A SPECTRAL THEORY FOR A CLASS
OF LINEAR OPERATORS

G. K. LEAF

In this paper we introduce a type of spectral theory for bounded
operators in a Banach space. We shall focus most of our attention
on the continuous spectrum, since the point spectrum, at least when
it is isolated, can be handled by using the contour integral techniques
developed by F. Riesz, E. R. Loreh, and N. Dunford and discussed
in [4, 7].

In 1941, E. R. Lorch [6] treated a class of operators in a reflexive
Banach space which are natural generalizations of unitary operators.
By using ingenious methods, he was able to find invariant manifolds
for these operators and constructed a spectral theory which in many
respects is similar to that which is available for unitary operators.
More recently, N. Dunford [2, 3] has developed an extensive spectral
theory for certan classes of operators in Banach spaces, and related
work in this area has been done by F. Wolf [9] and others. However,
Dunford’s class of spectral operators does not contain the class studied
by Lorch.

In this paper we will employ some of Dunford’s techniques to
obtain results which parallel those of Lorch [6]. In doing so, we are
able to handle a larger class of operators than in [6], at least in the
case where the spectrum is entirely continuous. Finally, we wish to
point out that the results in Section 2 are not best possible.

1. Preliminary remarks. If T is a bounded linear operator in a
complex Banach space X, then R(z; T') will denote the resolvent oper-
ator (2 — T')™" defined for z in the resolvant set of 7. When T is
understood, the notation R(z) will be used in place of R(z; T'). For
any two points 2z, and 2z, in the resolvant set, R satisfies the follow-
ing relations:

(1) R(z) — R(z,)) = (2 — 2)R(2)R(2), and

(11) R(zl)R (%) = R (zz)R(zl)
One consequence of the above relations is the analyticity of the vector-
valued function R(z)x on the resolvant set o(T') for each vector z in
the space X. Since R(?)x is a vector-valued analytic function on
o(T), it is natural to speak of analytic extensions of R(z)x. The
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following definitions are due to Dunford [3; p. 326].

1.1 DEFINITION. An analytic extension of R(2) x is a vector-valued
function f defined and analytic on an open set 4(f) containing o(T),
and satisfying the equation (z — T)f(2) = x for every z in 4(f).

It is clear that if f(z) is an analytic extension of R(z)x, then
R(2)x = f(2) for every z in o(T). R(z)x is said to have the single-
valued extension property provided that for every pair f and g of
analytic extensions of R(z)x, we have f(z) = g(z) for z in the inter-
section of 4(f) and 4(g). The union of the sets 4(f) as f varies over
all analytic extensions of R(z)x is called the resolvent set for x and
is denoted by ©o(x). The complement of p(x) is called the spectrum
of z, and is denoted by o(x). If R(z)x has the single-valued extension
property, then R(z)x has a maximal single-valued analytic extension
. 2(2) with domain p(x) and with 2(2) = R(z)x for z in o(T).

2. A class of operators with continuous spectrum. In this section
V will denote an invertible bounded linear operator satisfying the
following two conditions:

@) [|V*]|=o(n|) as » tends to +oo.

(b) The spectrum of V is purely continuous; that is, the point
and residual spectrum are empty.

2.1 THEOREM. The spectrum of V lies on the circumference of
the unit circle.

Proof. The conclusion of this theorem depends on assumption (a).
From (a) we have || V*||<n and || V|| < n for all n sufficiently
large. Taking the nth root of both sides of each inequality, and
passing to the limit, we see that the spectral radii of V and V~ are
both less than or equal to one.

It is convenient to obtain series expansions for R(?) in each com-
ponent of o(V). If |z|>1, then from (a), it is easily verified that
S 27" V" converges in the uniform operator topology to a bounded,
everywhere-defined operator satisfying the equation:

=V (S = (Sevr)e - V)= 1.

Hence if |z| > 1, then R(z) = Sz "1V~

For |z] <1, (a) will imply that — 372"V —""! converges in the
uniform operator topology to a bounded, everywhere-defined operator
satisfying the above resolvent equation. Hence for |z| < 1, we have
R(z) = — S5z V2,



A SPECTRAL THEORY FOR A CLASS OF LINEAR OPERATORS 143

The behavior of R(z) as 2z approaches a(V) will be needed. For
any point & = e**, the transversal segment through £ generated by
z2=1+4 s)e*, —s, < s =< s, 0 < 5, < 1/2, will be denoted by 4(£). The

next result is proved by direct examination of the above expressions
for the resolvent operator.

