BOUNDS OF ANALYTIC FUNCTIONS OF TWO COMPLEX
VARIABLES IN DOMAINS WITH THE
BERGMAN-SHILOV BOUNDARY

J. SLADKOWSKA

Introduction. From the function-theoretic point of view, the three-
dimensional boundary of a domain (in the space of two complex variables)
does not play a role analogous to the boundary curve in the theory of
one variable. In order to be able to use methods similar to those in one
variable, Bergman introduces analytic polyhedra, i.e., domains bounded
by finitely many segments of analytic hypersurfaces.! On the three-
dimensional boundary of an analytic polyhedron lies a two-dimensional
manifold which, from the function-theoretic point of view, plays a role
similar to that of the boundary curve. In studying the value distribution
of holomorphic and meromorphic functions in an analytic polyhedron,
we can distinguish with Bergman two types of problems:

(1) derivation of bounds for a function in terms of values on the
(two-dimensional) distinguished boundary (the so-called Bergman-Silov
boundary),

(2) studies of the relations between the value distribution on the
complementary part of the boundary and in the interior of the domain.
While studies of problems of type (1) proceed along the lines similar to
those in the case of one variable (through repeated use of the Cauchy
and Poisson-Jensen formula, etc.), the investigation of problems of type
(2) has a different character. Bergman and Charzynski considered the
case of functions f(z,,2,) which belong to a normal family in every
lamina. For instance, they assume f(z, 2,) to be a Schlicht function in
every lamina. In this case it is possible to obtain bounds for |f| in
terms of its maximum along a one-dimensional boundary manifold. In
the present paper, the investigation of problems of type (2) is continued,
and we assume that the function f in every lamina is mean multivalent
of order p (see § 1 for details). The order p = p()\) is a function of the
parameter \’; p(\) is square-integrable.

Let ®* be a segment of an analytic surface & which intersects the
polyhedron. We obtain bounds for [f(z, 2.)]|, (2, 2,) € &, in terms of

(a) the minimum and the maximum of |f| on the one-dimensional

manifold mentioned before,

(b) a quantity connected with p()\),
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L An analytic hypersurface is a one-parameter family of analytic surfaces called a laminas.
2 The laminas of a segment of an analytic hypersurface depend on a parameter A.
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(c) certain constants which depend only upon the domain and the
surface ®3.

0. Definitions and notations. We shall consider an arbitrary
bounded domain B lying in the space of two complex variables z,, 2,, 2, =
%, + i, k=1,2. We assume that the boundary 0°® of this domain
consists of finitely many segments

(0.1) el k=1,---,m,

of analytic hypersurfaces. Every such segment is given by a parametric
representation of the form

0.2) 2 = hy(Zy, M), 25 = ha(Zy, M)

where h,,(Z,, ;) and h,(Z,, \;) are continuously differentiable functions
of Z,, N\, in the set {(Z,, \):|Z,]| =1,0 =\, =27}, For a fixed & and
N, the corresponding set of points (0.2) will be called a lamina of ¢} and
designated Ji(\x). We assume that

0.3) Jiv) N i) = 0 1f M = N
and that for fixed \,
(0.4) (Puie(Zis M)y Bl ZiEy M) # (hui( Z2 s M)y Boai(Z W)

The set ¥ of points (0.2) corresponding to the values | Z,|=1, k=1, «--, n,
constitutes the so-called Bergman-éilov boundary surface of B on which
the maximum principle holds for functions regular in B (see [1]). We
shall also assume that for every |ZO| <1, M, k=1, .--,%, and for
sufficiently small ¢ > 0, the set of points (0.2) which correspond to the
values

| Z, — ZP | <o, M — AN <o
of the parameters contain all the points of b* lying sufficiently near the
point
A = halZ0, ), = ha(Z0, )

The set of points of four-dimensional space of the form
(0-5) = gl(g); %y = g2(é’), fe D )

where ® is a domain in the ¢-plane, and the expressions on the right-
hand sides of (0.5) are holomorphic functions of ¢ in © and continuous
in ®, is called an analytic surface.

