A THEOREM ON THE ACTION OF SO(@)

D. MoNTGOMERY AND C. T. YANG

1. Introduction. We shall use notions given in [1]. Let G be a
compact Lie group acting on a locally compact Hausdorff space X. We
denote by F'(G, X) the set of stationary points of G in X, that is,
FG,X)={xeX|Ge =x}. If G is a cyclic group generated by gcG@G,
F(G, X) is also written F(g, X).

Whenever z € X, we call Gx = {gx|g € G} the orbit of x and G, =
{9€G|gx = x} the isotropy group at x. By a principal orbit we mean
an orbit Gx such that G, is minimal. By an exceptional orbit we mean
an orbit of maximal dimension which is not a principal orbit. By a
singular orbit we mean an orbit not of maximal dimension. Denote by
U the union of all the principal orbits, by D the union of all the
exceptional orbits and by B the union of all the singular orbits. Then
U, D and B are all G-invariant and they are mutually disjoint. Moreover,
X=UUDU B and both B and D U B are closed in X.

Denote by X* the orbit space X/G and by 7 the natural projection
of X onto X*. Whenever A C X, A* denotes the image 7A. If X is
a connected cohomology n-manifold over Z [1; p. 9], where Z denotes
the ring of integers, then the following results are known.

(1.1) U* is connected [1; p. 122] so that whenever x,y € U, G, and
G, are conjugate.

(1.2) dim,B* =< dim,U* — 1 so that if r is the dimension of princi-
pal orbits and B, ts the union of all the k-dimensional singular orbits
(k< 7), thendim,B, <n —r + k —1]1; p. 118]. Hence dim,B < n — 2,

Denote by E"*' the euclidean (n + 1)-space, by S™ the unit n-sphere
in E** and by SO(3) the rotation group of E®. In this note G is to be
SO(8) and X is to be a compact cohomology #n-manifold over Z with
H*X; Z) = H*(S*; Z).

Let us first observe the following examples.

1. Let G = 80(3) act trivially on X = §'. (Here we have n =1.)

2. Let G =S0(3) act on E**' = E° x E"*(n = 4) by the definition

9(z, y) = (92, 9) ,

where the action of G on E° is an irreducible orthogonal action. Then
G acts on X = S" and in this action, the 2-dimensional orbits are all
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projective planes, F'(G, X) is an (n — 5)-sphere and for every z¢ U, G,
is a dihedral group of order 4.

3. Let G=80(3) act on E**"' = E*x E*x E"%n =5) by the
definition

9(x, y, 2) = (g9, 9y, 2) ,

where the action on E?® is the familiar one. Then G acts on X = S*
and in this action, the 2-dimensional orbits are all 2-spheres, F'(G, X) is
an (n — 6)-sphere and for every z¢ U, G, is the identity group.

In all three examples, D = ¢ and dim B = n — 2. The orbit space
X* is X itself in the first example and it is a closed (n — 8)-cell with
boundary B* in the other two examples.

The purpose of this note is to prove that if X is a compact cohomology
n-manifold over Z with H*(X; Z) = H*(S*; Z), then every action of
G = SO(3) on X with dim, B =n — 2 strongly resembles one of these
examples. In fact, we shall prove the following:

THEOREM. Let X be a compact cohomology n-manifold over Z with
H*X; Z) = H*S"; Z) and let G = SO(3) act on X with dim, B=n — 2,
Then D = ¢ and one of the following occurs.

1. n=1 and G acts trivially on X.

2. n=4 and for every xe U, G, is a dihedral group of order 4.
Moreover, the 2-dimensional ordits are all projective planes and F(G, X)
18 a compact cohomology (n — 5)-manifold over Z, with H*(F (G, X); Z,)=
H*(S"*; Z,), where Z, denotes the prime field of characteristic 2.

8. n=5 and for every xc U, G, is the identity group. Moreover,
the 2-dimensional orbits are all 2-spheres and F(G, X) is a compact
cohomology (n — 6)-manifold over Z, with H*(F (G, X); Z,) = H*(S""%; Z,).

In the last two cases, B* is a compact cohomology (n — 4)-manifold
over Z with H*(B*; Z) = H*(S** Z) and X* is a compact Hausdorff
space which is cohomologically trivial over Z and such that X* — B*
18 a cohomology (n — 3)-manifold over Z.

The proof of this theorem is given in the next three sections.

2. The set D, Let X be a connected cohomology n-manifold over Z
and let G = SO(8) act on X with dim, B=n — 2. If G acts trivially
on X, it is clear that n =1 and that D = ¢. Hence we shall assume
that the action.of G on X is nontrivial.

Since G is a 3-dimensional simple group which has no 2-dimensional
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subgroup, it follows that

(2.1) G acts effectively on X and no orbit is 1-dimensional.

(2.2) Principal orbits are 3-dimensional so that for every xe UU D,
G, is finite.

