
ON THE ZEROS OF THE SOLUTIONS OF

DAVID LONDON

l Introduction. Let/(z) be a meromorphic function with, at most,
simple poles in a simply-connected domain D, such that f'(z) Φ 0 for
z e D. Let

(1.1) P(z) = i { / ω , *} ,

where

</<*>.*>=(f)'-l(f)"
is the Schwarzian derivative of f(z) with respect to z. In connection
with the function f(z), we consider the differential equation

(1.2) w"(z) + p(z)w(z) = 0 .

The function f(z) may be written in the form

where w^s) and w2(£) are linearly independent solutions of (1.2). The
nontrivial solution

w(z) = i w ^ ) + Bw2(z)

vanishes at zlf z2, * ,zn if, and only if, f(z) takes at these points the
value — BA'1. Hence, it follows that f(z) takes some value in Dn times
if, and only if, there exists a nontrivial solution of (1.2) having n
zeros in D.
This connection was pointed out by Nehari in [3].

DEFINITION 1. The equation (1.2) is disconjugate in D if every
solution of (1.2) vanishes in D not more than once.
Hence, (1.2) is disconjugate in D if, and only if, f(z) is univalent in Zλ

DEFINITION 2. The equation (1.2) is nonoscillatory in D if every
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solution of (1.2) vanishes in D at most a finite number of times.
Hence, (1.2) is nonoscillatory in D if, and only if, f(z) is finitely-valent
in D.

By imposing restrictions on p(z), disconjugacy and nonoscillation
theorems can be obtained. By the above connection, these theorems
are equivalent to theorems about the distribution of the values of f(z).
In this paper these theorems will be formulated as disconjugacy and
nonoscillation theorems only, and not as theorems regarding the values
of f(z).

2. A lemma. The lemma to be proved in this paragraph yields an
upper bound for \p{z)\ on \z\ = p, p < 1. This bound is connected with
the area integral I I | p(z) | dxdy.

LEMMA 1. Let p(z) be analytic in \z\ < 1. Then

\p(z)\dxdy

(2.1) \p(z')\

Proof. Let

Then

and therefore

Jo

π(l

P(P

.-\z'\y

P(z) =

eiβ)dθ =

oo

2πa0 , 0 ^ p < 1 ,

Multiplying by pdp and integrating, we obtain

if \p(z)\dxdy
JJl2l<1

(2.2) π

which proves (2.1) for zf = 0. The transformation

maps \ξ\ < 1 onto \z\ < 1. Let

(2.3)
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We have

<2.4) [( \p(z)\dxdy = ft \p[z(ζ)]\ f *dξdη = (t |ft

and

<2.5)

Applying (2.2) to the function ^(f), and using (2.4) and (2.5) we obtain
the required result (2.1).

REMARK 1. For the special case when the function p(z) is a square
of a function analytic in \z\ < 1, Lemma 1 can be obtained using the
Bergman kernel function of \z\ < 1. (see [4], p. 261, ex. 4).

REMARK 2. (2.1) is a sharp inequality. It is easily proved that the
sign of equality in (2.1) at a point z' = zo,\zo\ < 1, occurs if (and only
if) p(z) is of the form

(1 - zzo

3 A sufficient condition for disconjugacy (I) In [3], Nehari proved
the following theorem (Th. 1, [3], sufficient condition): Let p(z) be analytic
in \z\ < 1. A sufficient condition for (1.2) to be disconjugate in \z\ < 1
is:

This theorem is sharp, as is shown by an example due to E. Hille [2].
From Lemma 1 and from Nehari's theorem, we obtain a disconjugacy

theorem, in which the restriction on p{z) is given by a condition on the
area integral.

THEOREM 1. Let p(z) be analytic in \z\ < 1. A sufficient condition
for (1.2) to be disconjugate in \z\ < 1 is:

<3.2) ^ \p(z)\dxdy £ π .

Proof. From (2.1) and (3.2) it follows that

\\ \p(z)\dxdy 1

\p(z')\<UM<l < ± IzΊ < Ί
7 Γ ( 1 - | 2 ' | 2 ) 2 ~ ( l - \ z ' \ y ' | 2 | < . i .

The assumption of Nehari's theorem is satisfied, and therefore (1.2) is
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disconjugate in \z\ < 1.

REMARK 1. The question of the sharpness of Theorem 1 is still open.
Although both, inequality (2.1) and Nehari's theorem, are sharp, it does
not follow that Theorem 1, which is deduced from them, is sharp too..

