THE INVERSE OF THE ERROR FUNCTION

L. Carlitz

1. Introduction. In a recent paper [3] J. R. Philip has discussed some properties of the function inverfc θ defined by means of

$$
\begin{equation*}
\theta=\operatorname{erfc}(\text { inverfc } \theta) \tag{1.1}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{1}{2} \pi^{1 / 2}(1-\operatorname{erfc} x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{2!5}-\frac{x^{7}}{3!7}+\frac{x^{9}}{4!9} \cdots \tag{1.2}
\end{equation*}
$$

it follows that
(1.3) inverfc $\theta=u+\frac{1}{3} u^{3}+\frac{7}{30} u^{5}+\frac{127}{630} u^{7}+\frac{4369}{22680} u^{9}+\cdots$,
where

$$
u=\frac{1}{2} \pi^{1 / 2}(1-\theta)
$$

The coefficients in (1.3) are rational numbers. It is therefore of some interest to look for arithmetic properties of these numbers.

It will be convenient to change the notation slightly. Put

$$
\begin{equation*}
f(x)=\int_{0}^{\infty_{\theta}-t^{2} / 2} d t \tag{1.4}
\end{equation*}
$$

so that

$$
f(x)=\left(\frac{\pi}{2}\right)^{1 / 2}\left(1-\operatorname{erfc} 2^{1 / 2} x\right)
$$

and let $g(x)$ denote the inverse function:

$$
\begin{equation*}
f(g(u))=g(f(u))=u \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
g(u)=\sum_{n=0}^{\infty} A_{2 n+1} \frac{u^{2 n+1}}{(2 n+1)!} \quad\left(A_{1}=1\right) \tag{1.6}
\end{equation*}
$$

It follows from (1.4) and (1.5) that

$$
\begin{equation*}
g^{\prime}(u)=\exp \left(\frac{1}{2} g^{2}(u)\right) \tag{1.7}
\end{equation*}
$$

Differentiating again, we get
Received April 11, 1962.
Supported in part by National Science Foundation grants G16485, G14636.

$$
\begin{equation*}
g^{\prime \prime}(u)=g(u)\left(g^{\prime}(u)\right)^{2} . \tag{1.8}
\end{equation*}
$$

It follows from (1.6) and (1.8) that

$$
\begin{equation*}
A_{2 n+3}=\sum_{r+s \leq n} \frac{(2 n+1)!}{(2 r)!(2 s)!(2 n-2 r-2 s+1)!} A_{2 r+1} A_{2 s+1} A_{2 n-2 r-2 s+1} . \tag{1.9}
\end{equation*}
$$

Since $A_{1}=1$ it is evident from (1.9) that all the coefficients $A_{2 n+1}$ are positive integers. It is easily verified that the first few values of $A_{2 n+1}$ are

$$
A_{1}=A_{3}=1, A_{5}=7, A_{7}=127, A_{9}=4369=17.257
$$

We shall show that

$$
\begin{equation*}
A_{2 n+p} \equiv-2.4 .6 \cdots(p-1) A_{2 n+1}(\bmod p), \tag{1.1}
\end{equation*}
$$

where p is an arbitrary prime and that

$$
\begin{equation*}
A_{2 n+5} \equiv-A_{2 n+1}(\bmod 8) \tag{1.11}
\end{equation*}
$$

and indeed

$$
\begin{equation*}
A_{2 n+9} \equiv A_{2 n+1}(\bmod 16) . \tag{1.12}
\end{equation*}
$$

We also find certain congruences $(\bmod p)$ for a sequence of integers $e_{2 n}$ related to the $A_{2 n+1}$ (see Theorems 2 and 3 below).

