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1. Introduction, Let G be a finite group which has a faithful
representation over the complex numbers of degree n. H. F. Blichfeldt
has shown that if p is a prime such that p > (2n + l)(n — 1), then the
Sylow p-group of G is an abelian normal subgroup of G [1]. The pur-
pose of this paper is to prove the following refinement of Blichfeldt's
result.

THEOREM 1. Let p be a prime. If the finite group G has a faithful
representation of degree n over the complex numbers and if p > 2n + 1,
then the Sylow p-subgroup of G is an abelian normal subgroup of G.

Using the powerful methods of the theory of modular characters
which he developed, R. Brauer was able to prove Theorem 1 in case p2

does not divide the order of G [2]. In case G is a solvable group,
N. Ito proved Theorem 1 [4]. We will use these results in our proof.

Since the group SL{2, p) has a representation of degree n = (p — l)/2,
the inequality in Theorem 1 is the best possible.

It is easily seen that the following result is equivalent to Theorem 1.

THEOREM 2. Let A, B be n by n matrices over the complex numbers.
If Ar = I = Bs, where every prime divisor of rs is strictly greater than
2n + 1, then either AB = BA or the group generated by A and B is
infinite.

For any subset S of a group G, CG(S), NG(S), \S\ will mean respec-
tively the centralizer, normalizer and number of elements in S. For any
complex valued functions ξ, ξ on G we define

I Gr I

and || f||| = (f, ζ)G. Whenever it is clear from the context which group
is involved, the subscript G will be omitted. H<\G will mean that H
is a normal subgroup of G. For any two subsets A, B of G, A — B will
denote the set of all elements in A which are not in B. If a subgroup
of a group is the kernel of a representation, then we will also say that
it is the kernel of the character of the given representation. All groups
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considered are assumed to be finite.

2. Proof of Theorem l We will first prove the following prelimi-
nary result.

LEMMA 1. Assume that the Sylow p-group P of N is a normal
subgroup of N. If x is any element of N such that CN(x) Π P — {1},
then X(x) = 0 for any irreducible character λ of N which does not
contain P in its kernel.

Proof. Since | CN{x) \ is not divisible by p, it is easily seen that
CN{x) is mapped isomorphically into CNlP{x), where x denotes the image
of x in NjP under the natural projection. Let μl9 μ2, * be all the
irreducible characters of N which contain P in their kernel and let
\, λ2, be all the other irreducible characters of N. The orthogonality
relations yield that

Σl ) I2 = I CNlPβ) I ̂  I CN(χ) I = Σ I μ<(χ) I2 + Σ I H * ) I2

i i

This implies the required result.
From now assume that G is a counter example to Theorem 1 of

minimal order. We will show that p2 does not divide | G | , then Brauer's
theorem may be applied to complete the proof. The proof is given in
a series of short steps.

Clearly every subgroup of G satisfies the assumption of Theorem 1,
hence we have

(I) The Sylow p-group of any proper subgroup H of G is an abelian

normal subgroup of H.

Let P be a fixed Sylow p-group of G. Let Z be the center of G.

(II) P is abelian.

As P has a faithful representation of degree n < p, each irreducible
constituent of this representation has degree one. Therefore in com-
pletely reduced form, the representation of P consists of diagonal matri-
ces. Consequently these matrices form an abelian group which is iso-
morphic to P.

(III) G contains no proper normal subgroup whose index in G is a
power of p.

Suppose this is false. Let i ϊ b e a normal subgroup of G of minimum
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order such that [G : H] is a power of p. Let Po be a Sylow p-group of
H. By (I) Po <\ H, hence Po < G. Thus CG(P0) < G. If Cβ(P0) =£ G, then
by (I) and (II), P < CQ(P0), thus P < ] G contrary to assumption. There-
fore CG(P0) = G. Burnside's Theorem ([3], p. 203) implies that Hcontains
a normal ^-complement which must necessarily be normal in G. The
minimal nature of H now yields that p does not divide \ H\.

If q is any prime dividing \H\, then it is a well known consequence
of the Sylow theorems that it is possible to find a Sylow g-group Q of
H such that P gΞ N(Q). Hence PQ is a solvable group which satisfies
the hypotheses of Theorem 1. Ito's Theorem [4] now implies that P<\ PQ,
thus Q S N(P). As g was an arbitrary prime dividing \H\, we get that
\H\ divides |JV(P)|. Consequently N(P) = G, contrary to assumption.

(IV) Z is the unique maximal normal subgroup of G. GjZ is a non-
cyclic simple group. \Z\ is not divisible by p.

Let H be a maximal normal subgroup of G, hence GjH is simple.
Let Po be a Sylow p-group of H. Then by (I) Po < iϊ, hence Po < G,
thus C(P0) < G. If C(P0) Φ G, then by (I) and (II) P < C(P0), hence
P <\G contrary to assumption. Therefore C(P0) = G. If Po ^ {1}, then
it is a simple consequence of Griin's Theorem ([3], p. 214) that G con-
tains a proper normal subgroup whose index is a power p. This contra-
dicts (III). Hence Po = {1} and p does not divide \H\.