REMARK 2. In [7] the following theorem (Th. 4, [7]) is proved: Let
p(z) be analytic in \z\ < 1. A sufficient condition for (1.2) to be dis-

con jugate in \z\ < 1 is

(3.3)

The integral on the left-hand side of (3.3) is defined as the limit for
p —> 1, of the nondecreasing function

From our Theorem 1, it follows that the constant 4 in (3.3) can be
improved to 2π. Indeed, if

"*\p(eίΘ)\dθ ^ 2ττ,
0

then

\2π\p(peiθ)\dθ ^ 2π , p < 1 .
Jo

This implies now the validity of (3.2), and therefore, by Theorem 1, (1.2)
is discon jugate in \z\ < 1.

The constant 2π is, however, not the best possible. In Theorem &
it will be improved to 4ττ.

4. Invariance of the area integral. We shall prove that the area
integral is invariant under the transformation of (1.2), resulting from a
linear mapping of the variable z.

Let

(4.1) ξ = a z + b , ad - be Φ 0 , (? = £ + * ? ) ,
cz + d

be a linear transformation analytic in the simply-connected domain D.
D is mapped by (4.1) onto D'. By this mapping (1.2) will be transfor-
med into an equation of the form

(4.2) W'\ζ) + P{ζ)W\ζ) + Q(ξ)W(ζ) = 0 ,

where
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W(ζ) = w[z(ζ)] .

By the further substitution

(4.3) Wig) = ^ r ,
a — ζc

equation (4.2) takes the form:

(4.4) w[\ζ) + P1(ξ)w1(ζ) = 0 .

The solutions w(z) and wx(ζ) vanish in D and D' respectively at points
z and ξ connected by (4.1). By a simple calculation, or from the prop-
erties of the Schwarzian derivative, it follows that

(4.5)

and hence

W e have thus proved that

(4.6) j j^ I p(z) I dxdy = j ̂ J P
1
(ζ) \ dξdη .

The property expressed by (4.6) is the invariance of the area integral.
The invariance of the area integral yields the following generaliza-

tion of Theorem 1:
THEOREM 1'. Let p(z) be analytic in D, where D is a circle or a

half plane. A sufficient condition for (1.2) to be disconjugate in D is

(3.2)'

Proof. By a suitable linear transformation, D will be mapped onto
the unit circle. From the invariance of the area integral, from Theorem
1, and from the fact that the solutions of (1.2) and (4.4) vanish at cor-
responding points, the desired result follows.

5 A theorem about zeros on the boundary of a certain domain*
Using the invariance of the area integral and a theorem of Grunsky,
we obtain a result regarding the zeros of the solutions of (1.2) on the
boundary of a domain bounded by two orthogonal circular arcs.

THEOREM 2. Let p(z) be analytic in D, where D is a domain bounded
by two orthogonal circular arcs. If
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(5.1)

then no nontrivial solution of (1.2) vanishes twice on one of the arcs
bounding D.

Proof. Let Γ be one- of the two orthogonal arcs bounding D.
Assume that there exists a nontrivial solution w(z) of (1.2) and zlf z2e Γ,
such that:

wfa) = w(z2) = 0 .

Let A be the domain bounded by the arc z±z2 of Γ, and by the arc
passing through zΊ and z29 orthogonal to Γ and lying within D. Let
D2 be the upper half of the unit circle. A suitable linear transformation
maps A onto D2 so that zx and z2 are mapped on ± 1 . As

it follows from the invariance of the area integral that we may assume,
without loss of generality, that D is the upper half of the unit circle, and
z19 z2 are ± 1 .

We shall make use of the following theorem of Grunsky [1]: Let
g(z) be analytic in a convex domain D. Let zlf z2e D be such that

0(Si) = 9(z2) = 0 .

Let A be the triangle with vertices z19 z2 and zr, z' e D. Let A be the area
of Δ. Then

(5.2) 2Ag(z') = {zf - zx) {zr - z2)\\^y\z)dxdy , (z = x + iy) .

From (5.2) we obtain here

2Aw(z') = (zf - l)(z' + ΐ)[[w"(z)dxdy

= - ( * ' - 1) (z9 + l)^p(z)w(z)dxdy ,

and therefore

(5.3) 2A\w(z')\ < \z' - 1| \z' + l | J J jp(^) | \w(z)\dxdy .

Let z* be a point on the boundary of D, at which \w(z)\ takes its
maximum value in D. There are two possibilities:

I. 2* belongs to the circular part of the boundary of D.
II. z* belongs to the diameter of D.
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In case I, we get from (5.3):

Noting that

| z * - l | | s * + l | _-,

we obtain:

(5.4)

Inequalities (5.1) and (5.4) are incompatible, proving our theorem in this
case.