By (2.1), principal orbits are either 2-dimensional or 3-dimensional.
If principal orbits are 2-dimensional, then B = F'(G, X) so that, by (1.2),
dim, B < n — 2, contrary to our assumption.

(2.83) Denote by B, the union of all the 2-dimensional orbits. Then
dim, B,=n — 2 so that B, + ¢ and n = 4. Moreover, whenever Gz 1s
a 2-dimensional orbit, G, is either a circle group or the normalizer of a
circle group and accordingly Gz is either a 2-sphere or a projective plane.

By (2.2), n =dim, X = dim, U= 3. We infer that B, # ¢ so that
n — 2 =dim, B, = 2. Hence n = 4.

(2.4) Let x€ U. Whenever ye D, there is a g€ G such that G, is
a normal subgroup of G,y

Let S be a connected slice at ¥ [1; p. 105]. Then S is a connected
cohomology (n — 3)-manifold over Z and G, acts on S. As seen in [7],
S is also a connected cohomology (n — 3)-manifold over Z, for every
prime p, where Z, denotes the prime field of characteristic p.

Let ’eS N U. We claim that G, is a normal subgroup of G,.
Since G, is a finite group (see (2.2)) and G, is a subgroup of G,, there
exists a neighborhood N of the identity in G such that N7'G, NN G, =
G,.. Let V be a neighborhood of x' such that whenever 2"’ ¢ V,
hG, .h™ C G, for some he N, (For the existence of V, see [4; p. 216].)
Then for every 2”¢ V N S, G,. < N7'G,.N N G, = G, so that G,.. = G,.
Therefore G, leaves every point of V N S fixed. Since S is a connected
cohomology (n — 3)-manifold over Z, for every prime p, it follows from
Newman’s theorem [6] that G, leaves every point of S fixed. Hence
G, ={geG,lgz" = " for all 2" € S}, which is clearly a normal subgroup
of G,. By (1.1), G, and G, are conjugate so that our assertion follows.

(2.6) Let xe U. Whenever Gz is 2-dimensional, there is a geG
such that G, C G,. Hence G, 1is either cyclic or dihedral and t s
cyclic if there is a 2-dimensional orbit which is a 2-sphere.

For the rest of this section, we assume that
H}XX;Z)=H*(S":; Z) .

Under this assumption, H(X; Z) = H(S*; Z) = Z. Hence X is compact.

(2.6) Let T be a circle group vn G. Then F(T, X) is a compact
cohomology (n — 4)-manifold over Z with H*(F (T, X); Z) = H*(S"™*; Z).
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Since F'(T, X) intersects every singular orbit at one or two points,
dim, F(T, X) = dim, B* = n — 4. Hence our assertion follows [1;
Chapters IV and V].

(2.7) Let g € G be of order p*, where p is a prime and « is a positive
integer. If geG, for some xe UU D, then F(g9,X) s a compact
cohomology (n — 2)-manifold over Z, with H*(F(g, X); Z,) = H*(S"% Z,).
Hence F(g, X) intersects every principal orbit.

It is known that X is also a compact cohomology n-manifold over
Z, with H*(X; Z,) = H*(S"; Z,). Since G is connected, g preserves the
orientation of X. It follows that for some r < m of the same parity,
F(g, X) is a compact cohomology r-manifold over Z, with H*(F'(9, X); Z,)=
H*(S"; Z,) [1; Chapters IV and V].

Let T be the circle group in G containing g. By (2.6), F'(g, X) N
B = F(T, X) is a compact cohomology (% — 4)-manifold over Z,. Since,
by hypothesis, there exists a point of U U D contained in F'(g, X),
F(g, X) N B is properly contained in F'(g, X) so that » = n — 2. Hence
F(g, X) is a compact cohomology (n — 2)-manifold over Z, with
H*(F(g, X); Z,) = H*(S"™; Z,,).

Since dim, D* < » — 8 [1; p. 121] and since F'(g, X) intersects every
exceptional orbit at a set of dimension < 1, it follows that dim, (F'(g, X)N
D) = dim,(F(9, X) N D) <n — 2. But we have dim, F(g9, X) =n — 2
and dimzp (F(9, X) N B)=n — 4. Therefore F'(g, X) N U +# ¢. Hence,
by (1.1), F(g, X) intersects every principal orbit.

(2.8) Let xe U and ye D. Let p be a prime and let o be a positive
integer. If G, has an element of order p®, so does G,.

Let ge G, be of order p°. By (2.7), F(9, X) N Gx +# ¢ so that for
some heG, hee F(g, X). Hence h~'gh is an element of G, of order p*.

2.9) D= 4.

Suppose that D + ¢. Let x € U and y € D be such that G, is a proper
normal subgroup of G, (see (2.4)). We first claim that G, is dihedral.