The set of points which corresponds to the values e d(D)® will be

3 9(®) = boundary of D
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called the boundary of the surface.
The complement of B with respect to the whole space will be called p,.

1. Bounds for the function f(2;,2,) on the analytic surface. Let
B be a domain described in §0 and let &} denote an analytic surface
of the form (0.5). We assume that &; has common points with B and
its whole boundary lies in %,. Further, let the intersection & with B
satisfy the following conditions:

1°. The intersection is a segment

G =6 N B = {21, 2): 2: = 5:(£), 2. = 9:(), [E] < 1} .
Here ¢,(), 9,() are analytic functions which are regular in || < 1 and

continuous in |¢] = 1.

2°. The boundary curve g' of & is the intersection & with b
We assume that

9" =1{(z, 2.): 2 = 9.(€"), 2, = 9,(¢¥), 0 = ¢ = 27}
can be divided into J parts
i = {(z, 2): 2. = 0u(€%), 2, = 9:(€), P; = P = Pyui} s
i=1 <P < o <Py =@+ 2,
so that gjee;, k; + k;, for j, # j, and only the points
(9:(e™), g:(e¥), 5 =1, -+, J,
belong to $2.

3°. Every point of g} lies in a certain lamina, say
?Sij(kkj) = {(21, zz): = hlkj(ijv )ij), 2y, = kzkj(ij’ 7\%])} .

Hence, by (0.3) and (0.4), functions Ny, = N, (P) and Z,, = Z, (P), P; =
P = @;.,, exist such that

g5 = {(21, 22): 21 = Ry (2 (P)y Mi (P))s 22 = Poie (Z0 (P)s Mt (P))s
P;i=P = Pt

We assume that X\, (9), Z, j(<p),j =1,-.-.,J, are continuous and that
N j(<p) are also monotone in the intervals <{@;, @;,,>. Therefore, the
derivatives M} () exist almost everywhere.

4°. Since M\ (@) are monotone in {p;, @,.,», there exist inverse
functions ¢,(\,) in the intervals {a;, 8,>=N (P;, Pj+.)). The derivatives
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Pi(\,) also exist in {a;, B;> almost everywhere. We shall assume that
[Piv ) = @, j=1,.,J.

5°. The intersection ®&; is such that the expressions 1— |Z, (®)}
go to zero no faster than some positive power of ¢ — @; or @ — @, if
@ — @; + or ¢ — @, —, respectively.

The hypotheses 1°, 2°, and 3° are the same as hypotheses 1, 2, and
3 in [4], p. 188. Instead of hypothesis 6, [4] we have the weaker
hypothesis 5°.

We define now a family of functions in a domain ®B. The func-
tion f(z,2,) defined in B will be called the function of the family
F5(&;, P), P> 0, if it satisfies the following conditions:

1°°. f(z, %) is regular in the set B, = B\F continuous in B, =
B, UG NP

2°°, f(z,2,) # 0 in B,

3°°. On almost every lamina Ji,(\;), @; = N, = B;, the function
f(2y, %) = by (Ziyy M Do P (Zijy M) considered as a function of one
variable Z, in the circle |Z,,| <1 is a mean multivalent function of
the order p;(»;)) in the sense of Biernacki, see [5], [7].°

4°°, The functions p;(\; ;) may grow to infinity, but in such a way
that they are square-integrable in {a;, B;).

J B 1/2
50, 5 <2iﬁg ! p;(xkj)dxkj> < JP.0
Jj=1 a’rj

DEFINITION. Every f(z,, 2,) which belongs to Fx(Si, P) will be called.
a mean multivalent function of the order P with respect to &.
We set