Finally we put

$$
\frac{u}{g(u)}=\sum_{0}^{\infty} \beta_{2 n} \frac{u^{2 n}}{(2 n)!}
$$

and obtain a theorem of the Staudt-Clausen type for the $\beta_{2 n}$, namely

$$
\beta_{2 n}=G_{2 n}-\frac{b}{3}-\sum_{p-112 n} \frac{1}{p} A_{p}^{2 n /(p-1)},
$$

where $G_{2 n}$ is an integer, $b=2$ or 1 according as $n \equiv 1$ or $\equiv \equiv 1(\bmod 3)$. and the summation is over all primes $p>3$ such that $p-1 / 2 n$. Moreover

$$
A_{p} \equiv-2.4 .6 \cdots(p-1)(\bmod p) .
$$

2. A series of the form [2]

$$
\begin{equation*}
H(x)=\sum_{n=0}^{\infty} a_{n} \frac{x^{n}}{n!}, \tag{2.1}
\end{equation*}
$$

where the a_{n} are rational integers, is called a Hurwitz series, or briefly an H-series. It is easily verified that sum, difference and product of two H-series is again an H-series. Also the derivative
and the definite integral of the H-series define by (2.1):

$$
H^{\prime}(x)=\sum_{n=0}^{\infty} a_{n+1} \frac{x^{n}}{n!}, \int_{0}^{x} H(t) d t=\sum_{n=1}^{\infty} a_{n-1} \frac{x^{n}}{n!}
$$

are H-series. If $H_{1}(x)$ denotes an H-series without constant term then $H_{1}^{k}(x) / k$! is an H-series for $k=1,2,3, \cdots$; it follows that $H\left(H_{1}(x)\right)$ is an H-series, where $H(x)$ is an arbitrary series of the form (2.1).

By the statement

$$
\sum_{n=0}^{\infty} a_{n} \frac{x^{n}}{n!} \equiv \sum_{n=0}^{\infty} b_{n} \frac{x^{n}}{n!} \quad(\bmod m)
$$

where the a_{n}, b_{n} are integers, is meant the system of congruences

$$
a_{n} \equiv b_{n} \quad(\bmod m) \quad(n=0,1,2, \cdots)
$$

Thus the above statement about $H_{1}^{k}(x) / k$! can be written in the form

$$
\begin{equation*}
H_{1}^{k}(x) \equiv 0 \quad(\bmod k!) \tag{2.2}
\end{equation*}
$$

Returning to (1.4) it is evident that

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2^{n}(2 n+1) n!}=\sum_{n=0}^{\infty} c_{2 n+1} \frac{x^{2 n+1}}{(2 n+1)!}, \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{2 n+1}=(-1)^{n} \frac{(2 n)!}{2^{n} n!}=(-1)^{n} 1.3 .5 \cdots(2 n-1) \tag{2.4}
\end{equation*}
$$

so that $f(x)$ is an H-series without constant term.
If p is an odd prime, it follows from (2.4) that

$$
\begin{equation*}
c_{2 n+1} \equiv 0, \quad(\bmod p) \quad(2 n+1>p) \tag{2.5}
\end{equation*}
$$

Thus (1.5) implies

$$
\begin{equation*}
\sum_{n=0}^{1 / 2(p-1)} c_{2 n+1} \frac{g^{2 n+1}(u)}{(2 n+1)!} \equiv u \quad(\bmod p) \tag{2.6}
\end{equation*}
$$

We now compute the coefficient of u^{p} / p ! in the left member of (2.6). Clearly the terms with $1 \leqq n<(p-1) / 2$ contribute nothing. Hence (2.6) yields

$$
A_{p}+c_{p} \equiv 0 \quad(\bmod p)
$$

Using (2.4) this becomes

$$
\begin{equation*}
A_{p} \equiv-(-1)^{m} 1.3 .5 \cdots(p-2) \quad(\bmod p) \tag{2.7}
\end{equation*}
$$

or if we prefer

$$
\begin{equation*}
A_{p} \equiv-2.4 .6 \cdots 2 m \equiv-\left(\frac{2}{p}\right) m!\quad(\bmod p) \tag{2.8}
\end{equation*}
$$

where $p=2 m+1$ and $(2 / p)$ is the Legendre symbol. For example we have

$$
\begin{aligned}
A_{5} & \equiv-1.3 \equiv 2 \quad(\bmod 5), \\
A_{7} & \equiv 1.3 .5 \equiv 1 \quad(\bmod 7), \\
A_{11} & \equiv 1.3 .5 .7 .9 \equiv-1 \quad(\bmod 11) .
\end{aligned}
$$

