
THE INVERSE OF THE ERROR FUNCTION

L. CARLITZ

1. Introduction. In a recent paper [3] J. R. Philip has discussed
some properties of the function inverfc θ defined by means of

{1.1) θ = erfc (inverfc θ) .

Since

(1.2) iπll2(l - erfc a?) = <* - — + — - — + — . . .
V ; 3 2!5 3!7 4!9
it follows that

(1.3) inverfc θ = u + —^3 + — u5 + i ? I ^ 7 + 4 3 6 9 u9 + ,
V ; 3 30 630 22680

where

w = ίττ1/2(l - θ) .
The coefficients in (1.3) are rational numbers. It is therefore of

some interest to look for arithmetic properties of these numbers.
It will be convenient to change the notation slightly. Put

dt,
0

so that

fix) = (-f)1/2(l ~ erfc 2

and let g(x) denote the inverse function :

(1.5) f(g(n)) = g(f(u)) - u ,

where

(1.6) g(u) - Σ ^ > + i / o

ΐ t T i M
*=o (2n + 1)!

It follows from (1.4) and (1.5) that

(1.7) £'(*)

Differentiating again, we get
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(1.8) g"(u) = g{u){g'(u)f .

It follows from (1.6) and (1.8) that

\V) tt 2\X,V) -tt-2w+3 2-X /o \l /o \l / Π o o ! ϊ T Γ 2 r+1^2s +lΛ2tt-2r-2s+l

r+«̂ n (2r)! (2s)! (2n — 2r — 2s + 1)!

Since Ax = 1 it is evident from (1.9) that all the coefficients A2n+1 are
positive integers. It is easily verified that the first few values of
A2n+ι a re

A± = A3 = 1, A5 = 7, AΊ = 127, Λ = 4369 - 17.257 .

We shall show that

(1.10) A2n+P = - 2.4.6 (p - l)A2n+1 (mod p) ,

where ί? is an arbitrary prime and that

(1.11) A 2 n + δ ^ -A2n+1 (mod 8)

and indeed

(1.12) A2n+9 = Aan+1 (mod 16) .

We also find certain congruences (mod p) for a sequence of
integers e2n related to the A2n+1 (see Theorems 2 and 3 below).

Finally we put

g(u) ^"n(2n)l

and obtain a theorem of the Staudt-Clausen type for the β2n, namely

R — fl _ _ ^ _ _ V >42w/(p-l)
P2W — ^ 2 ί i — 2-1 Λ 2> >

3 p-l/2n p

where G2w is an integer, b = 2 or 1 according as % Ξ 1 or ΐ 1 (mod 3)
and the summation is over all primes p > 3 such that p — l/2w...
Moreover

Ap = - 2.4.6 (p - 1) (mod p) .

2. A series of the form [2]

(2.1) ff(») = Σ α . 4 '

where the an are rational integers, is called a Hurwitz series, or
briefly an iί-series. I t is easily verified that sum, difference and
product of two ίf-series is again an fl-series. Also the derivative
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and the definite integral of the ίf-series define by (2.1):

H'(x) = Σ α.+i ̂ r , \XH(t)dt = Σ an.x -* !

are iϊ-series. If Hλ{x) denotes an iί-series without constant term
then Hl(x)jk\ is an iϊ-series for k = 1, 2, 3, it follows that
ΉiH^x)) is an iϊ-series, where H(x) is an arbitrary series of the
form (2.1).

By the statement

where the αn, bn are integers, is meant the system of congruences

an = bn (mod m) (w = 0,1, 2, •) .

Thus the above statement about H*(x)/kl can be written in the form

(2.2) Hί(x) = 0 (mod k\) .

Returning to (1.4) it is evident that

(2.3) f(x) = Σ ( - IT Onί/Z^ t = Σ ca +i /o

a?aΓiM '

"=o 2W(2^ + 1)^! =̂o (2n + 1)!

where

/Q Λ\ * / Λ\*> ("My, / -\\n "\ Q K. . . /O/v, 1 \

so that /(ίc) is an if-series without constant term.
If p is an odd prime, it follows from (2.4) that

(2.5) c2n+1 ΞΞ 0, (mod p) (2n + 1 > p) .

Thus (1.5) implies

<2 6) S ^ i r + « r a f t (modp)

We now compute the coefficient of up/pl in the left member of
(2.6). Clearly the terms with 1 ^ n < (p — l)/2 contribute nothing.
Hence (2.6) yields

Ap + cp = 0 (mod p) .

Using (2.4) this becomes

(2.7) Ap= ~ ( ~ l ) w 1 . 3 . 5 . . . ( ί > - 2 ) (mod p) ,
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or if we prefer

(2.8) Ap = - 2 . 4. 6 - 2m = ~(—)ml (mod p) ,
\pJ

where p = 2m + 1 and (2/p) is the Legendre symbol. For example
we,have

A5 Ξ - 1 . 3 = 2 (mod 5) ,
A7 = 1. 3. 5 Ξ= 1 (mod 7) ,

An = 1. 3. 5. 7. 9 = - 1 (mod 11) .