(1.1) b=min[l, min [f(he 0, M), hu (0, 2 )],
@ =g =By
J=1,e00,T

1.1 L =max[1, max |[f(hu;(0, M), P (0, M) [] .
m;;)\kjéﬁj

§=1,00e7,

4+ From hypothesis 6 it follows that 1 —| Zx j(w) | must go to zero no faster than 1/logl¢—¢jl.
5 A function f(z) regular in [z| <1 is called mean multivalent of order p in the sence
of Biernacki if

p(B) = 5 [ n(Re®)d0 = p

for every positive number R. Here n(Rei) designate the number of Re!® — points of f(z)
in [z] < 1.
6 The integrals here are in the sense of Lebesgue.
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THEOREM 1. For every ¢ > 0 there exists r,, 0 < r, < 1, so that at
every point of G*, say at 2 = 9.5, 23 = 9«&), the function f(z, 2,)¢€
F(®5, P) satisfies the inequality

B 1—7 2T PQ\ (L+18o1)/(1—1So)) 1 + r 2T PQ\ (1+1¢p!)/ (1—1gpl
9 (2 s s (e ()
) (U =1/ 2) L

for every r = 1,

Proof. First, we prove the last inequality in (*). Let ¢ > 0. By
hypothesis 5° there exist positive numbers a; and b; such that

im L= 14PN gng tim 1= 124(P)]
=95 r (¢ P )mJ AT ESt (@JH @)M

are different from zero.” Hence, there are positive numbers, say A;
and B;, and a positive number 7’ such that

1.2) 1—=1Z(P)| > Aip — )™
and
(1.2) 1—1Z, (@) > Bi(Pisa — P

for 0 <@ —@; <7 or 0 < @;y, —p <7, respectively. Further, since
the functions

@,;(%) = x log? —=— A + 2a ;2 log

+ 2aix
J AJw J ’

and

+ 2blw

@,;(x) = x log® + 2b;x log

Bjx® ij

go to zero for x — 0+, there exists an %” > 0 such that

(1.3) 0,4(8) < = @(%) =

SQJ :pr’ SQJ *p?
for 0 < 2 <%". If we set now
7 = min (7, 7") ,

then the inequalities (1.2), (1.2") and (1.3), respectively, are satisfied for
0<p—9; <0< @, —p<nand 0 <27

Let (22, 2)e®’. Then 2! = ¢.(&), 25 = 9:(&,). We consider now the
function f(z, 2,) in the segment &, i.e., £(9.(£), g©)) in || £1. Con-
sidered as a function of ¢ it is regular in || <1 and continuous in

" a4, b; may be infinite.
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|¢] 1. For ¢ = e* it has the following bounds
; ; 1412, (p)]
1.4) F(g:e), 9:e™))| = L\ ——ZEo
( 10, oo = 1T
fOI' @e(¢1’¢3+1), j:]-;""Jv

This is a consequence of the fact that f(z, 2, assumes at the point
(9:(¢%), 9.(¢%)) the values of the multivalent functions f(hy ,(Z, 2 M)y
ho (Zi s M ))) (of order p;(\ (#))) at the pomt Zy,(®), see [7], p. 116.
We divide the line g} into two parts §! and g} as follows

>2p_1()\kj(¢))

45 = {(21, 22): 2, = 9.(€%), 2, = 9,(€"), PELP; + 1, Pia — W},
g; = {(21, 2,): & = 9.(6%), 2, = g,(e”), p € <¢j, Pi+1) U (Pipr — 1, 9Dj+1>} .

It is easy to see that 7, exists such that for every point (g,(¢%), g.(¢*?))
the inequality |Z, (®)| < 7, holds (this follows from the continuity of
the functions Z, (#)). Therefore, for these points, the inequalities (1.4)
give the following bounds
29 :(\p (@)

(L.5) |7 @e), o) = L{(TEL)™

for every r =, and for pelp; + 9, P — 7, =1,+-+,J. On the
complementary part of g'® we have the inequalities