We consider next the residue $(\bmod p)$ of $A_{p+2 n}$. If $2 n<p$ we: have

$$
\frac{(p+2 n)!}{(2 r)!(2 s)!(p+2 n-2 r-2 s)!} \equiv \frac{(2 n)!}{(2 r)!(2 s)!(2 n-2 r-2 s)!} \quad(\bmod p)
$$

by a familiar property of multinomial coefficients. Thus (1.9) implies (for $2 n<p$)

$$
\begin{align*}
& A_{p+2 n+2} \equiv \sum_{r+s \leq n} \frac{(2 n)!}{(2 r)!(2 s)!(2 n-2 r-2 s)!} \tag{2.9}\\
& \cdot A_{2 r+1} A_{2 s+1} A_{p+2 n-2 r-2 s} \quad(\bmod p) .
\end{align*}
$$

Since $A_{p} \not \equiv 0(\bmod p)$ we may put

$$
\begin{equation*}
A_{p+2 n} \equiv A_{p} e_{2 n} \quad(\bmod p) \quad(2 n \leqq p+1) . \tag{2.10}
\end{equation*}
$$

Then (2.9) becomes

$$
\begin{align*}
e_{2 n+2} \equiv \sum_{r+s \leq n} \frac{(2 n)!}{(2 r)!(2 s)!(2 n-2 r-2 s)!} \tag{2.11}\\
\cdot A_{2 r+1} A_{2 s+1} e_{2 n-2 r-2 s} \quad(\bmod p)
\end{align*}
$$

provided $2 n<p$.
We now define a set of positive integers $e_{2 n}$ by means of $e_{0}=1$,

$$
\begin{align*}
e_{2 n+2}= & \sum_{r+s \leqq n} \frac{(2 n)!}{(2 r)!(2 s)!(2 n-2 r-2 s)!} A_{2 r+1} A_{2 s+1} e_{2 n-2 r-2 s} \tag{2.12}\\
& (n=0,1,2, \cdots) .
\end{align*}
$$

If we put

$$
\phi(x)=\sum_{n=0}^{\infty} e_{2 n} \frac{x^{2 n}}{(2 n)!},
$$

then (2.12) is equivalent to

$$
\begin{equation*}
\phi^{\prime \prime}(x)=\phi(x)\left(g^{\prime}(x)\right)^{2} . \tag{2.13}
\end{equation*}
$$

Comparing (2.13) with (1.8) we get

$$
\begin{equation*}
\frac{\phi^{\prime \prime}(x)}{\phi(x)}=\frac{g^{\prime \prime}(x)}{g(x)} \tag{2.14}
\end{equation*}
$$

It follows that

$$
\phi(x) g^{\prime}(x)-g(x) \phi^{\prime}(x)=1
$$

A little manipulation yields

$$
\phi(x)=-g(x) \int \frac{d x}{g^{2}(x)}=-g(x) \int \frac{g^{\prime}(x) \exp \left(-\frac{1}{2} g^{2}(x)\right) d x}{g^{2}(x)}
$$

and we get

$$
\begin{equation*}
\phi(x)=1-\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n} n!} \frac{g^{2 n}(x)}{2 n-1} . \tag{2.15}
\end{equation*}
$$

Since

$$
\frac{(2 n)!}{2^{n}(2 n-1) n!}=1.3 .5 \cdots(2 n-3)
$$

it follows from (2.2) and (2.15) that

$$
\begin{equation*}
\phi(x) \equiv 1-\sum_{n=1}^{m+1} \frac{(-1)^{n}}{2^{n} n!} \frac{g^{2 n}(x)}{2 n-1} \quad(\bmod p) \tag{2.16}
\end{equation*}
$$

where $p=2 m+1$.
We notice also that (1.7) gives

$$
\begin{equation*}
g^{\prime}(u) \equiv \sum_{n=0}^{\infty} \frac{g^{2 n}(x)}{2^{n} n!} \quad(\bmod p) \tag{2.17}
\end{equation*}
$$

while (1.8) yields

$$
\begin{equation*}
g^{\prime \prime}(u) \equiv \sum_{n=0}^{m-1} \frac{g^{2 n+1}(x)}{n!} \quad(\bmod p) \tag{2.18}
\end{equation*}
$$