It is well known that a finite subgroup of SO(8) is either cyclic or
dihedral or tetrahedral or octahedral or icosahedral. If G, is cyeclic, so
is G,. Let the order of G, be pit --- pix, where p,, --- p, are distinct
primes and s, ---, s, are positive integers. Then for every ¢ =1, -+, k,
G, contains an element of order p} so that, by (2.8), G, also contains
an element of order p%. Hence G, is of order = pj -+ pi* and conse-
quently G, = G,, contrary to the fact that G, is a proper subgroup of
G,. If G, is either tetrahedral or octahedral or icosahedral, then
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by (2.8), G, contains a subgroup of order 2 and a subgroup of order 3.
In case G, is octahedral, it also contains a subgroup of order 4. Hence
G,, as a normal subgroup of G,, is equal to G,, contrary to our hypo-
thesis. This proves that G, is dihedral.

Now the order of G, is even. It follows from (2.7) that whenever
ge G is of order 2, F(g, X) is a compact cohomology (n — 2)-manifold
over Z, with H*(F'(g, X); Z,)=H*(S"* Z,). Let H be a dihedral subgroup
of G of order 4. By Borel’s theorem [1; p. 175], F(H, X) is a compact
cohomology (n — 3)-manifold over Z, with H*(F'(H, X); Z,) = H*(S"% Z,).
Since dim,, (F'(H, X) N (D U B)) = dim, (F(H, X) N (DU B))<n —3, it
follows that F(H, X) N U is not null. Hence we may assume that
Hc G, C G,

Let T be the circle group in G such that its normalizer contains G,.
Then HNTc G, N Tc G, NT so that G, N T is a cyclic group and
G. N T is a proper subgroup of G, N 1" of even order. Let the order
of G, N T be 2%pit -+« pik, where p,, -+, p, are distinct odd primes and
Sy 81, *++, S, are positive integers. By (2.8), there are k + 1 elements
9o, 91, **+, 9, of G, of order 2%, pi1, «.. pix respectively. Since p,, +++, D,
are odd, g, +--, 9, are in G, N T. Therefore no element of G, N T is of
order 2%, But this implies that s, > 1 so that g,€ G, N T. Hence we
have arrived at a contradiction.

3. Case that the 2-dimensional orbits are all projective planes.

Let X be a compact cohomology #n-manifold over Z with H*(X; Z)=
H*(S™; Z) and let G = SO(3) act nontrivially on X with dim, B = n — 2.
Throughout this section, we assume that for some ¢ € U, G, is of even order.

(8.1) Let H be a dihedral subgroup of G of order 4 and let M be
the normalizer of H that 1s the octahedral group containing H. Then
F(H, X) is a compact cohomology (n — 3)-manifold over Z, with
H*(F(H, X); Z,)) = H*(S" ™ Z,) and K = M|H 1s isomorphic to the sym-
metric group of three elements and acts on F(H, X). Moreover, the
natural map of F(H, X)/K into X* is onto.

By (2.7), for every g € G of order 2, F'(g, X) is a compact cohomology
(n — 2)-manifold over Z, with H*(F'(g9, X); Z,) = H*(S" % Z,). It follows
from Borel’s theorem [1; p. 175] that F'(H, X) is a compact cohomology
(n — 3)-manifold over Z, with H*(F(H, X); Z,) = H*(S*%; Z,).

Clearly K = M|/H is isomorphic to the symmetric group of three
elements and the action of M on F'(H, X) induces an action of K on
IF'(H, X). Moreover, there is a natural map f: F(H, X)/K— X*.

Let ze F(H, X) N B. If Gz =12, then F(H, X) N Gz =z. If Gzis
2-dimensional, then G, contains H so that by (2.8) it is the normalizer
of a circle group. Therefore any two isomorphic dihedral subgroups of
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G, are conjugate in G,. Let g be an element of G with gz ¢ F'(H, X).
It is clear that g*Hg C ¢g7'G,.9 = G, so that for some heG,, h™'9g'Hgh =
Hor ghe M. Hence gz = ghz € Mz. This proves that F'(H, X) N Gz < Mz.

From these results it follows that F'(H, X) intersects every singular
orbit at a finite set. [This and one or two facts mentioned below can be
seen by examining the standard action of SO(3) on S? or on P* (viewed
as the acts of lines through the region in E®).] Therefore, by (1.2),
dim, (F'(H, X) N B) < dim, B* <n — 3. As a consequence of this result
and that D = ¢ (see (2.9)), we have F(H, X) N U #+ ¢. Hence F(H, X)
intersects every principal orbit and consequently it intersects every orbit.
This proves that the natural map f: F(H, X)/K — X* is onto.

(3.2) Ewery 2-dimensional orbit is a projective plane and intersects
F(H, X) at exactly three points.

Let Gz be a 2-dimensional orbit. By (8.1), F'(H, X) intersects Gz
so that we may assume that ze F'(H, X). Since G, contains H, it follows
from (2.3) that G, is the normalizer of a circle group. Hence Gz is a
projective plane.

