §4). In that special case, 2 is n-
dimensional euclidean space, and & is the class of sets in .&” such that
Leg; (/01’/02’ "‘,’Un)€L,u1§’Ul,u2§’vz, '°°7un§vné(u1!u2! -u,un)eL.
Members of &© were called ‘‘lower layers’’”. Methods known from the
Radon-Nikodym theory were used, but the connection was not clearly
understood. It is the purpose of the present paper not only to replace
n-dimensional euclidean space by an arbitrary space 2, and the class of
“lower layers”” by an arbitrary o-lattice, but also to formulate the
results so as to include conditional expectation given a sub-o-field as the
special instance occurring when & is a o-field.

Special cases occurring in maximum likelihood estimation of erdered
parameters are treated in [1], [4], [6], [7] and [8]. In the situation
treated in [5], inequality (1.1) was found independently by G. M. Ewing®
and by W. T. Reid'; special cases appear in [4] and [9].

Section 2 of the present paper is devoted to definitions. The problem
for square-integrable f is treated as a problem in Hilbert space in § 3.

1 Private communication.
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Results on the minimum problem for arbitrary classes of functions are
obtained in §4, and used in § 5 to yield the principal results, Theorem
5.1 and Theorem 5.2, for integrable f and measurable f. It is shown in
§ 6 that, given a partial ordering on, 2, a o-lattice .&© can be introduced
such that the “#~measurable functions are precisely the order-preserving
functions. Application to certain problems of maximum likelihood estima-
tion of a multi-dimensional parameter is mentioned in §7. It is also
remarked that (1.2) may be used in a modification of the proof of the
Rao-Blackwell Theorem on sufficient statistics?.

2. Definitions. Let @ be a convex function of a real variable. Set
G, =p{u: O(w) < »}. (Symbols =, and &, will be used in defining
the symbol or relation which appears on the right.) Define (cf. [10])

2.1) ¥(z) =psup [uz — O(u)] .

Then (W. H. Young’s inequality)
(2.2) 0=0u) +¥(k) —uz < o, u, z real.

The function ¥ is convex, and @ and ¥ are conjugate in the sense of
W. H. Young.

For ueG,, let o(u) denote the left derivative of @ at u; ¢ is
continuous from the left.

Consider the graph of @(u) in the cartesian (u, w) plane: w = @(u).
For fixed z, the form zu — @(u) represents the vertical directed distance
from the graph of @ to the line w = zu. If z = @(u,) for a number
%, € G, then the directed distance u®(u,) — @(u) is maximized for w = u,,
since the line w = u®(u,) is parallel to a line of support at u,. Therefore

2.3) O(uw) + Flew)] — up(u) =0, ue@G, .
For u, v e G,, define

do(u, v) =,0(u) + T[p(v)] — up(v)

(2.4)
=0(u) — () — (u — vV)P®) .

(The subscript @ will often be omitted.) This form has an obvious
geometric interpretation relative to the graph of @. It follows from
(2.2) and (2.3) that

(2.5) d(u, v) =0, Adu,u) =0, u,veqG, .
Also

2 That there is a connection between (1.2) and the Rao-Blackwell Theorem was suggested
to the writer by Cand. Mag. Brons of the Statistics Institute, University of Copenhagen.
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J A(u, v) = S (u — t)dp(t) fo=<u,
(2,6) {t: v=t<u}

[A(u, V) = S ¢ — u)do(t) foz=u.

{t: ust<w}
For u, v, we G,, (2.4) yields
2.7 A(u, w) = 4(w, v) + 4(v, w) + (w — V)[P(v) — P(w)] .

Let (2, & 1) be a probability measure space. Let ¢ denote the void
set. For A C 2, let A° denote its complement 2 — A. For .S“measur-
able, real functions f, # with ranges in G,, and for A€ .5 define

2.8) TS, 5 A) =5 | 4, g
(The subscribt @ will often be omitted.) Define also
(2.9) JUf, h) = J(f, by Q) .
From (2.5),

(2.10) 0=J(f,h; A) = J(f, ) = .