We consider next the residue (mod p) of Ap+2n. If 2n < p we
have

(P + 2 * ) l Ξ ( 2 t O ! ( m o d ,
(2r)! (2s)! (p + 2n - 2r - 2s)! (2r)! (2s)! (2n - 2r - 2s)!

by a familiar property of multinomial coefficients. Thus (1.9) implies,
(for 2n < p)

±p+2n+2 =
n (2r)! (2s)! (2n - 2r - 2s)!

Since Ap Ξ£ 0 (mod ί)) we may put

(2.10) Ap+2n = Ape2% (mod p) (2n ^ p + 1) .

Then (2.9) becomes

1 ; 2 W + 2"" r4S (2r)I (2s)! (2n - 2r - 2s)!

A2r+1A2s+1β2π_2r_2s (mod p)

provided 2tι < p.
We now define a set of positive integers e2n by means of e0 = 1̂

If we put

»=o (2%)!

then (2.12) is equivalent to

(2.13) ίi"(x) = Φ{x)(g'(x)Y
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Comparing (2.13) with (1.8) we get

(2 14) IM. = g"(*)
' ' Φ(x) g(x) '

It follows that

Φ(x)g'(x) - g{x)Φ'(x) = 1 .

A little manipulation yields

= - g(x) ( * L . = _ 9{x)

i g*(χ)

and we get

(2.15) Φ(x) = 1

Since

&"V = 1.3.5. . ( 2 n - 3 ) ,

it follows from (2.2) and (2.15) that

(2.16, ^-i-gί-a-

where p = 2m + 1.
We notice also that (1.7) gives

(2.17)

while (1.8) yields

m - l

(2.18) flf"(w) = Σ ^ f

( } (modΣ
n=0

3. We may rewrite (1.8) as

(3.1) g"(u)

Differentiating again and using (1.7) we get

(3.2) g'»(u) - (1 + 2g\u)) exp ( | -

Since
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—ΰ\u)\ = 1 (mod 3) ,

it is clear that (3.2) implies

g'"(u) = 1 + 2g\u) (mod 3) .

On the other hand (1.7) gives

g\u) = 1 + ig\u) = 1 + 2g\n) (mod 3) .

We have therefore

(3.3) g'»(u) = g'(u) (mod 3) .

Comparison with (1.6) yields

(3.4) A2n+1 = 1 (mod 3) (n = 0,1, Δ, )

If we differentiate (3.2) two more times we get

rg{u) = (7gr(^) + 6gr3) exp (2g2(^)) ,
(3.5) /K

[Dbg(u) = (7 + 46fif2(«) + 24fif4(w)) exp ( j

where D = d/dw. From the last equation it follows easily that

D6g(u) = 2 + gf2(tt) + 4fif4(ίί) (mod 5) .

Since by (1.7)

Dg{u) = 1 + i-ΛM) + τ-δW) = 1 + Zg\u) + 2g\u) (mod 5) ,
Δ o

it follows that

(3.5) (Dδ - 2D)g(u) = 0 (mod 5) .

This is equivalent to

(3.6) A2n+δ = 2A2W+1 (mod 5) (n = 0,1, 2, . •) .

Since Λ = A3 = 1, (2.6) implies

(3.7) Ain+1 = Ain+5 = 2n (mod 5) (n = 0, 1, 2, •••)

It is clear from (3.1), (3.2) and (3.5) that

(3.8) D*g(u) = fn-Mu)) exp (j92(

where ψn(z) is a polynomial of degree n in z with positive integral
coefficients. Differentiating (3.8) we find that ψn(z) satisfies the
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recurrence

(3.9) ψn(z) = φ'n-άz) + nzψn^(z) .

We shall require the residue (mod p) of ψp^(z). It is not evident
how to obtain this residue using (3.8) and (3.9). We shall therefore
use a different method.

The writer has proved [1, §6] that if

i nl

is an fZ-series without constant term, if

i nl

is the inverse of g(x) and in addition

(3.10) bn = 0 (mod p) (n > p) ,

where p is an arbitrary prime, then

(3.11) an+p = apan+1 (mod p) (n ^ 0) .

Clearly (3.10) is satisfied in the present case and therefore (3.11)
implies

(3.12) A2n+P = ApA2n+1 (mod p) .

Making use of (2.8) -we may now state

THEOREM 1. The coefficients of g(u) defined by (1.6) satisfy

(3.13) A2n+P = -2.4.6 (p - l ) 4 . i (mod p) (n = 0, 1, 2, -) ,

where p is an arbitrary odd prime.

It is easily verified that (3.4) and (3.6) are in agreement with
(3.13).

Since (3.12) is equivalent to

(Dp - ApD)g{u) = 0 (mod p) ,

comparison with (3.8) yields

= Ap exp (ig\u)) = Ap Σ - ζ S p (mod p) ,

where p = 2m + 1.
If we put
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(g(u))k= Σ ^ ^ (fc = 1 , 2 , 3 , . . - ) ,

we can show [1, Theorem 10] that A(

n

k) satisfies

(3.14) Ai% = APA[% (mod p) (n ^ 0)

for all fc ̂  1.
We shall apply this result to the series Φ(u) defined by (2.15).