(1.6) | £(9:(e7%), g:(e)) | = L( _I(QD_—Z_;;)W)%W )
for pe(p;, @5+ 1),

and

(1.6) | £ (@), )| = L(?e(_@“z?’aﬂj

for  €(Pjrr — 7, Pisa) -
This follows from (1.4), (1.2) and (1.2').
Applying now the Poisson formula to the function log|f(g.($), 9:(£))],
which is harmonic in || < 1 and continuous in |{| <1, and using the
inequalities (1.5), (1 6) and (1.6’) we obtain

log |62, )| = o | log | £(6(6"), 96" | re-S- T 50dy

&
i [ @I+1—7 lOg L( 1+7r >2PJ()\I‘J(¢))’I‘6 e:(p + é‘o
+ —1——S¢J+llog L
J

2 S¢;+n 1—7r - é‘o
2r Jo

2 )2,;}(:\], ((0))7' eup + Cod
L et P ]

do

(Ai(¢ — ;)Y — &
2w Josi-n Bip,,, — »)*

8 Except for the points (gi(et®J), ga(e!¥s)).
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Interchanging the variables of integration and applying the Schwarz
inequality to the last two integrals we get

log | £, 2)| = 16l S [2% g“”“mg Ldg
4

11— = j
1+ 7» 1 (Meyles+1—m ,
+ 2log 1=/ 127 Jaorem D )P0 YN

2 A4 @j+n) ,
= /T w0 s,

)\quo

¢jtn 2
log? ——————do
1/84’1 £ Alp — p;)™

V7 o —~2—_?);d(p] :

#3417 Bi(®;

2 Ak (@j+1) ,
eV [T ol i,

)"kj(¢1+1—ﬂ)

Evaluating the integrals

dp and S{Pm log® 2

—Qdy,
g1 Bj(@jﬂ - (P)bj

log

g¢j+77 . 2
2] Al — @)

using hypotheses 4°,4°° and 5°°° and inequalities (1.3), we have

0 40 1+ |&l . 1+7r J_l_ﬁﬂ
log | f(23, 23) | é——m[logLJrQ 2log<1 r)g - S Di(\x )N,

- (T (L N ©)

27[ )‘kj((pj)

Ap i (@541) S
L i, V)

1 [log 1+ 207P10g( 1)

2 7[-5 .
t &Y wrvour 27P |

-2 {2 ),

)\kj((/’]_],l—’])

Il/\

Therefore, finally
1 + 27 PQ\ (1+1¢oH/ 1+1goh)
0 S| < g
(L.7) 7@ A = (en(TEE))

which is the first inequality of (x). We notice now that
9 From 5°° and the Schwarz inequality, we get

7 8
3 oLy ! <% el Pt )

1 Ak (@417
2n N 5 (@ 5+m

SZ

/=1 2n

L VE—a aj/ [ e, = g (o pan,) "< 3P
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1
S (21, 25)

e Fp(®5, P) if f(z, 2) € FH(Sh, P)°.
Moreover,

max( 1, max
w}.S_AkjéBj

1 )
F Ui (0, Np), T 0, g )

= max(l, - 1
min f(hlkj(o’ ij); h/2lcj(07 7\%1)]

olljé)‘kjéﬁj

1
= — -
= "min (L, min | £ (s 0, V), B0, )

@jSAg ;5B

1
=

Applying the inequality (1.7) to the function 1/f(2,, 2,), we obtain the
inequality

1 1 1 + r 2T PQ\ (1+(go1)/ (1—=1¢&o1)
1.8 Ty =\ T
(1.8) f(zl,zz)—<6 Hi=r) )

for r = 7, 7, is here the same as in (1.7), because it is independent of
the function. From (1.8) we have

27 PQ\ (1+18p)/ (1~1gol)
(1.9) |f (&, 2)| = (6‘%(1—}:—) ) o

The inequalities (1.7) and (1.9) give the conclusion of the theorem.

REMARK 1. Modifying the definition of the family #(®;, P), we
obtain somewhat simpler analogous results. Instead of hypothesis 4°°
we assume that the function p;(\;,(®)) considered as a function of the
variable @ is square-integrable in the interval {p;, ;.,>, and we replace
condition 5°° by the condition

5 (o (o) = TP

The assumptions that ), (@) are continuous and monotonic and that
|#'(\))| = @ are now superfluous. The family of functions which satisfy
these conditions will be called .7 (&, P). For functions of that family
we can prove

THEOREM 1'. For every ¢ > 0 there exists 7, 0 < r, < 1, such that
for every point (22, 23) € & and for every f (2, 2,) € F §(&}, P) the inequality

1—7 2J P _E>(1+|§0|)/(1-|§01) - 0 0| < 1 + 7 2J P . (1418011 A=1ol)
a0 (1) =17@ ) s (L))

10 If f(z) = 0 and is mean-multivalent of order p in the sense of Biernacki, then 1/1(2)
has the same property.
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holds for every r = r,.