3. We may rewrite (1.8) as

$$
\begin{equation*}
g^{\prime \prime}(u)=g(u) \exp g^{2}(u) \tag{3.1}
\end{equation*}
$$

Differentiating again and using (1.7) we get

$$
\begin{equation*}
g^{\prime \prime \prime}(u)=\left(1+2 g^{2}(u)\right) \exp \left(\frac{3}{2} g^{2}(u)\right) \tag{3.2}
\end{equation*}
$$

Since

$$
\exp \left(\frac{3}{2} g^{2}(u)\right) \equiv 1 \quad(\bmod 3)
$$

it is clear that (3.2) implies

$$
g^{\prime \prime \prime}(u) \equiv 1+2 g^{2}(u) \quad(\bmod 3) .
$$

On the other hand (1.7) gives

$$
g^{\prime}(u) \equiv 1+\frac{1}{2} g^{2}(u) \equiv 1+2 g^{2}(u) \quad(\bmod 3) .
$$

We have therefore

$$
\begin{equation*}
g^{\prime \prime \prime}(u) \equiv g^{\prime}(u) \quad(\bmod 3) . \tag{3.3}
\end{equation*}
$$

Comparison with (1.6) yields

$$
\begin{equation*}
A_{2 n+1} \equiv 1 \quad(\bmod 3) \quad(n=0,1,2, \cdots) . \tag{3.4}
\end{equation*}
$$

If we differentiate (3.2) two more times we get

$$
\left\{\begin{array}{l}
D^{4} g(u)=\left(7 g(u)+6 g^{3}\right) \exp \left(2 g^{2}(u)\right), \tag{3.5}\\
D^{5} g(u)=\left(7+46 g^{2}(u)+24 g^{4}(u)\right) \exp \left(\frac{5}{2} g^{2}(u)\right),
\end{array}\right.
$$

where $D=d / d u$. From the last equation it follows easily that

$$
D^{5} g(u) \equiv 2+g^{2}(u)+4 g^{4}(u) \quad(\bmod 5) .
$$

Since by (1.7)

$$
D g(u) \equiv 1+\frac{1}{2} g^{2}(u)+\frac{1}{8} g^{4}(u) \equiv 1+3 g^{2}(u)+2 g^{4}(u) \quad(\bmod 5),
$$

it follows that

$$
\begin{equation*}
\left(D^{5}-2 D\right) g(u) \equiv 0 \quad(\bmod 5) . \tag{3.5}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
A_{2 n+5} \equiv 2 A_{2 n+1} \quad(\bmod 5) \quad(n=0,1,2, \cdots) . \tag{3.6}
\end{equation*}
$$

Since $A_{1}=A_{3}=1$, (2.6) implies

$$
\begin{equation*}
A_{4 n+1} \equiv A_{4 n+3} \equiv 2^{n} \quad(\bmod 5) \quad(n=0,1,2, \cdots) . \tag{3.7}
\end{equation*}
$$

It is clear from (3.1), (3.2) and (3.5) that

$$
\begin{equation*}
D^{n} g(u)=\psi_{n-1}(g(u)) \exp \left(\frac{n}{2} g^{2}(u)\right), \tag{3.8}
\end{equation*}
$$

where $\psi_{n}(z)$ is a polynomial of degree n in z with positive integral coefficients. Differentiating (3.8) we find that $\psi_{n}(z)$ satisfies the
recurrence

$$
\begin{equation*}
\psi_{n}(z)=\psi_{n-1}^{\prime}(z)+n z \psi_{n-1}(z) \tag{3.9}
\end{equation*}
$$

We shall require the residue $(\bmod p)$ of $\psi_{p-1}(z)$. It is not evident how to obtain this residue using (3.8) and (3.9). We shall therefore use a different method.