In the proof of (8.1) we have shown that F'(H, X) N Gz < Mz. But
it is clear that Mz c F(H, X) N Gz. Hence

F(H,X)N Gz =Mz = M/(M N G,) .

Since M is of order 24 and M N G, is of order 8, it follows that F'(H, X)N
Gz contains exactly three points.

(8.3) B* is a compact cohomology (n — 4)-manifold over Z with
H*(B*; Z) = H*(S*; Z).

Let T be a circle group in G. It is clear that F (T, X) C B. Since,
by (2.1) and (3.2), every singular orbit is either a point or a projective
plane, it follows that F'(T, X) intersects every singular orbit at exactly
one point. Therefore the natural projection # maps F(T, X) home-
omorphically onto B* and hence our assertion follows from (2.6).

(84) Let Y=F(H,X)— F(G,X). Then Y= F(H, X) and every
point of Y has a meighborhood V in Y which is a cohomology (n — 3)-
manifold over Z and such that the isotropy group is constant on V — B.

Let T be a circle group whose normalizer N contains H. Then
F(H,X)D> F(N, X)=F(T, X) D F(G, X). Since F(H, X) is a compact
(n — 3)-manifold over Z, (see (3.1)) and since F'(T, X) is a compact
(n—4)-manifold over Z, (see (2.6)), it follows that the closure of F'(H, X)—
F(T, X) is F(H, X). Hence Y = F(H, X).
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Let e YN U and let S be a slice at z. Then S is a cohomology
(n — 3)-manifold over Z. Moreover, G, = G, forall ye S so that S Y.
Since both S and Y are cohomology (n — 3)-manifolds over Z,, it follows
that S is open in Y. Hence our assertion follows by taking S as V.

Let ze Y N B and let S be a slice at z. Then S is a cohomology
(n — 2)-manifold over Z and G, is the normalizer of a circle group 7T
acting on S. Whenever xe SN U, G, N T is a finite cyclic group in T
and the index of G, N T in G, is 2 because G, in a dihedral subgroup
of G,. Since the order of G, is independent of x €S N U, so is the order
of G.,N T. Hence G, N T is independent of €S N U so that for
xe F(H,S) N U.

GS=HG,NT)S=HS=S8
and

F(G,, 8) = F(G./(G.NT),S)=FH|HNT),S) =F(H,S) .

Let @ be a neighborhood of the identity of G such that @*7Q N G, =
T. If gye F(H, X) withge Q and ye S, then g7*Hg C 97*G,,9 = G, C G,
so that g (HN T)g c Q'TQ N G, = T. Therefore g7*Tg = T or g€ G,.
Hence gyeG,y < S. This proves that F(H,S)= FH,X)N S =
F(H, X) N QS is open in F(H, X) so that it is a cohomology (n — 3)-
manifold over Z,.

Since S is a cohomology (% — 2)-manifold over Z with

F(H|(HN T),S)=FH,S),

it follows that F'(H, S) is also a cohomology (n — 3)-manifold over Z.
(If Z, acts on a cohomology m manifold over Z with F(Z,) being
a cohomology (m — 1)-manifold over Z,, then F'(Z,) is also a cohomology
(m — 1)-manifold over Z.) That G, is constant on F'(H,S) N U is
a direct consequence of the fact that F(G,, S)= F(H,S) for all
xe F(H,S) N U.

(8.5) Y is a conmected cohomology (n — 8)-manifold over Z and the
isotropy group is constant on Y — B,

By (8.4), Y is a cohomology (n — 8)-manifold over Z. Let T be a circle
group in G whose normalizer N contains H. Then F'(H, X) D F(N, X) =
F(T, X)D F(G, X). From (2.6) and (3.1), it is easily seen that F(H, X)—
F(T, X) has exactly two components with F'(T, X) as their common
boundary. By (2.3), there exists a point z of F'(T, X) such that Gz is
a projective plane so that z¢ F(T, X) — F(G, X). Hence Y is connected.

Let xe YN U. Then F(G,, X) N Y is clearly closed in Y. But,
by (8.4), it is also open in Y. Hence, by the connectedness of Y,
FG,X)NnY=Y,
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(3.6) Whenever xc F(H, X) N U, G, = H. Hence for every xc U,
G, 1s a dihedral group of order 4.

Let « be a point of F(H, X) N U. Since HC G,, F(H, X) D F(G,, X).
But, by (3.4) and (3.5), F'(H, X) C F(G., X). Hence F(H, X) = F(G,, X).

It is clear that G' = {9 G|gF (H, X) = F(H, X)} is a closed subgroup
of G containing M. Since F(H, X) = F(G,, X), G, is a normal subgroup
of G’ so that G’ is contained in the normalizer of G,. But, by (2.5), G,
is dihedral and H is the only dihedral group whose normalizer contains
M. It follows that G, = H. Hence, by (1.1), the isotropy group at any
point of U is a dihedral group of order 4.