2.2 THEOREM. For any & = e we have
[s|*[| BR(A + s)e, V)| = M,

Jor 0 < |s| = s, where 0 < s, < 1/2 and M, is a constant.

Dunford [2; p. 564] has shown that if the spectrum of a bounded
linear operator T is nowhere dense in the complex plane, then for
each vector = in the space X, R(z; T)x has the single-valued extension
property. Since the operator V under consideration has its spectrum
on the circumference of the unit circle, and so has nowhere dense
spectrum, for each x in X we may speak of the single-valued analytic
function x(-) which is the maximal extension of R(z; V)x. The follow-
ing results (cf. [2; p. 564]) are immediate consequences of the defini-
tion of a(-).

2.3 LEMMA. For any x and y in X, we have:

(@) o+ y) S oalx)Ualy),

(b) (az + By)(z) = ax(z) + By(z) for z in p(z) N O(y),

(¢) o) = @ if and only if = = 0.

If T is any bounded linear operator and & (T) is the algebra of
scalar-valued functions analytic in some neighborhood of ©(7'), then
there exists an algebraic homomorphism of & (T') into the algebra
B(X) of all bounded linear operators on X. The homomorphism (cf.
[7; ch. 5]) is given by

1

F0) = S| FORE Tz, fin 57(D),
Ty Jo

where C is the boundary of an open set D containing o(7T) and such
that DU C is contained in the domain of analyticity of f and C con-
sists of a finite number of positively-oriented nonintersecting Jordan
curves. In the case of the operator V, for each f in . &# (V), C may
be chosen to be the oriented boundary of some annular region con-
taining the circumference of the unit circle. Let f be in &# (V) with
domain of analyticity 4(f); let D={z:r, < |z| <7, r, <1 <7} be a
region such that the boundary C together with D is contained in
4(f). In addition, let £ be any point on the circumference of the
unit circle with 4(£) denoting the transversal segment through £ con-
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necting the inner and outer boundaries of D. In general the integral
of f()RE(z)x along the transversal 4(§) does not exist due to the
possible unboundedness of R(z)x on 4(§); however, the restricted be-
havior of R(z)x on 4(§) implied by Theorem 2.2 will permit us to define
the integral for a suitable choice of f. For 0=\ <\, < 27, let
C(M, \;) denote the contour consisting of the ares AB, BC, CD, and
DA where A, B, C, and D are given by: A = (1 — t)ei*, B = (1 — t)e'™,
C=(@1+t)e™, and D = (1 + t)e'*s. The arcs AB and CD are subarcs
of circles centered at the origin of radii 1 — ¢ and 1 + ¢ respectively
with 0 <t =< 1/2. The arcs BC and DA are the transversal segments
through & = e and &, = e respectively. The contour C(\, \,) is
positively-oriented in the counter-clockwise direction. The complement-
ary contour C(\,, \,) consists of the subarcs DC and BA together with
the transversals CB and AD. The closed subarc of the circumference
of the unit circle consisting of the points & = ¢‘* such that , < A <
2, will be denoted by [r, \,] or [&, &] whichever is more convenient.
The closure of the complement of [\, \,] with respect to the circum-
ference of the unit circle will be denoted by [r,, \] or [&, &]. The
following two theorems, being specializations of theorems due to
Dunford [2; 586], are stated without proof. It should be noted that
integrals of the type to be discussed in the following theorems were:
first used by E. R. Lorch, Return to the Self-Adjoint Transformation,
Szeged Acta, 1950.

2.4 THEOREM. Let F'(2) be analytic in the closed annulus 1 — ¢t <

2] 214+t 0<t=<1/2. For & =e™ and & =e™ with 0=\ <

N < 27, let C(n, \y) be the contour defined in the preceding discus-
siton. Then

1

I\, Ny F) = 211, Scml,w

F(2)(z — &)z — &)'R(2)dz

exists as a Riemann integral, and is independent of t provided F(z)
18 analytic in the closed amnulus determined by t. In addition, the
spectrum a(J(\,, Ny F)x) is contained im the intersection of [N, N\,
and o(x). Furthermore, im J(\, \y; F') = 0 as N, — N, approaches 0
Sfrom above. If F(2) =1 then J(\, Ny, F) will be denoted by J(\y, Ny).