In case II, we use the linear transformation

z + %

Let Df be the lower half of the circle \ξ + i/2| < 1/2. The above trans-
formation maps D onto D', so that the circular part of the boundary of
D is mapped onto the diameter of Df, and the diameter of D is mapped
onto the circular part of the boundary of Dr. The point z*, which accor-
ding to our assumption belongs to the diameter of D, is mapped on the
point ζ*, which belongs to the circular part of the boundary of Dr. The
points z = ± 1 are mapped on the points a = 1/2 — i/2, b = —1/2 — i/2,
which are the two endpoints of the diameter of D\ Equation (1.2) is
transformed into equation (4.4), for which we have

w^a) — w^b) = 0 .

From (4.3) we get

(5.5) Wl(ζ) - w[z(ξ)](-ξ) ,

and therefore:

••(5.6) M0i<ιrιiiΦ*)i.

Let ξ' — ξ — i/2 be any point on the diameter of ΰ ' . We have:

•(5.7) IΓKIΠ

From (5.5), (5.6) and (5.7) we obtain:

< i n \w(z*)\ < \z*\\w(z*)\ -

As f is any point on the diameter of D', and ζ* is a point on the circular
part of the boundary of Df, we conclude, from the last inequality, that
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takes its maximum value in D' on the circular part of the bounda-
ry. From the invariance of the area integral it follows that

We have now the same situation as in case I, for which the proof has
already been completed.

6. A sufficient condition for nonoscillation* Inequality (3.2) was
seen to be a sufficient condition for (1.2) to be disconjugate in \z\ < 1.
The following result shows that mere boundedness of the integral ap-
pearing in (3.2) is sufficient to assure nonoscillation in \z\ < 1.

THEOREM 3. Let p(z) be analytic in \z\ < 1. A sufficient condition

for (1.2) to be nonoscillatory in \z\ < 1 is:

(6.1) (f \p(z)\dxdy<
J JM<1

oo

Proof. Assume that there exists a nontrivial solution w(z) of (1.2)
with infinitely many zeros in \z\ < 1. The set of these zeros has an
accumulation point a on \z\ — 1.

From (6.1) follows the existence of a number p, 0 g p < 1, such that

(6.2) ff \p(z)\dxdy^l.

It is obvious that at least one of the two halves of a circle, having
for diameter the segment connecting two internal points of a given circle,
lies inside the given circle.

As a is an accumulation point of the set of zeros, we can choose
two elements of that set, zx and z2, so that the half circle D, for which
the segment connecting zx and z2 is a diameter, and which lies in \z\ < 1,
will also lie in the circular ring p < \z\ < 1.

Inequality (6.2) implies inequality (5.1) for this half circle D. D is
thus a half circle for which (5.1) is satisfied, and on its diameter there
exist two zeros of (1.2). This last fact is a contradiction to Theorem 2,
so that no such nontrivial solution w(z) of (1.2) exists.

REMARK 1. In [5] the following theorem (Th. 3, [5]) is proved:
Let p(z) be analytic in \z\ < 1. A sufficient condition for (1.2) to be

nonoscillatory in \z\ < 1 is:

(6.3) \2π\p(eiΘ)\dθ< ~ .
Jo

(The integral in (6.3) is defined in paragraph 3).
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This theorem can be deduced from our Theorem 3. Indeed, (6.3)
implies the existence of a bound M such that

\2π\p(ρeίΘ)\dθ <M, O^P<1,
Jo

and, therefore, such that

ίί \p(z)\dxdy<^ .
JJizKi 2

The assumption of Theorem 3 is satisfied, and therefore (1.2) is non-
oscillatory in \z\ < 1.

From the invariance of the area integral follows the validity of
Theorem 3 for every circle and every half plane. In the following theo-
rem, Theorem 3 will be extended to more general domains.

THEOREM 4. Let p(z) be analytic in a domain D bounded by an
analytic Jordan curve. A sufficient condition for (1.2) to be nonoscil-
latory in D is:

(6.1)' \[ \p(z)\dxdy< oo .

Proof. Let ζ = ψ(z) be a function mapping D onto |f | < 1.

In paragraph 4 we described the transformation of (1.2) by a linear
mapping. The transformation of (1.2) by a general mapping ζ = ψ{z)
may be performed in a similar way. In the general case we have to
change (4.3) into

<4.3)f W{ξ) = wffie-t^w .

Equation (1.2) is transformed into an equation of the form (4.4), but

(4.5) becomes now

(4.5)'

As the corresponding solutions of (1.2) and (4.4) vanish at cor-
responding points, equation (1.2) is nonoscillatory in D if, and only if,
equation (4.4) is nonoscillatory in \ξ\ < 1. In order to prove that (4.4)
is nonoscillatory in \ξ\ < 1, it is sufficient, by Theorem 3, to show that

(6.1)" if \p1(ξ)\dξdV
JJ\ζ\<i

Prom (4.5)' we have

\ζ\<l
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(6.4) \\{ζJvm\dξdη = j j j p(z) - l{^(z), z} dxdy

, z}\dxdy .