The number #,is chosen in the following way. Let e > 0 be an arbitrary
number. The number 7’ is chosen in the same way as in the proof
given above; 7" is such that

e?
8J2P?

for 0 <o <7%”. We set 7 = min(y’, ") and for 7 we choose a number
7, as previously.

REMARK 2. If the surface & intersects only one boundary segment,
say e, and the line of intersection g' lies ¢},, where
leo = {(zly 22): zl = hlk(Zk, >"k)7 ]Zkl é Iro} ’

then

(111) (l(]l_ ; ;[;>2PQ>(1+|§0|)/(1—|§0|) § }f(z?, zg)] é (L(i‘ i r >2PQ>(1+|§0|)/<1_|5~0|)

for every r = 7, in the case that f(z,, 2,) € F(S, P) and

1 — g \2P\ @150/ a—1goh) _ 1 -+ 7 2B\ @+Igh a=igeh
(117 (l > < |1f (2, 2 s(L( )
aw) ((==)) s Ife )l = (L{(55))

if f(zy, 2) € F (S, P).
Indeed, for every @ for which (g,(e*), g.(¢%)) € Clergs the corresponding
point Z,(p) satisfies the inequality

(1.12) [ZdP)] =70,

and therefore

. . 2D, (A (@)
|7(@e), aile)| = L{(TEL)™
-7
for €0, 27>. Applying, as previously, the Poisson formula and using
the inequality (1.12), we obtain (1.11) in the first case and (1,11') in

the second.

REMARK 3. The result of Theorems 1 and 1’ can be obtained without
requiring that B is an analytic polyhedron. It is sufficient to assume
that the part of the boundary which intersects by &} is a sum of the
analytic hypersurfaces mentioned in § 0. Concerning the complementary
part of the boundary no special hypotheses are needed.

REMARK 4. The lower and upper bounds of |f| are expressed in
terms of the minimum and the maximum of |f| on the manifold
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J
jL=Jl )\kJeL@J”J-ﬂf (h’lkj(or 7\'ch); hzkj(oi 7\"kj)) .

We note that analogous bounds can be obtained in term of the minimum

and the maximum of |f| on a manifold

U U (e fZe0n) ), b (B (0) M) 5

i=1 )\kje«xj,sy

where |Z, (M) <1 and Z, ,(M,) are continuously differentiable functions
of N, €<, B;>. These new bounds are obtained by changing the para-
metric representations of e} pJd=1,--+,J, as follows:

e, = {(2, 2): 2, = %MJ(ZN/W k‘kj)! 2 = ﬁ2kj(ijr 7\'1;,)} ,

|Z,] =1, where

> 77 _ Z - A (7\1 )
P, (L 0y Ni,) = k kg \Vk
kj( K kj) h kj(l '—j llkj(x/jkg)zikq ’ ij) ’

Here
Zy(a;)  for N, €0, @))
Ai (M) = 12, (\))  for M, €<ay, B
Z,, (B;)  for N\ €(By, 21> .

REMARK 5. Let 0 < R< 1 and let

2= {21, 2): 20 = :(£), 2. = 9:(0), || < R} .
Then for every (2, 2.) € ®% and for every f(z,, 2,) € Fz(Si, P) the inequality

** (e%l(i_jr_%)m)(“ﬂ”“_m = 17 2] = (¢ T(FEL) )

holds; here 7, depends only upon B, &; and e.