2.5 THEOREM. For every & = e’ and &, = e the set {x:0(x) S
[M, No]} s @ closed limear mamnifold.
In the following theorems, the assumption that the spectrum is purely
continuous will be used.

2.6 LEMMA. For any & = e*, the range of the operator (V — &*
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18 dense in the space X.

Proof. Let A(M) denote the range of an operator A acting on a
linear manifold M, and cl(M) the closure of M. It is obvious that
(V—8X) =S (V—8(X). On the other hand, if M = (V — &(X),
then since c¢l(M) = X, we have:

(V= 8(X) = (V= §(cUM)) < cl(V — E)M)) = cl((V — £)(X)) .

We now obtain a basic decomposition of the space X relative to V.

2.7 THEOREM. Let £,6&, -+, &, be points on the circumference
of the wumit circle, and let W denote the range of the operator
(V—=E(V —=§&)--- (V—E); then

(i) W is dense in the space X, and

(i) for any vector y in W there is a unmique decomposition y =
Yo+ Yo+ o0+ Y, with o(y,) S [, E1l, where we have set £, = &,.

Proof. Part (i) is obtained from Lemma 2.6 by induction. In
order to prove part (ii), we note that by the operational calculus
1

y=V-£&y - (V-§&)yo = Z—S (2 — &) - (2 — &) R(R)adz
T Jo

where C is the oriented boundary of the region
D={zml—t<|z|<1+t0<t=<1/2}.

Using Theorem 2.2, we write the above integral as the sum of »
integrals in the following way:

1 S
v= 21 Joteg.ep

1

211 Sa(en,el)

(z—&) - (—&)R@wdz + -+
(z— &) - (2 — &) R(z)rdz .

Setting

z—E&)- - (z—E&E)VRRxdz for k=1,2,--+,n,

Yo = —— g
271.?/ O, 6p41)

we have y =y, + ¥, + -+ + ¥.. From Theorem 2.4,
o) € [, Eel No(x) for B=1,2, .-, m.
To show uniqueness, suppose

Y=9%+ %+t ot =h+tv%+ o+,
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then

h—=0—w)+ -+ W —v).

Hence by Lemma 2.3(a), we have

oy, —y) S [&, &N & &l =& U 8.

Thus to show uniqueness, it suffices to show that o(u) S {£€} implies
that v = 0. But it is easily seen that if o(u) S {£}, then (V — &)'u = 0.
However (V — £) is by assumption one-to-one; hence u = 0.

Before we proceed to the next theorem, we shall discuss a gener-
alization of a result due to Lorch [6]. Although Lorch assumed that
|| V*|| £ K for some constant K and all integers n, we shall only as-
sume that || V*|| = o(|»]). This lemma is the key to the reconstruction
of the operator V from the spectral manifolds that will be introduced
in Theorem 2.9.

2.8 LEMMA. Let y = (I — V)'z and let € > 0 be given, then there
exists a constant A, such that

NI — Vx|l = @dellzll+ Ayl .

Proof. Since || V"|| = o(|n]|), there exists a constant M > 1 such
that || V|| < 6Mn for n =1,2,---. Thus if o, = >3 (1 — k/n) V¥,
we have ||o,.|| < M(»* + 5). Now for any integers n, m, and k and
any vector « in the space, we have:

o (- Vye)=I— V)x — k(I — VHVz,
0,(I—-Vyry=U— V)x —m*I — V™I — V)Vx,
o,((I—V)x)y=I— V)x—n*(I— VI — V)Vx.
For any integer p and 7+ =0,1,2, set Q'(p) = p~'(I — V?)I — V)'V.
Since || V*|| = o(]n|), we have || Qi(p)| tending to zero as p tends to

infinity for ¢ =0,1,2. Thus if z is any vector in the space X, we
have:

| (I—=V)z|| = Q)||z|l + M+ 5)Q"(m) || || + M*(k*+5)(m*+5)Q(n) || ||
+ M*(k* + 5)(m* + B)(n* + B) || (I — V) || .