The writer has proved $[1, \S 6]$ that if

$$
g(x)=\sum_{1}^{\infty} a_{n} \frac{x^{n}}{n!} \quad\left(a_{1}=1\right)
$$

is an H-series without constant term, if

$$
\lambda(x)=\sum_{1}^{\infty} b_{n} \frac{x^{n}}{n!} \quad\left(b_{1}=1\right)
$$

is the inverse of $g(x)$ and in addition

$$
\begin{equation*}
b_{n} \equiv 0 \quad(\bmod p) \quad(n>p) \tag{3.10}
\end{equation*}
$$

where p is an arbitrary prime, then

$$
\begin{equation*}
a_{n+p} \equiv a_{p} a_{n+1} \quad(\bmod p) \quad(n \geqq 0) \tag{3.11}
\end{equation*}
$$

Clearly (3.10) is satisfied in the present case and therefore (3.11) implies

$$
\begin{equation*}
A_{2 n+p} \equiv A_{p} A_{2 n+1} \quad(\bmod p) \tag{3.12}
\end{equation*}
$$

Making use of (2.8) we may now state
Theorem 1. The coefficients of $g(u)$ defined by (1.6) satisfy (3.13) $\quad A_{2 n+p} \equiv-2.4 .6 \cdots(p-1) A_{2 n+1}(\bmod p)(n=0,1,2, \cdots)$, where p is an arbitrary odd prime.

It is easily verified that (3.4) and (3.6) are in agreement with (3.13).

Since (3.12) is equivalent to

$$
\left(D^{p}-A_{p} D\right) g(u) \equiv 0 \quad(\bmod p)
$$

comparison with (3.8) yields

$$
\psi_{p-1}(g(u)) \equiv A_{p} \exp \left(\frac{1}{2} g^{2}(u)\right) \equiv A_{p} \sum_{n=0}^{m} \frac{g^{2 n}(u)}{2^{n n}!} \quad(\bmod p)
$$

where $p=2 m+1$.
If we put

$$
(g(u))^{k}=\sum_{n=k}^{\infty} A_{n}^{(k)} \frac{u^{n}}{n!} \quad(k=1,2,3, \cdots)
$$

we can show [1, Theorem 10] that $A_{n}^{(k)}$ satisfies

$$
\begin{equation*}
A_{n+p}^{(k)} \equiv A_{p} A_{n+1}^{(k)} \quad(\bmod p) \quad(n \geqq 0) \tag{3.14}
\end{equation*}
$$

for all $k \geqq 1$.
We shall apply this result to the series $\phi(u)$ defined by (2.15). Since (3.14) is equivalent to

$$
\left(D^{p}-A_{p} D\right) g^{k}(u) \equiv 0 \quad(\bmod p),
$$

it is clear that (2.16) implies

$$
\begin{align*}
\left(D^{p}-A_{p} D\right) \phi(u) & \equiv \frac{(-1)^{m}}{2^{m+1}(m-1)!} \frac{g^{p+1}(u)}{p} \tag{3.15}\\
& \equiv A_{p}\left(D^{p}-A_{p} D\right) \frac{g^{p+1}(u)}{p} \quad(\bmod p)
\end{align*}
$$

where $p=2 m+1$.
Now by [1, (6.12)] we have

$$
g(u) \equiv \sum_{n=0}^{m} A_{2 n+1} \frac{g_{1}^{2 n+1}(u)}{(2 n+1)!} \quad(\bmod p),
$$

where

$$
\begin{equation*}
g_{1}(u)=u+A_{p} \frac{g^{p}(u)}{p!} \tag{3.16}
\end{equation*}
$$

moreover

$$
\begin{equation*}
\frac{g_{1}^{p}(u)}{p!} \equiv \sum_{n=0}^{\infty} A_{p}^{n} \frac{x^{n(p-1)+1}}{(n(p-1)+1)!} \quad(\bmod p) . \tag{3.17}
\end{equation*}
$$