8.7 Whenever xc F(H, X), F(H, X) N Gx = Kx which contains
one point or three points or six points according as Gx is 0-dimensional
or 2-dimensional or 3-dimensional.

If Gz is 0-dimensional, it is clear that F/(H, X) N Gx =z = Kz, If
Gx is 2-dimensional, we have shown in the proof of (8.2) that
F(H, X) N Gx = Mx = Kx which contains exactly three points.

Now let Gx be 3-dimensional. If ¢ is an element of G with
gre F(H, X), then, by (38.6), gHg™ = 9G,97' = G,, = H so that ge M.
Therefore F'(H, X) N Gz C Mx. But it is obvious that MxcC F'(H, X) N Gw.
Hence

F(H, X)N Gx = Mx = Kx

which clearly contains six points.
From this result, it is easily seen that the natural map f:
F(H, X)|K— X* is a homeomorphism onto.

(8.8) Whenever ac K is of order 2, we abbreviate F(a, F'(H, X))
by F(a). Then F(a) C B and F(a) is a compact cohomology (n — 4)-
manifold over Z with H*(F(a); Z) = H*(S"™*; Z). Moreover, F'(H, X) —
F(a) contains exactly two components V and V' with aV = V',

Whenever x€ F(H, X) N U, G, = H (see (3.6)) so that x¢ F(a).
Hence F'(a) © B. Let a = a’H with o’ being of order 4 and let T be
the circle group containing a¢’. Then F(a) = F'(T, X) and hence the first
part follows from (2.6). Now F'(H, X) is a compact cohomology (n — 3)-
manifold over Z, with H*(F(H, X); Z,) = H*(S* % Z,) and F(a) =
F(a, F(H, X)) is a compact cohomology (n — 4)-manifold over Z,. The
second part follows.

3.9) F'(H, X) — B contains exactly six components and whenever
P s a component of F(H, X) — B, KP = F(H, X) — B and the natural
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projection ™ maps P homeomorphically onto U¥*.

Let P be a component of F'(H, X) — B. Since the isotropy group
is constant on P (see (3.5)), the natural projection 7w defines a local
homeomorphism #n’: P— U*. By (3.7), for every z* ¢ U*, n’~'2* contains
no more than six points. We infer that ©’ is closed so that #’P is both
open and closed in U*. Hence, by the connectedness of U*, n'P = U*.

Let @ be a second component of F'(H, X) — B and let y€ Q. Then
there is a point x € P such that 7o = wy. Therefore, by (3.7), for some
ke K, y = kx so that @ = kP. Hence KP= F(H, X) — B.

Let xe P. By (38.8), v and ax belong to different components of
F(H,X)— F(a) D F(H, X) — B. Therefore aP is a component of
F(H, X) — B different from P. Similarly, bP and ¢P are components of
F(H, X) — B different from P.

If aP,bP and cP are not distinct, say bP = ¢P, then {ke€ K|kP = P}
is of order 3 so that P and aP = bP = ¢P are the only two components
of F(H,X)— B. Now F(H,Z)— B=F(H,Z)—(F(a) U F() U F(c))
and F'(a), F'(b), F'(c) are manifold over Z of dimension one less than the
dimension of F'(H). Hence F'(H, X)N B=F(a) N F(b) N F(c) = F (G, X).
This is impossible, because the intersection of F'(H, X) and a 2-dimensional
orbit is contained in B but not contained in F(G, X). From this result
it follows that P, aP, bP, ¢P are distinct components of F'(H, X) — B.
Hence P, aP, bP, cP, bcP, cbP are all the distinct components of
F(H, X) — B.

Now it is clear that for every x* e U*, n'~'2* contains exactly one
point. Hence 7’ is a homeomorphism.

(3.10) Let P be a component of F(H, X) — B. Then the map of
G/H x P onto U defined by (9H,x) — gx ts a homeomorphsim onto.
Hence U is homeomorphic to the topological product of a principal
orbit and U*.

This is an immediate consequence of (3.5) and (3.9).

(8.11) The closure of F(a) — F(G,X) is equal to F(a). Hence
dim,,F(G, X) = dim, F(G, X) =n — 5.

Suppose that the closure of F'(a) — F(G, X) is not equal to F'(a).
Then there is a point z of F'(G, X) and a neighborhood A of z such that
AN F(e)=A4An F(G,X). Since AN F(G, X)C F(b) and since, by (3.8),
both A N F(G, X) and F'(b) are cohomology (n — 4)-manifolds over Z,
AN F(G, X) is open in F'(b) so that we may assume that A N F(G, X) =
A N F(b). Similarly, we may assume that A N F(G, X) = A N*F(c).
Hence AN F(G,X)=AN F(H,X)N B, By (3.1) and (3.8), we_ may
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also assume that KA = A and A N (F(H, X) — F(a)) contains exactly
two components @ and Q. Now both @ and Q' are contained in
F(H,X)— B and aQ = bQ = Q@ Therefore abQ = Q so that adb maps
the component of F'(H, X) — B containing @ into itself, contrary to (3.9).