Choosing %k, m, and m, in succession, such that each of the first three
terms is less than ¢/4 and setting A, = M*(k* + 5)(m* + 5)(n* + 5), we
have the desired result. Using &'V, with £ on the circumference of
the unit circle, in place of V in this lemma would replace the identity
operator I apperaring in the desired inequality by &I.

2.9 THEOREM. Given any € > 0 there exists a 0 >0 such that
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Jfor any N with 0 <\ = 27 and any wvector x in the closed linear
manifold L(\) = {x: o(x) S [\, N + 0]} we have

IV —eNz||=ellz]l.

Furthermore, let n = [27/6] and let N\, =k for £k =0,1, ---, n;
then the space X is spanned by the manifolds L(\,),k =0,1, ---, n.

Proof. Let ¢ > 0 be given, the choose k, m, and n as was done
in Lemma 2.8. Now choose a positive number &, so small that ¢4, <
¢/4. For this choice of ¢, choose a 6 > 0 such that if & = e** is any
point on the circumference of the unit circle, and if ¢ = e with
/2 =X\+ 90, then

(1) NV =8(V-0—(V-§'l<e2,
(2) T, 1 < ef2.

Inequality (2) is possible by Theorem 2.4, and the choice of § is inde-
pendent of \. Set L(\) = {x: d(x) & [\, #]}; by Theorem 2.5, L(\) is
a closed linear manifold. Suppose z is in L(\), then J(g¢, N)x = 0;
hence,

(V =8V —=0ra=JN\, mz+ J(, Mo = IO, ) .
From (2) we then have:
NV =V =l =[J, mzll =e/2]z] .
‘Thus
(3) NV =8zl =elzl.
By Lemma 2.8 and the choice of ¢, we have

(4)  N(V=58xll=@Mellzl + A (V- =l < @)ellz|l
+ead. el = Gellz]l + )zl =cllz] .

Using the ¢ which was determined in the above discussion, we
let » be the greatest integer in 27/6. Let N, = k0 and &, = e** for
k=1,2, ---,n and set &,,, = 2m; then from the first part of the
theorem, we have ||(V — &)z || < ¢||#]|| for # in L(\,). For any z in
X we may, by Theorem 2.7, approximate x by a vector of the form
(V—EXV —E)---(V—£)y. This vector may, in turn, be written
as Yy + Yo + -+ + ¥y, with y, in L),

If U is a unitary operator in a Hilbert space H, then the preced-
ing theorem can be improved. Recall (cf. [5; p. 857]) that if U is
unitary, then there exists a resolution of the identity E, for U such
that for each continuous and periodic function f on [0, 27] there
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corresponds an operator U, given by U, = Shf (t)dE,. Here the integral
0
converges in the operator norm, and for each z in H, ||Ux|’=
2
S IF(®)Pd || Ez|P. If ¢ >0 and & — ¢ are given, let @ = A + ¢, then
0

if « is in the range of the projection E, — E,, we have E,x = 0 for
t<, and Ex =« for a =<t. Thus

1O = ea |t = |le* — "} || Bl < (| B | — || B 1)
=&l

If € > 0 is given, choose a partition 0 = s, < s, < --- < 8,4y = 21 of
[0, 27] with s;,, —s;<e for j=1,2, ---,n + 1. Setting L'(s;) =
(&.,,, — B, )(X), and noting that I= 35 (Z,,, — E,) we see that
H = L'(s)®- - -PL'(s,+,) and from the above discussion, || (V—e*i)y || <
el|ly|| for each y in L’(s;). Thus in the case of a unitary operator,
H is the direct sum of the collection L'(s;).

Numerous examples of bounded invertible operators, with any
desired rate of growth for the iterates, may be obtained by consider-
ing the shift operator acting in certain sequence spaces. Such sequence
spaces and analogous function spaces have been studied by A. Beurling,
J. Wermer, and others. (cf. 8)

Let {p,}, — < n < =, be a sequence of real numbers greater
than or equal to one with p, = 1 and satisfing 9,:n = 0.0, for all m
and n. Let L denote the Banach space of all sequences x = {x,} such
that > _.»,.|2,| is finite and with this sum as the norm for the
element 2. Let T be the shift operator defined on L by T« = y where-
y = {y,} and y, = x,-,. Then T is a bounded invertible operator on
L and, for each n, || T"|| = p.. In particular, setting p, =1+ |n]|*
for some fixed @ such that 0 < @ < 1, we obtain an operator T for:
which || T"}|] = o(Jn]) while || T"|] is not bounded.