3. Fitting a square-integrable function. Let & be a sub-o-lattice
of &7 that is, let ¢pe & Re. ¥, &% and let & be closed under
countable unions and intersections. Let z°(.&°) denote the class of real-
valued functions & on 2 such that {w: h(w)<t} e & for real {. ‘Fitting”’
a given function f refers to the problem of minimizing Jo(f,h) for
he z(<). It will be shown that, broadly speaking, given f there is a
function g € (&), independent of @, which minimizes J,(f, ) in (&)
for every @. For this function g, indeed,

Jd’(fr h) 2 Jﬂ?(f’ g) + J«D(g’ h’)

for he #(<°). In the present approach to the problem, the square-
integrable function f is regarded as an element of the Hilbert space of
square-integrable functions. (In [11] von Neumann approached the Radon-
Nikodym Theorem via Hilbert space.)

Let 57 be a real Hilbert space, and & a closed convex cone in
i is closed; xe €, a =0=axc &; and € &, ye Z>r+ye &
The following theorem and argument are familiar ([12], p. 120) when
& is a linear subspace, and perhaps in the present more general situation
as well.

The inner product in 5~ will be denoted by (o, c) and the norm
by [l o ||.

THEOREM 3.1. If fe 57 then there exists a g€ & such that
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(f—9,h) =0 for all he &. If there exists f, > 0 in 57 such that
(s fofilll folPe &, then (f —g,9) = 0.

If & is a linear subspace of 57 it follows that (f — g, %) =0 for
he &. It seems of interest to note, as Blackwell has remarked [3], that
in this special case Theorem 3.1 yields at once the conditional expect-
ation of a square-integrable random variable. Let .54 be a sub-c-algebra
of &4 57 the class L* of square-integrable functions, and % the sub-
class of square-integrable, .&%-measurable functions. The function g¢

furnished by the theorem is then E(f]|.5%), for S Shdp = Sghdﬂ for

he &, and in particular when % is the indicator (characteristic) function
of a set in 4.

Proof of Theorem 3.1. Let N denote the set of all elements of 5%
of the form f — &k for he &. Since & is closed, so is N. Since & is
convex, so is N, for Mf—h) +u(f—h,)=f— (h + phy)e N if 0=M=1,
M+ p=1, h,h,e . It follows ([12], Theorem 8, p. 120) that N has
an element k of smallest norm. Set g =,f — k; thenge & Let he &
then if @ =0, g + ah = (@ + 1)[g/(a + 1) + ah/(a + 1)] e &. Therefore

NelP=llf—(@+ab)|f=Ik—ah]}
= Ikl — 2ak, h) + a*|[ R ]]" .

Suppose there exists ke & such that (k, k) > 0. Set a = (k, h)/|| |
and find [|EP = | kP — (b, k)| R |, a contradiction. Therefore (k,h) <0
for he &, the first conclusion of the theorem.

The second conclusion, (f — ¢,9) =0, is obvious if ¢ =0. In ap-
proaching this conclusion for g = 0, it is first shown that g %0 and (f, 9) =0
imply (f—9,9)=0. Set b=,(f—g,9/glF =1f,9)—laglflllgl=
—1. Then g+bg=(1+bygez. Hence [k =|f—(9+0b9I=
Wk —bglP=1kI—(k 9)/llgl*, so that (f—g,9)=(k,9) =0. It
remains to verify that the hypotheses of the theorem imply (f, g) = 0.
Set a = (f, f)/ll foll>. Since by hypothesis af, e &,

Nkl =1If—glF =l —afll®,
or

WP =200 + gl =71F = 20(f, ) + @[ A7,

so that

2,9z llglP + (A LPNAIFZ0.

This completes the proof of Theorem 3.1
Let L? denote the class of square-integrable functions, and set
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()= 1*N #(<); “(<) is the class of those & -measurable
functions which are square-integrable.