It follows from (3.16) and (3.17) that

$$
\left(D^{p}-A_{p} D\right) \frac{g^{p}(u)}{p!} \equiv 1 \quad(\bmod p)
$$

Thus (3.15) becomes

$$
\left(D^{p}-A_{p} D\right) \phi(u) \equiv-A_{p} g(u) \quad(\bmod p)
$$

which is equivalent to

$$
\begin{equation*}
e_{2 n+p+1} \equiv A_{p}\left(e_{2 n+2}-A_{2 n+1}\right) \quad(\bmod p) \quad(n=0,1,2, \cdots) \tag{3.18}
\end{equation*}
$$

We may state

Theorem 2. The coefficients $e_{2 n}$ defined by (2.12) satisfy (3.18).
In view of (2.10) we may rewrite (3.18) as

$$
\begin{equation*}
A_{2 n+p+2} \equiv A_{p} A_{2 n+1}+e_{2 n+p+1} \quad(2 n<p) \tag{3.19}
\end{equation*}
$$

Since

$$
A_{p} A_{2 n+1} \equiv A_{2 n+p}
$$

(3.19) is equivalent to

$$
\begin{equation*}
A_{2 n+p+2} \equiv A_{2 n+p}+e_{2 n+p+1} \quad(\bmod p) \quad(2 n<p) \tag{3.20}
\end{equation*}
$$

We notice also that repeated application of (3.18) yields

$$
\begin{equation*}
e_{2 n+k}(p-1) \equiv A_{p}^{k} e_{2 n}-k A_{2 n+k}(p-1)-1 \quad(\bmod p) ; \tag{3.21}
\end{equation*}
$$

in particular we have for $k=p$

$$
\begin{equation*}
e_{2 n+p(p-1)} \equiv A_{p} e_{2 n} \quad(\bmod p) \tag{3.22}
\end{equation*}
$$

It is also easy to extend (3.20) to

$$
\begin{align*}
& A_{2 n+k(p-1)+1} \equiv k A_{2 n+k(p-1)-1}+e_{2 n+k(p-1)}(\bmod p) \tag{3.23}\\
&(0<2 n \leqq p+1 ; k=1,2,3, \cdots) .
\end{align*}
$$

Indeed it follows from (3.23) and (3.18) that

$$
\begin{aligned}
e_{2 n+(k+1)(p-1)} & \equiv A_{p}\left(e_{2 n+k(p-1)}-A_{2 n+k(p-1)-1}\right) \\
& \equiv A_{p} e_{2 n+k(p-1)}-A_{2 n+(k+1)(p-1)-1} \\
& \equiv A_{p}\left(A_{2 n+k(p-1)+1}-k A_{2 n+k(p-1)-1}\right)-A_{2 n+(k+1)(p-1)-1} \\
& \equiv A_{2 n+(k+1)(p-1)+1}-(k-1) A_{2 n+(k+1)(p-1)-1}
\end{aligned}
$$

Note that (3.23) does not hold for $k=0$.
We may state the following theorem which supplements Theorem 2.
Theorem 3. The coefficients $e_{2 n}$ defined by (2.12) satisfy (3.21), (3.22) and (3.23).
4. We now derive congruences for $A_{2 n+1}(\bmod 8)$. From the first of (3.5) we have

$$
\begin{aligned}
D^{4} g(u) & \equiv\left(-g(u)+6 g^{3}(u)\right) \exp \left(2 g^{2}(u)\right) \\
& \equiv\left(-g(u)+6 g^{3}(u)\right)\left(1+2 g^{2}(u)\right) \\
& \equiv-g(u)+4 g^{3}(u)+4 g^{5}(u) \quad(\bmod 8)
\end{aligned}
$$

so that

$$
\begin{equation*}
D^{4} g(u) \equiv-g(u) \quad(\bmod 8) \tag{4.1}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
A_{2 n+5} \equiv-A_{2 n+1} \quad(\bmod 8) \quad(n=0,1,2, \cdots) \tag{4.2}
\end{equation*}
$$

which implies

$$
\begin{equation*}
A_{4 n+1} \equiv A_{4 n+3} \equiv(-1)^{n} \quad(\bmod 8) \quad(n=0,1,2, \cdots) . \tag{4.3}
\end{equation*}
$$