3. The resolving manifolds. In this section, a system {G., F)},
0 < M\ £ 2w, of pairs of closed linear manifolds is developed which has
some of the properties of a resolution of the identity in the case of
a unitary operator.

3.1 LEMMA. Let e and e™* be any two points on the circumference
of the unit circle with A < (t and denote the open subarc {z: |z| =1,z ¢
v, ¢13 by [\, p]'; then {o + y: 0(2) S [N, ¢, 0(y) S [N, L]} is dense in X.

Proof. Choose N, < A< X< iy < 2 < M2 set

F(z) = (& — ¢z — ez — )z — e,
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then using the notation of Theorem 2.4, we have for v in X

@) (V= @MV — 6™V — emP(V — et = J(u, M)
+ J()‘zr /’ll)m + J(lulr ﬂz)x + J(ﬂz: )\‘l)x .

If X\, N\, tend to N and p,, ¢, tend to £, then by Theorem 2.4, J(\;, )%
and J(¢, #)x both tend to zero, and the left-hand side of (i) tends
to (V — eM(V — ei*)'x. Thus

(V — eV — ez = lim J (g, ()2 + J (e N)% .
By Theorem 2.4,

a(J (N, 1)T) S [Ny, 1] E [N, v,

and
a(J (M) S [ M] S [N, 1]

Hence any vector in the closure of the range of (V — e)(V — i)t
satisfies the conclusion of the lemma. But the range of the above
operator is dense in the space; hence the conclusion holds for every
vector in the space.

We are now in a position to define the system {G,, F\} of resolving
manifolds. For 0 < N =< 27, set

Gy = {x:0(x) £ [0,\]}, and F, = {x:0(x) S|\, 27]}.

3.2 THEOREM. For 0 < )\ =< 2x, the resolving manifolds have the
following properties:

(a) G, and F\ are closed linear manifolds;

(b) G. and F, have only the zero element in common;

() for 0=N=p=<2r,G, &G, and F,EF,;

(d) the pair {G,, F\} span the space X; and

(e) G, and F\ reduces V.

Proof. Part (a) follows from Theorem 2.5. If x is in the inter-
section of G, and F), then o(x) & {¢"*} U {¢*}. Thus o(x) consists of
at most two points; hence, as was shown in the proof of Theorem 2.7,
2 =0. For part (c), suppose )\ is zero, then G, = {z:d(z) S {¢}}.
But then G, = (0). The same argument shows that F,. = (0). It is
obvious that G,, = X and Fy=X. If 0 <A< £ < 27, then [0,)\] S
[0, ] and so (0) =G, S G\ S G.E Gy = X, In the same way X =
F,2F,2F,2F,, =(0). Since [0,\] S [\, 2], we have

{x + y:0(®) = [0, 7], o(y) = [0, ]}
S{r+y:0@) S [0,N], o) S [\ 2ul}.
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Taking the closure of both sides, and noting that, by Lemma 3.1, the
closure of the left-hand side is X, proves part (d). Part (e) will be
proved, once it is shown that ¢(Vz) < o(x); but this follows from the
equation R(2)Vx = VR(z)x,z in p(V). Since V is a bounded operator,
the right-hand side has an analytic extension to o(x); hence p(Vx) 2
o(x) or o(Vx) S o(x).

The following theorem characterizes the spectrum of V in terms
of the behavior of G, as a function of A. Recall that we have, by
hypotheses, ruled out the possibility of point or residual spectrum.

3.3 THEOREM. (a) The pownt e* is in (V) if and only if there
exists an € > 0 such that G, = G, for all ¢ such that » —e< <
A+ €

(b) The point e is in o(V) = o(V) of and only if G. is mot
constant in any meighborhood of .