LEMMA 8.1, If fe L? there exists ge & (&) such that
3.1 [ = wyap =\ = oydp + [0 — nyap

for all he Z(<); g is unique a.e. (L.
Inequality (3.1) is of the form (1.2) for @(u) = u*/2.

Proof of Lemma 3.1. Lemma 8.1 results from the application of
Theorem 3.1 to the Hilbert space L?, in which the inner product is de-
fined by (fy, f2) =» g ffidp for fi, foe L2, In this application the closed
convex cone z of Theorem 3.1 is identified with (. <°). It is readily
verified that &(&) is a convex cone. Also &(&”) is closed in L?, for
if ||k, — R |?— 0 as n — co, then {h,} converges to ~ in measure, and a
subsequence converges to & a.e. (¢); but the limit of a sequence of &~-
measurable functions is also .&“-measurable. Let g be the element of
# () guaranteed by Theorem 3.1. Then

3.2) §<f — hdp <0

for h e &(&°). Further, every constant function is in <5(%°). Therefore
the second hypothesis of Theorem 8.1 is satisfied for f, =,1. It follows
that

(3.3) [~ ogan=o,
so that
(3.4) | —9tg—map=o.

Inequality (3.1) is now immediate. The uniqueness a.e. (¢) of g is
evident from (3.1).

For a real-valued function ¢ of a real variable, and a function &
from 2 into the real line R, let @k denote the composite function: for
we 2, ph(w) =,p[h(w)]. Inequality (3.4) is the special instance of

(35) [ = 9@ — pyipzo0,

in which o(u) = u. From (2.7) it follows that (3.5) is equivalent to
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(1.2), given the existence of appropriate integrals. Conditions will now

be investigated under which, given f, the same function g satisfies (3.5)

for functions @ other than the identity well. Lemma 3.2, below, is

phrased more generally than is required for the present application.
Let W be a vector lattice ([2], Chapter XV), so that

(3.6) a,beW=aVvVb+aAb=a+b

(here @ \V b and a A b denote respectively the l.u.b. and g.l.b. of the
two elements @ and b of W). (For (3.6) it is sufficient that W be a
commutative lattice-ordered group; ([2], p. 219).) Let < be a class of
order-preserving maps of W into itself, which is a lattice under the
induced partial ordering: ¢, < @, &= ,p(w) < @,(w) for all we W (‘X"
denotes the ordering relation on the partially ordered set W). Let &
be a subclass of <. An intersection of lattices is a lattice, and the
intersection of all lattices containing % is the smallest lattice, & *,
containing . It may be constructed as follows. For an arbitrary sub-
class .7 of <, define T. as the class of all elements of <& of the
form @, Vv @, or ¢, A @, for ¢, p,e #. Then

w* =1limTre = U, T" &,

LEmMMA 3.2, Let L be a mnonnegative (or mon-positive) linear func-
tional on <. Then L =0 on & implies L =0 on &*.
(This may be regarded as a special instance of the proposition that in a
normed lattice the elements of zero norm form a lattice.)

Proof. It suffices to show that &% Cc < and L =0 on .&# imply
L =0 on T But this is immediate from (3.6) and the assumed line-
arity and constancy of sign of L.

Lemma 3.2 is applied in proving Theorem 3.2.

THEOREM 3.2. Let fe L? and let g be given by Lemma 3.1. Let @
be convex, let pge L?, and let the range of f be in G,. Then the range
of g is in G, (i.e., there is a determination of g in the equivalence
class determined by Lemma 3.1 whose range is in G,),

@7 |7 =9y - pyipz0,
and
3.8) Jo(fy h) = Jo(f, 9) + Ju(g, h)

Jor all he (<) such that the range of h is in G, and such that
Pphe L’
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Proof. Setting h in (3.2) first equal to 1 then equal to —1 yields
the result that

(3.9) |7 —9ap=0.