Let {8, be the set of all segments B of analytic surfaces &; for
which the conditions 1°-5° are fulfilled and for which the set of the
corresponding numbers 7, has an upper bound smaller than r, < 1. We set

@R = U ®3z .
G2el®?y

For every (z,, 2,) € ®; the inequality

(***) (e_el(i_;_%)mm)um)/u—m e 2)] < <69L<i%:‘z

IA

>2JPQ> (1+R)/(1—R)

holds. Corresponding to {®%, we define a sequence of sets {2,} by
induction as follows:
1. %Il = @R'
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2. %A, is the set of all points (z,2)eB\QL U -+ U A,) which
belong to at least one of the analytic surfaces & lying in B and having
its boundary in 2, U --- U A,. The sum of all the sets A, will be denoted
by A and called the associated domain corresponding to the set {&%,,
and to the number R. We can prove (similarly to [6], p. 33) that the
inequality (***) holds in the full set 2, and consequently also in its
closure ;.

2. The case of a bounded p(\). If we replace the hypotheses 4°°
and 5°° by the condition

(2.1) i) = P for N ela, B, i =1, -, J,

the function f which satisfies the hypotheses 1°°-3°° and the condition
(2.1) belongs to the family .7, (&}, P) and even to the family & §(&;, P)*.
For these functions the inequality (*) follows from Theorem 1’. However,
repeating the proof of theorem 1’ and using the condition (2,1) yields
a better result.

THEOREM 2. For every € > 0 there exists r,, 0 < r, < 1, such that
for every point (21,2)) €& and for every function fe 7 §(&i, P) the
inequalities

_ 2P (1+1goN/ a=1goh (1+1goD/ A—=1goD
2.2) (z(h;’:) e—s> TR < r, zg)|§(L(i_“_L_:)ee) i

hold for every r = r, if f satisfies condition (2.1).

The proof of Theorem 2 proceeds in a way analogous to that of
Theorem 1. Let 7 = min (¥, 7""), where 7' has the same meaning as in
the proof on p. 8, and 7" > 0 is chosen in such a way that for 0 < 2z < 7"

(%) = mlogAii —a;xlogr — ax < Eg—Pe,
,(x) = wlog—z—— b;jxlogar — bz < T
! B; 2JP

hold. We choose 7, in the same way as before. If we assume, instead
of hypothesis 5°, that 1 —|Z, j(gv)] goes to zero no faster than (p — @,)%
or (Piy — ®)*, where 0 < a;, b; < 1/2P, when ¢ — @;+ or ¢ — @j,—,
respectively (hypothesis 5°'), we can obtain a better inequality.

THEOREM 3. For every sufficiently small € > 0 there exists 1, 0 <
ro < 1 such that for every point (2, 2))e®* and for every function
fe 7 §(&;, P) the inequalities

11 Indeed, the functions pj(lkj(go)), ¢€<p;, ¢, > being bounded, are square-integrable.
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0 LBI() o) stren s EEIE G2+

hold for every r = 1, if the function f satisfies the condition (2.1) and
if, instead of hypothesis 5°, hypothesis 5°' is fulfilled.

Proof. Let ¢ >0 and ¢ < 1/I. It follows from hypothesis 5°' that
there exist numbers A;, B; > 0 and 7’ > 0 such that

24) 1—1Z,(9)| > A — 9" and 1 —[Z(P)| > BiPsrs — P)

for0< @ —@; <7 and 0 < @, — @ < 7', respectively. Let 7" >0 be
a number such that, for 0 < z < %",

- 2 2P wl—ZPa.j T
2.5 o x)=L{=—) L <=
(2.5) s@) = L(1) T < 7o
and
« 2 2P xl—ﬂ’bj T
2.5 b )=L(-52) 2 <=2
@) @) <B,.> 1—2py, ~ 7

hold. We set » = min (', 7”). There exists 7, 0 < r, < 1, such that
(2.6) |Z (P =7, for pe(P;+ 1, @i — ), 5=1, -, J.

Applying the Cauchy formula to the function f(g,(%), 9.(¢)) which is regular
in |¢| < 1 and continuous in |¢| £ 1, dividing the interval of integration
and using the inequalities (2.6), (1.4), (2.4), (2.5), and (2.5'), we obtain

2.7 £, )| = (980, 9:(E))| =

1 Sh i¢p i eifl’ + fo
o ), (0, gi(e)re 2 7 de
LGl $I1 [rep(L )
= —20 o L
_l—lé’o[agl 21 Jogtn (1—?) do

1 Sa’ji—n 2 2P

+ = L{i—=———) d

2. Haposy) @

@4

1 S‘PJH 2
R e,
27 Jogya (Bj(%ﬂ —sv)”f) 4

S TERHEEE) +4].