Since, by (8.8), F'(a) is a cohomology (n — 4)-manifold over Z and
since F'(G, X) is nowhere dense in F'(a), it follows that dim,, F(G, X) =
dim, F (G, X) < n — 5.

(8.12) If n =4, then F(G, X) is null.
This is a direct consequence of (3.11).

(8.13) Let T be a circle group in G, let N be the normalizer of T
and let A be an orbit. If A is a projective plane, then AlT is an arc
and N|T acts trivially on A|T so that F(N|T,A|T) = A|T = A/N. If
A is 8-dimensional, then A|T is a 2-sphere and A|N is a closed 2-cell
so that F(N|T, A|T) is a circle.

If A is a projective plane, it is clear that A/T is an arc and N|/T
acts trivially on A/T. Therefore A/N = A/T = F(N|T, A|T).

Now let A be 3-dimensional. By (3.6), we may let A=G/H =
{9H|g € G}. Therefore A/T is the double coset space (G/H)/T and
(G/T)/H are homeomorphic. Since G/T is a 2-sphere and since every
element of H preserves the orientation of G/T, it follows that (G/T)/H
is a 2-sphere. Hence A4/T is a 2-sphere.

As seen in [3], the double coset space (G/N)/H is a closed 2-cell.
Since A/N may be regarded as the double coset space (G/H)/N which
is homeomorphic to (G/N)/H, we infer that A/N is a closed 2-cell.

From these results, it follows that f(N/T, A/T) is a circle.

(8.14) X* s cohomological trivial over Z.

Let N be the normalizer of a circle group T in G. Then N|T is
a cyclic group of order 2 which acts on X/T with (X/T)/(N/T) = X*.
Since, by (2.6), H*(F(T, X); Z)=H*(S"*; Z), it follows that H(X/|T; Z)=
H*(S~* Z) [1; p. 65].

By (8.13), F(N|/T, B/T) = B|T and for every singular orbit A, A/T is
either a single point or an arc. It follows from the Vietoris map theorem
that H*(B/T; Z) = H*(B*; Z) = H*(S"* Z) (see (3.3)). By (8.10) and
(3.13), F'(N|T, U|/T) is homeomorphic to the topological product of a circle
and U* so that H"*F(N/T, UT); Z) +0. Therefore H*(F(N|T,
X/T); Z) = H*(S** Z). Hence H*(X/N;Z) = 0. By (3.13), for every
orbit A, A/N is either a single point or an arc or a closed 2-cell. It follows
from the Vietoris map theorem that H*(X*; Z) = H*(X/N; Z) = 0.
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Z, for k=mn—3;

3.15 HXU*; Z,) = .
( ) ( ) 0 otherwise .

This follows from (3.3), (8.14) and the cohomology sequence of
(X*, B*).

Z, for k=n—38, n;
(3.16) HXU;Z)=4Z,D Z, fork=n—2,n—1;
0 otherwise .

Since for a principal orbit A, we have

Z, for k=0,3;
H¥A; Z)=3Z,D Z, for k=1,2;
0 otherwise ,

our assertion follows from (3.10) and (3.15).
As a consequence of (3.16) and the cohomology sequence of (X, B),

we have

Z, for k=0, n—4;
3.17) HYB; Z)) =3Z, P Z, fork=mn—3, n—2;
0 otherwise .

(8.18) Let T be a circle group in G and let n =5. Then
H*"(F(G, X); Z,) (the reduced group)

. Jor k=1;
HXF(T, X)— F(G, X); Z,)'=
(F( ) ( )i 2. H'YF(G, X); Z)® Z, for k=n—4;
H"(F(G, X); Z,) otherwise .

This follows from (2.6) and the cohomology sequence of (F(T, X),
F(G, X)).

(3.19) Let n>5. Then

HYB; Z,) for k>n—4;
HYB; Z,) ® H"(F(G, X); Z,)
for k=mn—4;

HYB ~ FG X5 2D \pa v e, s 2)

fork=2,---,mn—5;
H\(F (G, X); Z,) Sfor k=1.
This follows from the cohomology sequence of (B, F(G, X)).

8.20) B — F(G, X) ts homeomorphic to the topological product of
a projective plane and F(T, X) — F(G, X). Hence
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H(B — F(G, X); Z)
= H)(F(T, X) — F(G, X); 2,) ® H:'(F(T, X) — F(G, X); Zy)
© H:(F(T, X) — F(G, X); Z) .

The first part follows from the that F(T, X) — F(G, X) is a cross-
section of the transformation group (G, B — F(G, X)) on which the
isotropy group is constant. The second part follows from the first part
and the fact that if A is a projective plane, then

Z, fork=0,1,2;

B4 Z) =0
0 otherwise.