From (3.3) and (3.9) it follows that
[ = 9ag + ap =o0.

for real @ and b. In applying Lemma 3.2, take for W the real line (a
vector lattice) B. For fixed f and hence fixed g, take for < the class
of non-decreasing functions +» defined on R such that +rge L®. One
verifies that < is a lattice. For we =, set L(y) EDS( f— gyrgdp. L
is clearly a linear functional on <; from (3.2) it follows that L is non-
positive. Let & denote the subclass of <& consisting of functions 4 of
the form Y(y) = ay +b, a = 0. For arbitrary real ¢ and d with ¢ <d,
define yr, by yYn(y) =0 for y < ¢, Yu(y) = (¥ — ¢)/(d —¢) for c <y = d,
Yi(y) =1 for y >d. Then v, e T°%. By Lemma 3.2, L(y,) = 0. Let
t be an arbitrary real number. For #=1,2, ---, set ¢, = t, d,=t+1/n,
and define -, as +r, was defined above, with ¢ and d replaced by ¢, and
d, respectively. Let +J, denote the step-function: y(y) =0 for y < ¢,
¥o(y) =1 for y > t. Then L(y) = lim,_.L(y,) = 0. That is,

[f(@) — g(@)]dw) =0 .

S(ax:a(wbt}

It follows that for every Borel set B of real numbers,

(3.10) (@) = gl@)]dp(@) = 0.

S(‘D:Q(w)EB

(Equation (3.10) may be interpreted thus: g = E(f|g).)

It can be seen as follows that the conclusion that the range of ¢
is in G, is a consequence of (3.10). Suppose, for example, that f(w) <a
for we 2. Then

unless p{g = a} = 0.

It now follows from (3.10) that g( f— 9)pgdp = 0. Also, if the range
of h is in G, and if @(h)e L? it follows from (3.2) (with % there replaced
by @h) that g(f — g)phdp £ 0. Equation (3.7) is then immediate. The

proof of Theorem 3.2 is completed by the observation that (3.8) is a
consequence of (3.7) and (2.7).
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4, Minimizing J(f,c). Some theorems on minimzing J(f, o) in
arbitrary classes of .9%-measurable functions are given in this section.
In §5 the result of Theorem 3.2 is extended to arbitrary integrable f,
using the results of the present section.

LEMMA 4.1. Let @ be convex. Let f,h, h, be <Z-measurable func-
tions with ranges in G,. Set E =, {w: h(w) < h(w)}, and for real t
set E(t) =p{w: h(w) =t < hy(w)}. Then

(4.1) — éJw(fy h‘z; E)—Jw(fyhl; E)
= lae®)| 1t = foap@ = =,

E

provided either J,(f, hy; E) < oo or J,(f, hy} E) < .
Proof. From (2.8) and (2.6),

T 15 4) = | (@) | [F(@) — tlde(t)

AN{ow:h(w) <f(w)} {t:h(w) St<f(w)}

ap(@) | [t - A@lde(t) .

+ S
AN{w: f(w) <h(w)} {t:f@)=t<h(w)}

Since 4 is nonnegative (inequality (2.5)), Fubini’s Theorem ([12], Corollary,
p. 95) applies, to yield

@.2)  J(f b A) = Sdg»(t)ﬂ [f(@) — tldp)

AN{w:h(w) St<f (o))

+ |ap(t) | [t - A(@)dp(©) .
AN{w: f(w)St<h(w)}

Set A = E and h first equal to h,, then equal to #,. Lemma 4.1 then

follows, using the observation that

EnNh=t<fil=EnNh=t<fIUEN{f>N{h=t<h}
and

En{fst<h}=En{fst<h}UEN{f=ttn{h=t<hy}.

THEOREM 4.1. Let & be a class of S~measurable functions, and
f a given, fixed S~-measurable function. A sufficient condition that g
minimaze Jo(f, o) in & for all @ such that the range of f is in G, s
that g be bounded by inf,f(w) and sup,f(®), and that
@3 |

(@ — tldp(@) =0 and | = f@ldp@) =0

{w: g(w) St<h(w {w: h(w)St<g(w

hold for all real t and every he . If & 1is a lattice under the
partial ordering h, < h, & ph(®) < hy(w) for we 2, then (4.3) is also
necessary.
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Proof of sufficiency. For he &, set
B, =plw: g(0) < M)},
B; =p{w: g(w) > h(w)}
B, = ,{w: g(®) = h(w)} .
Then

J(f,9) = XIS, g B)

and
(1) = ST, 5 B .