If we apply the inequality obtained above to the function 1/f(z,, z.),

which also belongs to 7 §(®;, P) and for which the condition (2.1) holds,
we have the inequality

12 Here l = min ]f(hlkj(oy ij), hzkj(O, llc])) ], L = max lf(hllcj(oy lk:,'); thj(Oy lkj)) |» l may be‘
larger than 1 or m smaller than 1.
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e ST GER)
for r = r,. Hence,
@0 15601238 e e (a9
l<1—7‘> te

From (2.7) and (2.8), (2.3) follows.

REMARK 1. The inequality on the right hand side of (2.8) is obtained
in the same way as an inequality obtained by Bergman (see [4] p. 190).
Bergman assumes that the function f omits the values 0 and 1 in every
lamina and, instead of the inequality (1.5), he applies an inequality,
which follows from the Schottky theorem.

The case when & intersects 0® along only one segment e} so that
the line of the intersection g' lies in e}, is of special interest. This case
is considered in remark 2 of § 1. We assume there that the function
S belongs to the family & §(&;, P). However, if we assume in addition
that p(\;) < P (this means that f(h,.(Z;, \.), ha(Z1, \i)) is mean multivalent
of at most order P in every lamina 2(n,) for which J&(\;) N g* # 0) we
obtain a better result, using, instead of the Poisson formula, the minimum
and maximum principles (see [6], p. 31). This method yields the following
theorem:

THEOREM 4. If g'Cej,, fe.7 §(&i, P) and the additional condition
p(\;) = P 1is satisfied on every lamina J2(N\,) which is intersected by g,
then for every (2%, 25) e & and for every r = r, the inequality

(320) = s ) = (22T

holds. Here,

L= min | £(7(0, ), B0, ) |
€%k

L = max | f (70, N\y), hai(0, X)) |
AR Esy

s, designates the set of N, for which J2(\) N gt # 0.

REMARK 1. Bergman [2], [3], [4] obtained an upper bound for | f| on
an analytic surface, which intersects b° along a line lying in e},, under
the assumption that f is a univalent function in every lamina J5(\).

13 1 B 1 =i
- l

max )
aj=he, =8 Slhare 0, Ai;), hae;(0, Ak ;) wjgi?c;ngﬁjU(hlkj(O’ 2 3), har 50, 2x)) |
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The bound is expressed in terms of the maximum of |f| and of the
maximum of the absolute value of the derivate of f(h,(Z., M), ha(Zr, M)
with respect Z, on a one-dimensional manifold lying on 02,

3. Example. Let @ be a univalent function in |¢{| < 1, continuous
in [t]| =1, |0()| <1 for [t] =1 and t # exp(t\), [@[exp(ir)]| =1. In
addition we assume that

3.1 S L2

o (1 —[@(e™M)])
exists. Let
B = {(zlr zz): 45 = Z: %y = @(t)r IZI <1, ltl < 1} .

B is a domain which is obtained from the bicylinder | Z| < 1, |t]| < 1 by
pseudo-conformal mapping z,=Z, 2,=@(t). Its three-dimensional boundary
b® consists of two segments, say e} and e, of analytic hypersurfaces:

et ={(2,2):z=122=0@"),|Z =1,0 =)\ < 21}
6 = (o ) 2 = 6™, 2, = O(t), [E] = 1,0 = », < 27} .

B is obviously an analytic polyhedron. The Bergman-Silov boundary of
B is a two-dimensional manifold

=z, 2): 20 = €™, 2, = D(e™), 0 =\, = 27, 0 =\, < 271}
Let &2 be a plane
2, =769 0<1r, <1, 6, real number .
The common part & = & N B can be represented in the form
& = {(2,, 2.): 2, = 16", 2, = D), |€]| £ 1} .
The intersection ¢ = &} N ° has the parametric representation
g = {(z, 22): 2, = 1,6, 2, = O(e*), 0 < p < 27} .