Proof. If A < pt then (\, 1) will denote the open subarc of the
circumference of the unit circle from e** to e

(a) Suppose ¢* is in o(V), then there exists an ¢ > 0 such that
if N —e< < N+e¢, then e* is in p(V). If g is such that X — e <
©® <\, then G, € G,; but if « is in G,, then since (A —¢,N)Cp(V),
we have o(x) = [0, v —e] [0, #]. Hence, z is in G, and G, = G,
for » — e < pt < A. The same argument is used for N < <N+ ¢&.
On the other hand, suppose that for some ¢ > 0,G, = G, for » —e <
2 <N+ e It must be shown that the open arc (A — &, » + ¢€) lies in
o(V). Let g and g, be any two numbers such that » —e < g, <
Us < N+ e. We shall first show that J(u, ¢,)x = 0 for each x in X.
By Theorem 2.4, we know that for any « in X, we have o(J (&, th)x) =
[te,, t.]; hence if p, < s <\ -+¢, then J(u, t,)xr is in G, because
[t ] <10, s]. Now if M — e < £ < ¢, then by assumption G, = G,;
hence J(y,, t£,)x belongs to G, which implies that a(J (¢, t)x) < [0, .
Thus o(J (4, L)) S [t ] N[0, #] = @. By part (i) of Lemma 2.3,
we have J(4,, ) = 0. Using the operational calculus and splitting
the contour in the usual way, we have

(V — eV — et = J(un, e + J(th, o = T (s, ()2 .
Thus
o((V — e (V — e*2)x) = a(J(th, 1)) S (14, 4] -
But since (cf. [2; p. 589])
o(@) S o((V — e™)(V — e2)w) U {e™} U {e™},
we have d(x) S [, tu]. Thus for any = in X, we have (¢, 1,) C p(x)
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where (1, t,) is any open subarc of (A — &, A + ¢). Thus for any «
in X and any point e™*, with A — e < £ < X\ + ¢, we have ¢* in p(x)
and (e — V)x(e™) = x; hence (¢** — V) maps X onto X, and so e*
is in o(V) for each ££ in (A — ¢, N + ¢).

(b) This is obvious since o(V) = a (V).

4. Weakly almost periodic operators. In this section we shall
show how the methods developed by Dunford can be applied to a class
of operators studied by E. R. Lorch [6]. The main results presented
here do not differ from those in the paper by Lorch, but the mani-
folds defined here are larger than those in [6].

Let X be a reflexive Banach space and V an invertible bounded
operator such that

(@) || V*|| £ K for some constant K and n = +1, +2... .

Lorch calls an operator V in a reflexive Banach space which satisfies
condition (a’) a weakly almost periodic (w.a.p.) operator. Since con-
dition (a’) is more stringent than condition (a), we see from Theorem
2.1 that the spectrum of a w.a.p. operator is contained in the circum-
ference of the unit circle. The following lemma is basic to the dis-
cussion; its proof may be found in [5].

4.1 LEMMA. For each & on the circumference of the unit circle
there exists a bounded projection P, with range R(P,) = {x: Vx = &x}
and null space N(P,) = cl(V — E)(X). Moreover, the space X is the
direct sum of the subspaces R(P;) and N(P,).

If £ — V is one-to-one for some & on the circumference of the
unit circle, then from the above lemma, R(P;) = (0); hence the range
of £ — V is dense in X. Thus & is in the continuous spectrum; hence
the residual spectrum of a w.a.p. operator is void. Furthermore,
condition (a’) implies that for |z| > 1,

I1RG VIl = | £ a7+ = KO21 - 17

and for |z]| < 1,

| R(z; V)| = H Sy

=KQ1—z)7;

hence a w.a.p. operator satisfies the stronger condition of having a
resolvent with a first order rate of growth. Thus Theorem 2.4 applies
to a w.a.p. operator with J(\;, \,) now defined by:

Ty Ng) = -2%50“ @ — (e — e )R



152 G. K. LEAF

The set of all x whose spectrum lies in a closed subarec of the cir-
cumference of the unit circle is a closed linear manifold since this is
a consequence of the finite order of the rate of growth of the re-
solvent. In the case of a w.a.p. operator, Theorem 2.7 is replaced
by the following theorem.

4.2 THEOREM. Let £,&, ---, &, be points on the circumference
of the wumit circle and let W denote the range of the operator
(V—ENV —&)---(V—§,); then

(i) X=R(P,)D -+ D R, Dl(W), and

(ii) for any vector y in W there is a wnique decomposition y =
Y+ Yt o+ Ys where o(yk) S [&k’ §k+1]7 k= 1’ 2’ e, M with §n+1 = {.:1-

Proof. In part (i), the general case is handled by induction.
The case n = 2 follows from the relation

I=P€1+P52+(I—Pﬁ)(I—P52)

together with the result (cf. [2; p. 592]) that the range of the projection
(I — P.)I — P.) is equal to the closure of the range of the operator
(V—E)V —&).