Clearly J(f, g; B;) = J(f,h; B;). In Lemma 4.1 set h,=g, h, = h, so
that E becomes B; and E(t) becomes {w: g(®w) =t < h(w)}. From (4.1)
and (4.3) follows

0slap)| [t—f@ldpu) = I, b B) — I, B) < = .
Interchanging the roles of g and % in the application of Lemma 4.1
yields

oz lap®)| | [t—f@)ldp@)=J(f,9;B)— I, B)z— o .
Subtraction gives 0 < J(f, k) — J(f, g) < o, completing the proof of the
sufficiency of condition (4.3).

Proof of necessity. Let t, be a real number, and define @(t)=,|t—t,|/2,
so that @.(f) has a unit jump at t,, with @y(t,) = —1/2. Applying Lemma
4.1 first with h, =h, h, = g, E = {g < h} and then with h, =g, h, = b,
E = {h < g}, one has

@D = ST fB) = To(f, 0)
It — f(@)ldp@) + | /(@) — tldp(@)

{o: h(0)Stp<g(w)}

S(m: 9(w) Sty<h (@)}

If g minimizes J,(f, °) in &, then the left member is nonnegative for
every he &. Given he &, define h, =,9 A h, and replace h in (4.4) by
h,. One finds

0= Jo(f k) = To (£, 9) = | [f(@) — tldme) ,
{w: h(w) Stp<g(w)}
verifying the second of inequalities (4.3). Similarly, setting 2, =g V h
yields the first, completing the proof of Theorem 4.1.
Let f be a given .S“-measurable function, and & a class of .-
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measurable functions. Consider the following two properties of a funec-
tion ge & which is bounded by inf,f(w) and sup,f(®), and for which

[l =gldp< o
' For real t and he &,

S(«.» )[9(0)) — f@)dm(w) = 0,
~(4.5) 1 g(w)St<h(w)

”[f(w) — g(@)]dpw) = 0.

g{w: h(w)St<g(w

For all @ such that the range of f is in G, and all he & with
range in G,,

(4.6) Jo(f, B) = Jo(f5 9) + Julg, B) .

THEOREM 4.2. Let f be a given S“~measurable function. Suppose
that inf,f(w) £ g(w) < sup.f(w) for we2 and that gif —gldp < o,
Then (4.5) & (4.6).

Proof that (4.5) = (4.6). Let he &, let @ be convex, and let f, h
have ranges in G,. Set B, =,{w: g(®) < h(w)}, B, =,p{w: (w) < g(w)}.
Set

a =, |do(t) | [t — g(@)]dp(@) = 0
{w: g(w) St<h(w)}
and
b=, |de(t) | [o(@) — tldp@) = 0 .
{w: h(w)St<glw)}
In (4.2), replace f by g and A by 2, to find

Jg,h)=a +0b.
Applying (4.5) and Lemma 4.1, one has
a = e |
and

bgwwﬂ [A(@) — tlduw) = J(f, b B) — J(f, g; B) ,

{w: h(w)St<g(w)}

F — f@)dp@) = J(f, b; B) = J(f, 95 B)

{w: g(w)St<h

provided either J(f, h) < o or J(f, g) < . If both are infinite, (4.6)
is granted. If at least one is finite, then

Since J(g, h) = 0, J(f, g) must then be finite, and (4.6) follows.
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Proof that (4.6) = (4.5). From (4.6) and (2.7) it follows that
S(f — 9)(pg — Ph)dp = 0

when he &, and when the ranges of f and % are contained in G,
provided the integral exists. Let ¢ be a real number, and set @(u) =,
— (u —1t) for w =t, @(u) =,0 for; u >¢t. Then

(o —o@s—omap=—| _(-o+| __¢-ode,

{gst<h}

the integrals existing by hypothesis. Given he &, set h, =,9 A h. Then

0= |-y —ohie=| ¢ —odn.