As D is bounded by an analytic Jordan curve, the function ξ = ψ(z) is
analytic in JD, and for zeDψ\z) Φ 0, so that:

(6.5) \\j{ψ(z),z}\dxdy< co .

Inequality (6.1)" now follows from (6.1)', (6.4) and (6.5).

7* A theorem of Pokornyύ In [8] Pokornyi obtained a sufficient
condition for (1.2) to be dίsconjugate in \z\ < 1. This sufficient condition
follows also from a more general theorem of Nehari (Th. 1, [6]). We give
here an additional proof of Pokornyi's theorem.

THEOREM 5. Let p(z) be analytic in\z\<l. A sufficient condition'
for (1.2) to be disconjugate in \z\ < 1 is:

1-1*
z\<l..

Proof. Assume that there exists a nontrivial solution w(z) of (1.2),.
a n d zu z2, \zλ\, \z2\ < 1, z λ Φ z2, s u c h t h a t

w{zλ) = w(z2) = 0 .

The points zx and z2 determine uniquely a circle passing through them
and orthogonal to \z\ = 1. We denote by C the part of this circle within
\z\ = 1. We may assume, without loss of generality, that C is in the
upper half plane and symmetric with respect to the imaginary axis (see
[6]).

Let ip be the point of C on the imaginary axis. The linear trans-
formation

1 + ipz

maps the unit circle onto itself, and maps zλ and z2 on ft and p2r

— Kρ1<p2< + 1 . Equation (1.2) is transformed into equation (4.4),,
for which

ft) -= Wλ{p2) = 0 .

By (4.5) we have:
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dz

dζ

l — i r r i — i

For - 1 < ξ < + 1, we have

I -

and therefore

(7.2)

Let 0 <fJS < 1 be such that -R <*p1 < pl< R. From (7.2) it follows
that:

(7.3)
P 2

The strict inequality in (7.3) assures the existence of an e > 0 and of
a neighbourhood D of the segment [pu ft], such that

(7.4) <
I j 2

ε , I e Z>.

From Grunsky's theorem, quoted above, we obtain

(7.5)

The domain of integration Δ is the triangle with vertices at plf ρ2, ζr.
A is the area of Δ. Let Db be an ellipse having [plf p2] as its major
axis, and let the magnitude of its minor axis be 26, b > 0. For a small
enough 6, we have D& c D. Let f6 be a point on the boundary of Db,
at which |Pi(ΣΓ)Wi(OI takes its maximum value in D6. From (7.5) it
follows that

2A\w1(ζ1)\ < \ζb - ft I \ζb - ft

Hence,

and therefore

|p,(r.)l >
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We define the number δb by the equation

(7.7) i Λ a - κ ι = / z a - ir^r + s .
It is obvious that δb > 0, and that δb —> 0, for b —> 0. For a small enough
b we have

/rj g\ 2 ^ 2

^ - I f . l ' + i , R2-\ξ»\*

From (7.6), (7.7) and (7.8) it follows that

(7.9) | 2

As ζb 6 D, (7.4) and (7.9) are incompatible, so that no such nontrivial
solution w(z) of (1.2) exists.

8. A sufficient condition for disconjugacy (II). In [4], p. 127, ex.
8, the following theorem is mentioned: Let p(z) be analytic in \z\ S 1.
Then

S 2JΓ

\p(eiθ)\dθ was defined for functions
0

analytic in the open unit circle. It is easily seen that if we use the
above definition for the integral in the right-hand side of (8.1), then
(8.1) is also valid for functions analytic in the open unit circle.

From (8.1) and from Theorem 5, we obtain now the following dis-
conjugacy theorem:

THEOREM 6. Let p(z) be analytic in \z\ < 1. A sufficient condition

for (1.2) to be disconjugate in \z\ < 1 is:

(8.2) [2π\(p(eίθ)\dθ ^Aπ .
Jo

(The integral in (8.2) was defined in paragraph 3).

Proof. By (8.1), for functions analytic in \z\ < 1, and by (8.2), we
have:

| ( ) I 4 • M < 1
" v " - 2 π ( l - | z | 2 ) ~ 1 - 1

The validity of (7.1) is thus proved, and therefore, by Theorem 5, (1.2)
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is disconjugate in \z\ < 1.

REMARK 1. Theorem 6 improves Theorem 4 in [7]. (see Remark 2
in paragraph 3).

REMARK 2. The question whether the constant 4π in (8.2) is the
best possible is left open. That it cannot be improved too much is shown
by the example p(z) == ττ2/4. The corresponding equation (1.2) is dis-
con jugate in \z\ < 1, and

[2π\p(eiθ)\dθ = — ^ 4 . 9 τ τ .
Jo 2
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