The proof of part (ii) is identical to the proof of Theorem 2.7 (ii).

If £,&, ---,&,,, = & is any finite collection of points on the cir-
cumference of the unit circle, then this collection forms a partition
of the circumference into a finite number of nonoverlapping closed
intervals [&,, €,..]. By the preceding theorem, any vector x in the
space may be approximated by a vector of the form z, + -+ + z, +
Y+ +++ + Y, where V, = &x, and o(y,) S [&, &l K =1,2, -+, m.
An obvious question as to the character of g(x,) is answered by the
following lemma.

4.8 LEMMA. For any & = e, then Vi = &x,x + 0, if and only
if o(x) = {&.

Proof. If x+ 0 and Vz = &x, then
Rew =3 (-9 (V -8 =6E—o;

thus R(z)x is analytic for z + & and so o(x) = {&}.

On the other hand, if o(x) = {£}, then o(x) # @ and so z # 0.
If £ = ¢**, choose two sequences {\,} and {¢,} such that ), <A< g,
with A, and ¢, both tending to M. Using the operational calculus
and splitting the contour in the usual way, we have

(V — )V — e¥m)w = J(\,, f£,)2 + J(tta, M)
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Since o(x) = {&}, J (¢, M)z = 0 for every n. By Theorem 2.4, J(\,, t,)x
tends to zero as 7 tends to infinity. Thus

(V— &2 =lim, (V — e?n)(V = e*n)x = lim, J(\,, ) =0 .

Thus (z — &)R(2)x = 2 + (z — &(V — &)=. Since (z — §)R(2)« is bounded
as 2z tends to & along the transversal through &, we have (V — &z = 0.
Theorem 2.9 relied mainly on two hypotheses. The first was that
for any finite set of points &, &, ---, £, each vector x could be ap-
proximated by % vectors ¥, ¥,, * -+, ¥, Where o(y,) S [&,, E.+1]. In the
case of a w.a.p. operator, this hypothesis was shown to be valid in
the discussion preceding Lemma 4.3 together with the lemma itself.
The second hypothesis was provided by Lemma 2.8 which said that

for any ¢ > 0 there exists a number A, such that for any
z in X, we have ||[(V — Dz|| < B/d)e||x]|| + A || (V — I)z ]| .

The validity of (8) depended on the condition || V|| = o(n), and
it is easily seen from the proof of Lemma 2.8 that (5) remains true
if the fourth power is replaced by any lower power. Since a w.a.p.
operator satisfies the condition || V|| = o(n), (8) holds for a w.a.p.
operator with the fourth power replaced by the second power. With
the above discussion in mind, Theorem 2.9 holds for a w.a.p. operator,
and can be proved in exactly the same way that Theorem 2.9 was
proved.

In order to obtain a system of resolving manifolds for a w.a.p.
operator, the following two lemmas are needed. The first lemma is
a special case of a more general result due to Dunford (cf. [2: p. 593]).
The second lemma will be proved by applying techniques developed by
Dunford.

®)

4.4 LEMMA. Let & = e and & = e be any two points with
N < Ny, and denote the open subarc {e*: \ &[N, No]} by [N, No]'.  Then
the set of all vectors of the form x + y with o(x) S [\, \)] and a(y) =
[M, ]’ ts demnse in X.

4.5. LEMMA. If o(x) = {&}U {&}, then © = x, + 2, where Vz, =
Ex, and Vx, = &,

Proof. Suppose o(x) = {&} U {&}, let [*] denote the closed linear
manifold generated by R(z)x as z ranges over o(V). This subspace
is defined in [2; p. 564] and the following properties are given there.

@ V() S [o];

(b) z is in [x];

(c) if y is in [«] then [y] S [=];
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(d) if V, denotes the restriction of V to the subspace [x], then
a(V,) = o(x).
From (d), a(V,) = {&} U {&}; hence {&} and {&} are spectral sets for
V.. Let X, be the range of the projection E; associated with the
spectral set {£&;} and V; the restriction of V, to the subspace X; for
1 =1,2. Then o(V;) =1{&} and [¢] = X, P X,. Since z is in [z], =
is of the form x, + %, where , is in X, and «, is in X,. On applying
Lemma 4.3 to these subspaces, we obtain the assertion of the lemma.