{h=t<g}

The proof of the first member of (4.5) is similar.

5. Fitting an integrable function in (). Let f be integrable.
For positive M, N, define

(6.1) Suw =p[— MV FIAN,
and

5.2) Fu=plim fun,

so that

(5.3) f=limfy .

For fixed M, N, the function f, y is square-integrable. Lemma 3.1 makes
correspond to fy y a square-integrable, <~-measurable function gy y. It
will first be shown that

(5.4) Ou ED}}E}O Ju.n
and
(5.5) gd=p }11_12 Iy

exist. The principal result of the paper will then be proved:
THEOREM 5.1. If f is integrable and if the range of f is in Gy,
then
Jw(f» h) g le(fr g) + Jd?(gr h’)

for every he & (&) whose range is in G,.
The proof follows several preliminary lemmas.
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LEMMA 5.1. Let fe L* and let g be given by Lemma 3.1. Let t be
real, and let he (). Then

oo f(@) = tldg(@)
(5.6) HhrEt<o@

[f(®) — g(®)]dp(w) = 0,

S(w:h(m)§t<g(u’))

[ L) = i)
(57) : g(w) St <h(w)

<

= [f(@) — g(@)]ld(w) =0,

S(mtg(w)§t<h(w))

provided, in (5.6), that the indicated set has positive measure.

Proof. Set @(u) =, — (u —t) for u <t, O(u) =,0 for w >1t. Set
h, =59 A h. Then ph, e (). application of (3.2) with & replaced by
Ph, yields

[f(@) — g(@)]d(@) = 0 .

S(w: g(w) Ah(w) <t}

Also, by (3.10),

[ /@) — g@)dpw) =0.

{w: g(w) st}

Since g Ah =<t ={g =t} U{h =t < g}, it follows that

@) — g@)ip@) = 0.

Slw: h(w) =t <g(

The first of inequalities (5.6) is clear. The proof of (5.7) is similar.

COROLLARY 5.1. Let f,c L? and let g, be determined by f; through
Lemma 3.1, 1 =1,2, If fiw) £ filw) for we 2, then there are deter-
minations of ¢, g, such that g () = g,(w) for we Q.

Proof. Suppose that for some real t, t{w: g,(w) =t < g,(w)} > 0.
From (5.6) and (5.7) it follows that

§ [:@) — tldp(o) = 0
{o: gg(w) St<gy(0)}

[fil@) — tld(w)
[fow) — tld(w) ,

S(w: gg(w) St<gr(w)}

<

S {0 gy(@) St<g1(w)}

a contradiction. Thus for every real ¢, ¢{g, <t <g,} =0, so that ¢, < ¢,

a.e. (¢#). One may then suppose g,, ¢g. so chosen that the inequality is
satisfied everywhere.
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Frow Corollary 5.1 it follows that for fixed M the sequence g, y is

monotone, as is also the sequence g,,. The existence of the limits g, and
¢ is then guaranteed.

THEOREM 5.2. If g is S%measurable and if the range of f is in
G4, then
Jo(f, ) = Ju(f, 9) + Jo(g, h)

for all bounded he & (<) with range in G,.

Proof. From the geometric interpretation (cf. (2.4)) of 4 and the
boundedness of & it is clear that for fixed M there exists N, such that
A fy.5(®), R(w)] is non-decreasing in N for N> N,, we 2. Also there

exists M, such that 4[fy(®), k(w)] is non-decreasing in M for M > M,,
we 2. Therefore

J(fu, B) = I I (fur , 1)
J(f, ) =lim J (fur, )

(5.8)

By Theorem 3.2,

J(Suns ) = H(Sfaws Guw) + S Guwr B) 5
hence

lim inf J(fu x, k) < lim inf J(fy 5, 9u ) + lim inf J(gy v, h) .
N—oo N—oo N—oo
By Fatou’s lemma,

lifgjilf J(Sfu.wr 9uw) = I fary Gar)
and
lirg inf J(gy s ) = J(gu, 1) ©

Therefore
im inf J(fu v, ) Z I(Surs 910) + (G, 1) -
From (5.8) it now follows that
J(fur b) = Iy, 9) + J(gu, B) -

A repetition of the argument yields
J(f, h) = J(f, 9) + J(g, h),
completing the proof of Theorem 5.2.