(3.21) dim,, F(G, X) =n —5. If n =4, then B contains exactly

two projective planes. If n =25, then F(G, X) contains exactly two

points. If n > 5, then H(F(G, X); Z,) = Z, so that F (G, X) is not null.

Setting k = n — 2 in (3.20), we have, by (2.6) and (3.17),
Z,p Z, = H}(F(T, X) — F(G, X); Z) .

If n =4, then, by (38.12), H(F(T, X); Z,) = Z,P Z, so that F(T, X)
contains exactly two points. Hence B contains exactly two projective
planes.

If »n=5, then HNF(T, X)— F(@G, X); Z) = H°(F(G, X); Z,) ®
HYF(T, X); Z,) so that H°(F(G, X); Z,) = Z,. Hence F(G, X) contains
exactly two points.

If » > 5, it follows from (3.18) that H"*(F'(G, X); Z,) = Z,. Hence
F(G, X) is not null.

(8.22) H*(F(G, X); Z,) = H*(S""; Z,).
For » = 4 and 5, the result has been shown in (3.12) and (3.21). For
n > 5, our assertion follows from (3.18), (3.19), (3.20) and (3.21).

(8.23) F(G, X) s a compact cohomology (n — 5)-manifold over Z,.

To prove (3.23), we have only to localize the preceding computations.
Details are omitted.

REMARK. There is no difficulty to use Z in place of Z, in these
computations. However, the computations over Z will not strengthen
our final results (3.22) and (3.23).

4, Case that the 2-dimensional orbits are all 2-spheres.
Let X be a compact cohomology n-manifold over Z with H*(X; Z) =
H*(S"; Z) and let G = SO(3) act nontrivially on X with dim, B =n — 2,



A THEOREM ON THE ACTION OF SO(3) 1397

Throughout this section, we assume that for some z € U, G, is of odd order.

(4.1) Let H be a dihedral subgroup of G of order 4. Then F(H, X)
18 @ compact cohomology (n — 6)-manifold over Z, with H*(F(H, X); Z,) =
H*(S"% Z,). Hence n = 5.

Let g € G be of order 2 and let T be the circle group in G containing g.
Since for some x € U, G, is of odd order, F'(g, X) < B so that F(g, X) =
F(T, X) is a compact cohomology (n — 4)-manifold over Z, with
H*(F(g, X); Z,) = H*(S"*; Z,). By Borel’s theorem [1; p. 175], F(H, X)
is a compact cohomology (n — 6)-manifold over Z, with H*(F'(H, X); Z,) =
H*(S"*% Z,). From this result it follows that n — 6 = —1. Hence n = 5.

(4.2) The 2-dimensional orbit are all 2-spheres.

Suppose that this assertion is false. Then there is, by (2.8), a pro-
jective plane Gz. Denote by T the identity component of G, and by H
a dihedral subgroup of G, of order 4. Let S be a connected slice at z.
Then S is a cohomology (n — 2)-manifold over Z and G, acts on S.
Moreover, F(T,S) = F(T, X) N S is open in F(T, X) so that it is a
cohomology (n — 4)-manifold over Z. Hence we may let S be so chosen
that F(T, S) is connected and that both S and F(T, S) are orientable.

Since T is a circle group and since dim, S — dim, F(T, S) = 2, it
follows that S/T is a connected cohomology (n — 3)-manifold over Z with
boundary F(T,S) [1; p. 196]. Hence we have a connected cohomology
(n—3)-manifold Y over Z obtained by doubling S/T on F(T, S) [1; p. 196].
Since S is orientable, sois S/T — F (T, S). It follows from the connected-
ness of F'(T,S) that Y is orientable.

It is clear that K = G,/T is a cyclic group of order 2 which acts
on S/T with KF(T, S) = F(T, S). Since F(K, F(T,S))= F(H,S) is a
cohomology (n — 6)-manifold over Z,, we infer from the dimensional parity
that K preserves the orientation of F(T,S) [1; p. 79].

The action of K on S/T defines a natural action of K on Y which
also preserves the orientation of Y. Hence dim,, F(K, Y) >n — 6 so
that for some y* = Tye S/T — F(T, S), Ky* = y*. But this implies that
G,y=Ty so that y is a point of D, contrary to (2.9). Hence (4.2) is proved.

4.3) F(G, X) is a compact cohomology (n—6)-manifold over Z, with
H*(F(G, X); Z,) = H*(S"™"; Z,).

By (4.2), F(G, X)= F(H, X). Hence our assertion follows from (4.1).

(4.4) Whenever xc U, G, is the identity group.
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If X is strongly paracompact, the result can be found in [5]. But
an unpublished result of Yang shows that it is true in general.

(4.5) B* is a compact cohomology (n — 4)-manifold over Z with
H*(B*; Z) = H*(S"™; Z).