Using the preceding lemmas, we can define a system to resolving
manifolds for a w.a.p. operator. Let G,, = X and F,, = (0); for 0 =<
N < 27, let Gy be the set of all x such that o(x) S [0, \] together
with Pr =0 and P,x = 0. Let F, be the set of all « for which
o(x) S [N, 2x].

4.6 THEOREM. For 0 =\ = 2m, the resolving manifolds satisfy
(a) G\ and F, are closed linear manifolds,

(b) G, and F\ have only the zero element in common,

() for 0= A< p=2nG\S G, and F, S F,;

(d) the pair {G., F\} spans X; and

(e) G, and F, reduce V.

Proof. If £ =e*, then G, = {x:0(x) S [0, \]} N N(P,) N N(P).
The fact that {x:o(x) S[0,A]} is a closed linear manifold follows
directly from Theorem 2.5 since the validity of that theorem depended
only on the finite rate of growth of the resolvent. This last state-
ment also applies to F,. If x is in both G, and F,, then o(x) =
{1} U {&}, by Lemma 4.5, x is of the form x, + 2, where Px, =z, and
Pz, = x,. Since z is in G,, Px and P,x are both 0; hence z, = Px, =
Pr =0,and 2, = P\, = P.x = 0. Thus x = 0. For part (c), suppose
A =0, then G, = {x:0(x) & {¢*}, Px =0}. If x is in G, with = # 0,
then by Lemma 4.3, we have Pr = z. Since z is in G, it follows
that Px = 0. Hence, contrary to the hypothesis, « is zero. If \ is
not zero, and A\ is less that g, then if # is in G,, we have d(x) =
[0, x] [0, #], Px =0, and Py = 0. To show that x is in G,, we need
only show that P, =0. Let x, = P, and suppose @, is not zero.
By Lemma 4.1, © = %, + h where & is in the closure of the range of
(V — e*). Since 2, is an eigenvector, «,(z) = (2 — ¢*)™'x,, and by
Lemma 2.3, 2(2) = 2,(2) + h(z) for z in p(h), z + e*. Since x,(2) is in
the range of P,, h(z) is in the null space of P,; hence the singularity
of x,(2) at z = e cannot be cancelled out by i(z). Thus e* is in o(x).
But o(x) < [0, )] and e* is not in [0, A]; thus P.,x must be zero, and
G\ € G, for ) less than . The monotonicity of F), is obvious. Part
(d) is a direct consequence of Lemma 4.4. Since VP, = P,V, part (e)
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is proved in exactly the same manner as part (e) of Theorem 3.2.

4.7 THEOREM. (a) The point e is in the point spectrum of V
if and only if G, is properly contained im the intersection of G, for
>\

(b) The point e is in the resolvent set if and only if there
exists an € > 0 such that G, = G, for x —e < pt <\ + e.

(¢) The point e is in the continuous spectrum if and only if
G, s the intersection of G, for 1>\ and G, is mot constant in any
netghborhood of .

Proor. If e** is in the point spectrum, then there exists a vector
2, #+ 0 such that Vx, = e¢**x,; hence P)x, = x,. By Lemma 4.3, o(x,) =
{e*}, and since P,P, =0 for ¢ #\, we have P, =0 for g+ A\.
Hence, if 1 is greater than A, we have o(x,) = {¢**} |0, ¢], P.x, = 0,
and Px,=0, i.e., %, is in G, for ¢ greater than \. Since Pz, =
z, + 0, we see that z, is not in G,; thus G, is properly contained in
the intersection of G, for f£ > .

On the other hand, suppose G, is properly contained in the inter-
section of G, for f£ >\, then let £ be in this intersection, but not
in G,. We then have Px = 0 and o(x) & [0, ¢£] for all st greater than
N; hence, o(x) £ [0,\]. If P,x were zero, then z would be in G,;
thus P,x = 0 and V(P,x) = ¢’*P,x showing that e is in the point
spectrum.

Parts (b) and (¢) are proved in almost exactly the same way that
Theorem 3.2 was proved.
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