This result can however be improved without much difficulty. Working modulo 16 we find that the $\psi_{n}(z)$ defined by (3.8) and (3.9) satisfy

$$
\begin{array}{ll}
\psi_{3}(z) \equiv 7 z+6 z^{3}, & \psi_{4}(z) \equiv 7-2 z^{2} \\
\psi_{5}(z) \equiv-z+6 z^{3}, & \psi_{6}(z) \equiv-1+12 z^{2} \\
\psi_{7}(z) \equiv z+4 z^{3} &
\end{array}
$$

note that the $\psi_{n}(z)$ are here treated as finite H-series. Then by (3-8)

$$
\begin{aligned}
D^{8} g(u) & \equiv\left(g(u)+4 g^{3}(u)\right) \exp \left(4 g^{2}(u)\right) \\
& \equiv\left(g(u)+4 g^{3}(u)\right)\left(1+4 g^{2}(u)\right),
\end{aligned}
$$

so that

$$
\begin{equation*}
D^{8} g(u) \equiv g(u) \quad(\bmod 16) \tag{4.4}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
A_{2 n+9} \equiv A_{2 n+1} \quad(\bmod 16) \tag{4.5}
\end{equation*}
$$

Since $A_{1}=A_{3}=1, A_{5}=7, A_{7} \equiv 7(\bmod 16)$, (4.5) implies

$$
\left\{\begin{array}{l}
A_{8 n+1} \equiv A_{8 n+3} \equiv 1 \quad(\bmod 16) \tag{4.6}\\
A_{8 n+5} \equiv A_{8 n+7} \equiv 7 \quad(\bmod 16)
\end{array}\right.
$$

We may state
Theorem 4. The coefficients $A_{2 n+1}$ satisfy (4.2), (4.3), (4.5), (4.6).
5. We now put

$$
\begin{equation*}
\frac{u}{g(u)}=\sum_{n=0}^{\infty} \beta_{2 n} \frac{u^{2 n}}{(2 n)!}, \tag{5.1}
\end{equation*}
$$

so that

$$
\begin{equation*}
\sum_{r=0}^{n}\binom{2 n+1}{2 r} A_{2 n-2 r+1} \beta_{2 r}=0 \quad(n>0) \tag{5.2}
\end{equation*}
$$

It follows from (5.2) that the $\beta_{2 n}$ are rational numbers with odd denominators.

From (5.1) and (2.3) we have

$$
\begin{equation*}
\frac{u}{g(u)}=\sum_{n=0}^{\infty} \frac{c_{2 n+1}}{2 n+1} \frac{g^{2 n}(u)}{(2 n)!} . \tag{5.3}
\end{equation*}
$$

By (2.4)

$$
\begin{equation*}
c_{2 n+1}^{\prime}=\frac{c_{2 n+1}}{2 n+1}=(-1)^{n} \frac{1.3 .5 \cdots(2 n-1)}{2 n+1} \tag{5.4}
\end{equation*}
$$

Let p be an odd prime. Then for $2 n+1>p, c_{2 n+1}^{\prime}$ is integral (mod p) except possibly when $p / 2 n+1$. Let

$$
2 n+1=k p^{r}, \quad p+k, \quad r \geqq 1
$$

If $k>1$ it is obvious from (5.4) that $c_{2 n+1}^{\prime}$ is integral $(\bmod p)$. If $k=1$, the numerator of $c_{2 n+1}^{\prime}$ is divisible by at least p^{w}, where $w=\left(p^{r-1}-1\right) / 2$. But since

$$
\frac{1}{2}\left(p^{r-1}-1\right) \geqq r
$$

except when $p=3, r=2$, it follows that

$$
\begin{equation*}
p \frac{u}{g(u)} \equiv c_{p} \frac{g^{p-1}(u)}{(p-1)!} \quad(\bmod p) \quad(p>3) \tag{5.5}
\end{equation*}
$$

$$
\begin{equation*}
3 \frac{u}{g(u)} \equiv-\frac{g^{2}(u)}{2!}-\frac{g^{8}(u)}{8!} \quad(\bmod 3) \tag{5.6}
\end{equation*}
$$