LemMmA 5.3. If f is integrable, so is g.
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Proof. Let Eyy =,{w: gy x(w) = 0}. The application of (8.10) to
Suny Omn gives S Gy yAU = S Suxdpt. Therefore
Eyn

N
S | Iu.v | dﬂ = S gu,zvdﬂ
Oyn Eyn

=\, fesdp | esldps| irlde.

M

Similarly

|y Voenlde =1 = gurds

MN

- L;,gv_fﬂﬂd” = S lefM,Nldy < S

By

U fldp
N

By

Addition gives
|lguxtdp={isiap,

and the integrability of | g| = limlim | g, 5| follows.
M N

Proof of Theorem 5.1. By hypothesis and Lemma 5.3, both f and
g are integrable. Passage to the limit yields (4.5). By Theorem 3.2,
9x.y 1s bounded by inf, fy y(w) and sup, fu.x(®); therefore also
inf, f(®) < g(®) < sup, f(w), we 2. The conclusion of Theorem 5.1 now
follows from Theorem 4.2.

6. o-lattices determined by partial orderings on 2. The problem
of minimizing J(f, o) in & (&) was discussed in § 4 of [5] for the special
case in which 2 is a euclidean space E,, and in which a partial order-
ing on E, is given by

w:(a)lr ""wn)ég:(gly "':En)@leégly wzéézv "'7wn§§n .

In [5], classes .&¥ and 7 of .%*-measurable sets were introduced as follows:
Le &= tel, w<é=>wel; Ueyy &,U°e . The approach in
[5] to the minimum problem was through an analoue of the Hahn-Jordan
decomposition theorem. The present investigation began with the realiza-
tion that the methods apply equally well when &~ is an arbitrary o-
lattice of sets in .22 Indeed, such an approach forms an alternative to
that developed in the preceding sections. The present section is devoted
to the remark that, given a partial ordering on 2, the class of -
measurable, order-preserving maps from 2 into R coincides with the class
& () for a suitably defined o-lattice &2
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Given a o-lattice ¥ C.& (<) denotes the class of functions 2
such that for every real t{w:h(w) <t}e <. For a partial ordering
P(Z) of 2, define &#* as the class of .S~measurable, order-preserving
maps of 2 into R. Define also <(<&?) as the class of .S”-measurable
sets A such that £c A, w < E=>we A. The class &£ (?) is a o-lattice.

The following theorem may be proved by straightforward application
of the definitions.

THEOREM 6.1. &[FA(F)] = F*.

In should perhaps also be remarked that given a class & of .o~
measurable functions, one can determine as follows a o-lattice & of
S~measurable sets such that & is embedded in the class & (&) of
“-measurable sets. Define a partial ordering F(¥): w = &,
hw) = k() for all he &. Then set & =_Z[F(&)].

7. Concluding remarks. Let X, be a random vector, and 7 =
(1, *++, 7,) a point of euclidean nm-space E,. Define

() =, log E(e* 7).

The function ¥ is convex, defined on a convex subset Gy of E,. For<t
in Gy, exp {7 — ¥(7)} (xe E,) is the density function with respect to
the distribution of X, of a member of the exponential family (Darmois-
Koopman class, Koopman-Pitman class, or Laplacian family) of distributions
generated by X,.

For 1=1,2, -+, k, let 2*eG,. Let independent random samples of
sizes N,, +++, N, be taken from the distributions corresponding to %, .-, 7%
respectively. Let Z‘ denote the (vector) sample mean of the sample
from the 4th population. Then the logarithm of the joint density func-
tion is

(7.1) i N@ ) — ¥(c) .