By (III) PHΦ G, hence by (I) P <] Pff. Consequently PH=Px H,
and P s C(H) < G. If C(ίΓ) ^ G, then (I) yields that P < C(ίί). Hence
once again P <| G, contrary to assumption. Consequently C(H) = G.
Therefore HQZ. As G is not solvable, neither is G/H. Now the
maximal nature of H yields that H — Z and suffices to complete the
proof.

(V) P (Ί xPx-1 = {1} unless x is in N(P).

Let D — P[\ xPx~x be a maximal intersection of Sylow p-groups of
G. Then P i s not normal in N(D). Hence by (I) N(D) = G, or D<\G.
However (IV) now implies that D <ΞΞ Z. Hence (IV) also yields that
D = {1} as was to be shown.

Define the subset No of N(P) by

N0 = {x\xe N(P), C(x) ΠPφ {1}} .

Clearly {P, Z} g JV0.

(VI) iV(iV0) - N(P). (No -Z)Π x(N0 - Z)χ-χ is empty unless x e N(P).

Clearly N(P) g N(N0). Since P consists of all elements in No whose
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order is a power of p, it follows that N(N0) g N(P).
Suppose ye(N0 — Z)Π x(N0 — Z)x~\ Then y and χ-*yx are both

contained in (No - Z). Let P o = C(y) Γi P, P1 = Cix^yx) n P. By as-
sumption Po =£ {1} φ Pχ It follows from the definitions that Po and xPxx~x

are both contained in C(y). Since ?/ is not in Z, C(y) Φ G. Hence (I)
yields that Po and xPxx~x generate a p-group. Thus by (II) xPλχ~ι £ C(P0)»
Now (V) implies that xP^'1 g -W(P). Consequently z P ^ - 1 g P. By (V),
this yields that x e N(P) as was to be shown.

From now on we will use the following notation:

I-Pi = P e , \z\ = z, \N(P)\=yzt.

Let χ0 = l,χlf be all the irreducible characters of G. Define aif βi9 bt
by

where α^ is a sum of irreducible characters of N(P), none of which
contain P in their kernel and βt is a character of N(P) which contains
P in its kernel.

(VII) If i Φ 0, then b, < (1/p6'2) Z i ( l ) .

By (VI) (No — Z) has | G \/pezt distinct conjugates and no two of them
have any elements in common. Since χt is a class function on G, this
yields that

i(x) I2 + ΣNo I ai(x)

If x e Z, then | χ^x) |2 = | χ,(l) |2. As P s iV0, we get that

1 > - 7 7 [- I Zi(l) l2^ + ^ β { | ocM I2 + cCiWβTβ) + ά^B)A(a;)} + J
P %v

Since P is in the kernel of βi9 we get that | βi(x) | = 64 for a? e
Lemma 1 implies that a vanishes on N(P) — iV0. Hence

a, ||J,(P) + (ai9 A

By definition fe, ft) = 0, hence

- , •- I I -'I UJ.V KJΓ I — • ,

pet t

By (IV) the normal subgroup generated by P is all of G, hence α< Φ 0,
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Therefore | | ^ ]|^(jP) ^ 1. This finally yields that

\Xi(l)\2

 > Vi
~&t~> t '

which is equivalent to the statement to be proved.

(VIII) If Γ is the character of G induced by the trivial character 1P

of P, then (Γ, χ<) = 6,.

If λ is an irreducible character of N(P) which does not contain P
in its kernel, then λ is not a constituent of the character of N(P)
induced by 1P. Hence by the Frobenius reciprocity theorem (λ,P, 1P)P = 0.
Consequently (ailPf 1P)P = 0. The Frobenius reciprocity theorem now
implies that

iXu Π = (Xi\p, 1P)F = fair, Ip) = δ*

From now on let χ be an irreducible character of minimum degree
greater than one. Define the integers a{ by

a* = (χ<, χχ) .

(IX) χ(l) - 1 ^ Σ ^ α A

By (VIII)

aobo + Σdibi = (Γ, χχ) - ^f- + -f- ΣP-{1]ztχχ(x)

By (II), χlP is a sum of χ(l) linear characters of P. Consequently

As χ is irreducible, α0 = 1. Clearly b0 = 1. This yields the desired ine-
quality.

We will now complete the proof of Theorem 1.
It follows from (IX) that

(VII) yields that

Σ
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The definition of the integers a{ implies that

Combining these inequalities we get that

-K

or

By assumption χ(l) < (p — l)/2, hence

This implies that e < 2. Thus β ̂  1.
R. Brauer's theorem [2] now yields that P <\G contrary to as-

sumption. This completes the proof of Theorem 1.
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