In the next place we have [1, (6.2)]

$$
\begin{equation*}
\frac{g^{p-1}(u)}{(p-1)!} \equiv \sum_{n=1}^{\infty} A_{p}^{n-1} \frac{u^{n(p-1)}}{(n(p-1))!} \quad(\bmod p) \tag{5.7}
\end{equation*}
$$

for all p. As for $g^{8}(u) / 8$!, we have by (3.16)

$$
\begin{gathered}
\frac{g^{3}(u)}{3!} g_{1}(u)-u \equiv \sum_{1}^{\infty} \frac{u^{2 n+1}}{(2 n+1)!}, \\
g_{1}^{\prime}(u) \equiv 1+\frac{1}{2} g^{2}(u) g^{\prime}(u) \equiv 1+\frac{1}{2} g^{2}(u) \equiv g^{\prime}(u) \quad(\bmod 3) .
\end{gathered}
$$

It follows that

$$
\frac{g^{4}(u)}{4!} \equiv \sum_{2}^{\infty}(n-2) \frac{u^{2 n}}{(2 n)!} \quad(\bmod 3)
$$

and a little manipulation leads to

$$
\begin{equation*}
\frac{g^{8}(u)}{8!} \equiv \sum_{1}^{\infty} \frac{u^{6 n+2}}{(6 n+2)!} \quad(\bmod 3) \tag{5.8}
\end{equation*}
$$

If we recall that

$$
c_{p} \equiv-A_{p} \quad(\bmod p)
$$

and make use of (5.1), (5.3), (5.5), (5.6), (5.7) and (5.8) we get the following analog of the Staudt-Clausen theorem:

Theorem 5. The coefficients $\beta_{2 n}$ defined by (5.1) satisfy

$$
\begin{equation*}
\beta_{2 n}=G_{2 n}-\frac{b}{3}-\sum_{\substack{p-1 / 2 n \\ p>3}} \frac{A_{p}^{2 n /(p-1)}}{p}, \tag{5.9}
\end{equation*}
$$

where $G_{2 n}$ is an integer,

$$
b=\left\{\begin{array}{lll}
2 & n \equiv 1 & (\bmod 3) \\
1 & n \not \equiv 1 & (\bmod 3)
\end{array}\right.
$$

and the summation is over all primes $p>3$ such that $p-1 \mid 2 n$.
6. The following values of A_{n} were computed by R . Carlitz in the Duke University Computing Laboratory.

$$
\begin{aligned}
& A_{5}=7, \quad A_{7}=127 \\
& A_{9}=17.257 \\
& A_{11}=7.34807 \\
& A_{13}=20036983 \\
& A_{15}=17.134138639 \\
& A_{17}=7.49020204823 \\
& A_{19}=127.163 .467 .6823703 \\
& A_{21}=23.109 .6291767620181 \\
& A_{23}=7.655889589032992201^{*} \\
& A_{25}=17.94020690191035873697^{*}
\end{aligned}
$$

The numbers marked with an asterisk have not been factored completely but at any rate have no prime divisors $<10^{4}$.

References

1. L. Carlitz, Some properties of Hurwitz series, Duke Math., 16 (1949), 285-295.
2. A. Hurwitz, Über die Entwickelungs-coeffizienten der lemniscatischen Funktionen, Mathematische Annalen, 51 (1899), 196-226 (=Mathematische Werke, Basel, 1933, vol. 2, pp. 342-373).
3. J. R. Philip, The function inverfc θ, Australian J. of Physics, 13 (1960), 13-20.