For n =1, let @ denote the convex function conjugate to ¥ in the
sense of W. H. Young (§ 2); and define ¢ by 7t = @(¢%), 1 =1,2, -+, k.
A problem of maximum likelihood estimation of the parameters @', .., 6*
is a problem of maximizing (7.1), or equivalently of minimizing, for
given #*, ..., T%,

(7.2) zi; N[OGE) + T(c') — Fri] .

Let 2 be a space of k distinet points @', ---, ®*, and ¢ a measure as-
signing measure N;/Nto @', 1 =1,2, «++,k, where N = S N, Define
flo) =7 M) =6, i =1,2, ..., k. The sum (7.2) can then be written
NJu(f, k). The problem of minimizing (7.2) subject to a partial ordering
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on 0, &, ..., 0% is thus a special instance of the problem treated in this
paper. (This special problem has been treated in [5], [6], [7], and [1],
and a special case in [4].)

Certain problems involving #n-dimensional parameters with » > 1
reduce to the one-dimensional case.

1°. Suppose the components X, ---, X,, of X, are independent.
Then Z(7) is of the form >7_.,7,(r,). The form to be minimized can be
written

%

k n ) ) .
% N 30,@) + ) — Tl

or > J, (s h;). In effect, the components of the n-dimensional para-
meter can be estimated separately.

The methods of the present paper appear to extend naturally to
situations involving convex functions of several real variables only for
functions @ of the form >%.,@,; and for such functions the one-dimen-
sional treatment suffices. Much of the material in § 3 is meaningful also
when @ is an arbitrary convex function of several real variables; but
for such functions generalizations of Theorms 5.1 and 5.2 have escaped
the author.

2°, Suppose that order restrictions are applied only to the first com-
ponents 7%, -+, ¢ of 7%, -+, % and that the other components are re-
quired to be independent of 4:

(7.3) Ty = oo =T Th=eee =78 eee 7 = cee =7k |

n

The minimizing values of 7!, ..., 7¥ must minimize also the function of
them obtained when the parameters i j=2,8,--+,m,1=1,2, -+, k,
are replaced by their minimizing values. But this function is of the
form (7.2) (one-dimensional problem) for a certain function @ depending
on the minimizing values of the 7 (4 =2,8,++-,n,7=1,2, «++, k) sub-
ject to (7.3). Since the solution is independent of the particular func-
tion @, the 7i are determined by the % as in the one-dimensional problem
t=1,2,---, k).

This remark is appropriate in particular when » = 2, X, is normal
with mean 0 and standard deviation 1, and X, = X2 (the superscript
here indicates the square). The distribution of the exponential fumily
generated by X,, corresponding to the parameter point 7 = (7, 7,) is normal
with mean 7,/(1 — 27,) and variance 1/(1 — 27,). Thus if the parameters
i, 1=1,2,-+,k,7=1,2 are to be estimated by the maximum likelihood
method subject to a partial ordering of the means p; =,7i/(1 — 27i) and
subject to the condition that 7i is independent of ¢, then the p; are
determined by the sample means as in the one-dimensional problem.
This result appears in [7] and in [1].
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A final remark is that the inequality (1.2) for the conditional ex-
pectation of a random variable can be used in a modification of the
proof of the Rao-Blackwell theorem on sufficient sub-o-fields. Let f be
a statistic. Let .7~ be a sufficient sub-o-field, i.e., g = E(f]| 2") is
independent of the measure g in the the class of measures considered.
Let 6, denote the expectation of f. By (1.2),

Jo(f 00) = Jo(f, 9) + Ju(g, 00) .

Hence
(7.4) Jo(9, 00) = Ju(f, 00) ,

For @(u) =,u*2, (7.4) states that g has smaller variance than f. Further,
let L(u, v) represent the loss which occurs if the estimate of the para-
meter E(f) is 4 when the true value is ». Suppose L(u, v) is convex
in u for fixed v. Set @(u) =,L(u, ,) for constant §,—the true parameter
value. From (7.4) it is then immediate that the risk is smaller for g
than for f, whatever the true value 6,.
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