ON THE NUMBER OF PURE SUBGROUPS

PAUL HILL

A problem due to Fuchs [3] is to determine the cardinality of the set \mathscr{P} of all pure subgroups of an abelian group. Boyer has already given a solution for nondenumerable groups G [1]; he showed that $|\mathscr{P}| = 2^{|\mathcal{G}|}$ if $|\mathcal{G}| > \aleph_0$, where $|\mathcal{A}|$ denotes the cardinality of a set \mathcal{A} . Our purpose is to complement the results of [1] by determining those groups for which $|\mathscr{P}|$ is finite, \aleph_0 , and $c = 2^{\aleph_0}$. In the following, group will mean abelian group.

LEMMA 1. If G is a torsion group with $|G| \leq \aleph_0$, then $|\mathscr{P}| = c$ unless

$$(1) G = p_1^{\infty} \oplus p_2^{\infty} \oplus \cdots \oplus p_n^{\infty} \oplus B,$$

a direct sum of (at most) a finite number of groups of type p^{∞} and a finite group, where $p_i \neq p_j$ if $i \neq j$. If G is of the form (1), then $|\mathscr{P}|$ is finite.

Proof. The latter statements is clear, and if none of the following hold

- (i) G decomposes into an infinite number of summands
- (ii) G contains $p^{\infty} \oplus p^{\infty}$ for some prime p
- (iii) $|B| = \aleph_0$, where B is the reduced part of G,

then G is of the form (1). Moreover, if (i) holds, then obviously $|\mathscr{P}| = c$. Every automorphism of p^{∞} determines a pure subgroup of $p^{\infty} \oplus p^{\infty}$, and distinct automorphisms correspond to distinct subgroups. Since $|A(p^{\infty}) =$ automorphism group | = c, it follows that $p^{\infty} \oplus p^{\infty}$ has c pure subgroups. Thus if (ii) holds, $|\mathscr{P}| = c$ since $p^{\infty} \oplus p^{\infty}$ is a direct summand of G. Finally, if (iii) holds and if (i) does not, then the following argument shows that $|\mathscr{P}| = c$. We may write¹ $B = C_1 \oplus B_1 = C_1 \oplus C_2 \oplus B_2$, and continuing in this way define an infinite sequence C_n of cyclic groups such that no C_i is contained in the direct sum of any of the others. The direct sum of any subcollection of these cyclic groups is a pure subgroup of B and, therefore, of G.

An interesting corollary is noted: there is no torsion group with exactly \aleph_0 pure subgroups.

LEMMA 2. If $G = F \oplus B$ is the direct sum of a torsion free group

Received January 31, 1961. This research was supported by the National Science Foundation.

¹ This is precisely the proof of Boyer that such a group has c subgroups [2].

F of rank r and a finite group B with $|G| \leq \aleph_0$, then $|\mathscr{P}|$ is finite, \aleph_0 , or c, depending on whether r = 1, $1 < r < \infty$, or $r = \infty$.

Proof. First, assume that B = 0. Let H be the minimal divisible group containing G. The correspondence $D \to D \cap G$ is one-to-one between pure (divisible) subgroups D of H and pure subgroups of G. Thus only divisible groups G need be considered, and the proof is already clear except, possibly, the relation $|\mathscr{P}| \leq \aleph_0$ for the case $1 < r < \infty$. However, let R^* denote the direct sum of r-1 copies of R, the additive rationals. Since $G = R^* \oplus R$, any pure subgroup P of G is a subdirect sum of a subgroup S^* of R^* and a subgroup S of R. Moreover, S^* and $S^* \cap P$ are pure in R^* ; S and $S \cap P$ are pure in R. Since $|A(R)| = \aleph_0$, it follows by induction that $|\mathscr{P}| \leq \aleph_0$.

Now consider the case $B \neq 0$. The lemma has already been proved if $r = \infty$, so assume that r is finite. Any pure subgroup P of $G = F \bigoplus B$ is a subdirect sum of a pure subgroup E of F and a subgroup A of B. Since $E \cap P$ has index in E which divides the order of B, there are only a finite number of choices of $E \cap P$ for a given E (and consequently only a finite number of choice of P). Thus the lemma is proved.

The theorem follows almost immediately from the lemmas.

THEOREM. For any group G, $|\mathscr{P}| \leq \aleph_0$ if and only if: $G = F \oplus T$ where T is torsion of the form (1) and F is torsion free of finite rank $r \geq 0$; further if the prime p is in the collection $\pi = \{p_1, p_2, \dots, p_n\}$ of the decomposition (1) of T, then F has no pure subgroup which can be mapped homomorphically onto p^{∞} . In all other cases, $|\mathscr{P}| = 2^{|G|}$. Moreover, $|\mathscr{P}|$ is finite if and only if either r = 0 or r = 1 and Tis finite.

Proof. Suppose that $|\mathscr{P}| \neq 2^{|G|}$. Then $|G| \leq \aleph_0$ and the torsion part T of G is of the form (1). Hence G splits into its torsion and torsion free components, $G = F \oplus T$. Also, F is of finite rank $r \geq 0$. And there exists no homomorphism of a pure subgroup of F onto p^{∞} where $p \in \pi$ (since there would be c such homomorphisms, each determining a pure subgroup of G). But suppose that $G = F \oplus T$, where F and T satify the given conditions. Let T' denote the divisible part of T and set $F' = F \oplus B$, where $T = T' \oplus B$. Since B is finite, $|\mathscr{P}(F')| \leq \aleph_0$ is given by Lemma 2. Evidently, a pure subgroup P of G is the direct sum of a divisible subgroup of T' and a subdirect sum of a pure subgroup of T'. Thus $|\mathscr{P}| \leq \aleph_0$.

If r = 1, then $|\mathscr{P}(F \oplus p^{\infty})| \ge \aleph_0$, for there are at least \aleph_0 homomorphisms of F into p^{∞} , each determining a pure subgroup. In view of Lemmas 1 and 2, this completes the proof of the theorem.

References

1. D.L. Boyer, A note on a problem of Fuchs, Pacific J. Math., 10 (1960), 1147.

2. ____, Enumeration theorems in infinite abelian groups, Proc. Amer. Math. Soc., 7 (1956), 565-570.

3. L. Fuchs, Abelian groups, Hungarian Academy of Sciences (1958), Budapest.

The Institute for Advanced Study

,