Proof. Let T be a circle group in G and N its normalizer. Then
F(T,X) is a compact cohomology (n — 4)-manifold over Z with
H*(F(T, X); Z) = H*(S**; Z) and N|T is a cyclic group of order 2 acting
on F(T, X) with F(T, X)/(N/T) = B*. Therefore H*(B*; Z) is finitely
generated [1; p. 44]. If H is a dihedral subgroup of N of order 4, it is
easily seen that F((N|/T, F(T, X)) = F(H, X) so that F(N|/T, F(T, X)) is
a compact cohomology (n—6)-manifold over Z, with H*(F'(N|/T, F(T, X));
Z,) = H*(S"% Z,). Hence, by the dimensional parity theorem, N/T
preserves the orientation of F(T, X).

By [1; pp. 63-64],

H*(B*; Z;) = H*(F(T, X)/(N|T); Z,) = H*(S"*% Z,) .

We now use the following diagram from [1; p. 45]

. s HY(B*; Z) —2s HXBY; Z) 1 HNB; Z)— -+
N
T
H*F(T, X); Z)

in which the horizontal sequence is exact and the triangle is commutative.
For k + 0, n — 4, we have H*(B*; Z,) = 0 and H*(F (T, X); Z) = 0; hence
H¥B*; Z) =0. Fork =0, we have HY(B*; Z) = Z, because B* is clearly
connected. For k=n —4, H"*B*; Z) is a finitely generated group
with H*B*; Z) ® Z, = H"*(B*; Z,) = Z,. It follows from the universal
coefficient theorem that there is a finite subgroup K of H"*(B*; Z) of
odd order such that H"*(B*; Z)/|K is Z or Z,. Since K =2K = pr*K =0,
H*B*;Z)=Z or Z,. But H“B*;Z) + Z,, because N|T preserves
the orientation of F'(T, X). Hence H**B*;Z) = Z.

By localizing this result, we can show that B* is a cohomology
(n — 4)-manifold over Z near every point of F'(G, X). (This result is
also shown in [2].) Since the projection of F(T, X) — F(G, X) onto
B* — F(G, X) is a local homeomorphism, B* is a cohomology (n — 4)-
manifold over Z near every point of B* — F'(G, X). Hence B* is a
compact cohomology (7 — 4)-manifold over Z.

(4.6) Let T be a circle group in G and let N be the mormalizer
of T. Then H*(BIN; Z) = H*(S*™*; Z).

Let A be a singular orbit. If A is a single point, so is A/N. If A
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is a 2-sphere, we maylet A = G/T. Therefore A/N = (G/T)/N is home-
omorphic to (G/N)/T which is known to be a closed 2-cell [3]. Hence
A[N is a closed 2-cell.

Since, by (2.1) and (4.2), every singular orbit is either a single point
or a 2-sphere, it follows from Vietoris map theorem that H*(B/N; Z) =
H*(B*; Z). Hence our assertion follows from (4.5).

Z for k=0;
4.7) HYX|N; Z) = 14Z, for k=mn—1;
0 otherwaise.

Since H*(F(T, X); Z) = H*(S"™*; Z), it follows that H*(X/T; Z) =
H*(S"; Z). Now N/T is a cyclic group of order 2 acting on X/T with
(X/T)/(N|T) = X|N.

Let A be an orbit. If A is 3-dimensional, then, by (4.4), A/T is
a 2-sphere and N/T acts freely on A/T. If A is a 2-sphere, then A/T
is an arc and F(N/T, A|T) is a single point. If A is a point, then
F(N|T, A]T) = A|T = A. Hence F(N|/T, X|/T) is homeomorphic to B*
so that, by (4.5), H*(F(N|T, X|T); Z,).

As in the proof of (4.5), we can show that

Z fork=mn-—3,
(4.8) HXUIN; Z)=1Z, fork=n—1,
0 otherwise.

(4.9) There is an exact sequence
- — H(U*; Z)) > H(U*; Z) - H(U|N; Z) — H:(U*; Zy) — » - -

By (4.4), G acts freely on U. Hence we have the desired exact
sequence as seen in [3].

Z k=n—3,
(4.10) H U 7y = |2 TR
0 otherwise.

Since dim, U* = n — 3, we have
HKU*;Z)=0 for k>n—3.
It follows from (4.9) and (4.8) that H»*(U*; Z,) = H(U|N; Z) = Z,.
From (4.9), it is easily seen that H *(U*;Z)=Z@ 1, where I=

im(H~U*; Z,) — H*(U*; Z)) so that every element of I different from
0 is of order 2. By the universal coefficient theorem,

Z,= H(U*; Z,) = H}™(U*; Z) ® Z, D Tor(H"(U*; Z), Z,)
=7Z,PI.
Hence I = 0, proving that
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HU*Z) = Z.

If k <m — 8, then by (4.8) and (4.9), HX(U*; Z) = H}/*(U*; Z,). Hence
for k< n — 38,

HXU*;Z)=0.

(4.11) X* 4s cohomologically trivial over Z.
This is an easy consequence of (4.5), (4.10) and the cohomology
sequence of (X*, B*).
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