Here, @ = )\, and (d@)/(d\,) = 1. & intersects the segment ¢ only, and
the line of the intersection g' lies in e},. We consider the function

(3.2) ﬂ%@=w%5§ﬁ?~0.

It is holomorphic in %B; its singularities lie on the line
&' = {(2, #,): 2, = €V, 2, = O[exp(iN)], 0 =< + < 27},

which belongs to_%Z. f(zy, 2,) is different from zero and holomorphic in
the segment &* (&* has no common points with %*). Now, we shall prove



BOUNDS OF ANALYTIC FUNCTIONS 1449

that on every lamina
(3.3) Ji) = {2y, 2): 2 = Z, 2, = O(e™), | Z] = 1},

except on lamina (2(\)), the function (8.2) is mean multivalent of order

-1 D S
p(\y) = - <2 + a- ](D(M)DZ) + 1

in the sense of Biernacki.
Let @ be an arbitrary complex number such that

(3.4) la] <e? or |a|=1.

We want to estimate the number of a-points of function (2.3) in lamina
(8.8). This number is equal to the number of a-points of the function

(8.5) eXp((—lm — 1)

in the circle |Z] < 1. We must estimate the number of roots of the
-equation

1 -
(3.6) exp((—m—z— — 1> =a

which lie in |Z] < 1. From (3.6) we have

Z= (Z)(e:a[“l) <l V1 —I—lloga> '

As |Z] <1,
1 l ;
1 - @ “\l .
i 11+ loga <o)
Hence, by hypothesis (3.4)
1 < ;
— > 1— |@(et™
Vi1 + loga| — |2(e™)]
and
1
(3.7 I1+loga| < —
1 — 2™y
From (8.7) it follows that
1
larga| £ — o — .
1 — o))
If we set arga = Arga + 2kw, k=0, +£1, +2, ..., where |Arga| = 7,

then
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1
|@(e™)))
1
1 — [@(e™)])

2|k|r — |Argal = i

@k — I <

and finally

1 1 1
HE (3 TTeey)

The number n(a, \,) of a-points of (3.2) in lamina (3.3) cannot exceed
2|k| + 1; this means that

plal, ) = 2= [ "na, vdarga = 2 (2+ = l;(e"*l)lY) +1

for |a| = e? or |a| = 1. For numbers a such that e =< |a]| <1, the
corresponding number p(|a|, \,) is = 1. Hence,

1
1 — [@(e™)])

p(kl)=supp(lal,7wl)é—1—(2+ >+1.
lal T

b4

The function p(\,) becomes infinite as A, — A}, but S P*(\)dN, exists, as
1)

a consequence of (3.1), and

1 52" 2 2 2 1
8) — Ay £ L 4 L 2
3.8) ——| P)dh = 5+ 5+ o
2_ l_ Szz d)\:l _I__SZI d)\ll
* <7z3 * 77:2>  AF O | 2 @ — 0@

The function (3.2) belongs to the family Fy(®;, P), where B and &} are
the domains and the analytic surface described above. P equals a square
root of the right-hand side of (3.8). Here, @ =1,J =1,

! = min (1, nlin | £(0, §(eM)]) =1
0sA 2T

L = max (1, max |f(0, @(e™)]) =1.
0sAps2r

Applying Theorem 1 and remark 1 of §1, we can say: for every
(28, 23) = (1'%, 0(8y), 1&,] < 1, and for every r = r, the inequalities

— g \2PHIBD] =180 ])
A e R

IIA

: |
e : —1
Jexs( ey Y
< <1 + ,,.>2pu+1§0|)/(1—1§0n
“\1—7r

hold. The inequality on the right-hand side of (8.9) gives a better



BOUNDS OF ANALYTIC FUNCTIONS 1451

estimate for 7, and |&,| sufficiently near to 1, then the inequality

iexp( 1 - roelwoq)(go)y B 1>‘ = eXP(ﬁW - 1) S

which we may obtain directly.
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