Since (3.14) is equivalent to

{D* - ApD)g\u) = 0 (mod p) ,

it is clear that (2.16) implies

(3.15) (D> - A P D ) φ ( u ) Ξ ^ 1 ^ ^ ^
(m — 1)! p

APD) gP+1W (mod p) ,
P

where p = 2m + 1.
Now by [1, (6.12)] we have

S3. " (2» + 1)!

where

(3.16) ^(w) = u + .

(modp)f

g1() p

pi

moreover

nP{/>Λ °° /v.n(p—l) + l

It follows from (3.16) and (3.17) that

(D* - APD) £&L s 1 (mod p) .
p\

Thus (3.15) becomes

(D» - AvD)Φ(u) ΞE -Apg(u) (mod p),

which is equivalent to

(3.18) e2M+P+1 Ξ Ap(eM+, - i4,.+1) (mod p) (n = 0,1, 2, . •)

We may state
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THEOREM 2. The coefficients e2n defined by (2.12) satisfy (3.18).

In view of (2.10) we may rewrite (3.18) as

(3.19) A 2 n + p + 2 = ApA2n+1 + e2n+p+1 (2n < p) .

Since

A A = A

(3.19) is equivalent to

(3.20) A 2 n + p + 2 = A 2 n + P + e2n+p^ (mod p) (2n < p) .

We notice also that repeated application of (3.18) yields

(3.21) e2n+k(p - 1) = A\e2n - kA2n+k(p - 1) - 1 (mod p)

in particular we have for k = p

(3.22) e2n+p(p^1} = Ape2n (mod p) .

It is also easy to extend (3.20) to

(o.2o) Ag^+fctp-D+i = ΛΛ2Λ+jj.(p-i)_i + β2w+fc(p-i> (mod p)

(0 < 2n ̂  p + 1 fc = 1, 2, 3, •) .

Indeed it follows from (3.23) and (3.18) that

l>—1)—1/

— 1 ) — 1

Note that (3.23) does not hold for fc = 0.
We may state the following theorem which supplements Theorem 2.

THEOREM 3. The coefficients e2n defined by (2.12) satisfy (3.21),
(3.22) and (3.23).

4 We now derive congruences for A2n+1 (mod 8). From the first
of (3.5) we have

D4g(u) = (-g(u) + 6g%u)) exp (2g\u))

= (-g(u) + 6g%u))(l + 2g\n))

= -9(n) + ig\u) + 4gδ(u) (mod 8) ,

so that

(4.1) D4g(u) = -g(u) (mod 8) .
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This is equivalent to

(4.2) Λ2n+δ = ~A2n+1 (mod 8) (n = 0, 1, 2, •) ,

which implies

(4.3) Ain+1 = A4%+3 = ( - l ) (mod 8) (w = 0,1, 2, . •) .

This result can however be improved without much difficulty.
Working modulo 16 we find that the fn{z) defined by (3.8) and (3.9)
satisfy

ψ,(z) = 7z + 6z3 , ψA(z) = 7-2z\

fb(z) = -z + 6s3 , ψ,(z) ΞΞ - 1 + 12z2 ,

ψΊ(z) = z + 4z3

note that the ψn(z) are here treated as finite iϊ-series. Then by (3-8)

D8g(u) = (g(u) + ig%u)) exp

so that

(4.4) D8g(u) = g(u) (mod 16) .

This is equivalent to

(4.5) A 2 n + 9 = A 2 n + 1 (mod 16) .

Since Ax = A3 = 1, Aδ = 7, A7 = 7 (mod 16), (4.5) implies

8 Λ + 1 ΞΞ A8%+3 ΞΞ 1 (mod 16) ,
(4.6)

Λ.+5 = A8n+7 = 7 (mod 16) .

We may state

THEOREM 4. The coefficients A2n+1 satisfy (4.2), (4.3), (4.5), (4.6).

5 We now put

(5.1) - ^ - Σ A M - J - ,
r̂(̂ ) =̂o (2n)l

so that

(5.2) Σ( 2r ) A^~^^r = 0 (n > 0) .

It follows from (5.2) that the β2n are rational numbers with odd de-
nominators.

From (5.1) and (2.3) we have
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g{u) &>2n + 1 (2%)!

By (2.4)

c U = S ^ L = ( 1 } . 1.8.5 . . .(5.4)
2n + 1

Let p be an odd prime. Then for 2n + 1 > p, c'2n+1 is integral (mod
p) except possibly when p\2n + 1. Let

2n + 1 = W , p + fe , r ̂  1 .

If k > 1 it is obvious from (5.4) that c'2n+1 is integral (mod p). If
k = 1, the numerator of C2n+1 is divisible by at least pw, where
w = (p*-1 — l)/2. But since

Up'-1 - 1) ̂  r

except when p = 3, r = 2, it follows that

(5 5) p w s β £ ? & (raodί)) b > 3 ) '
(5.6) 3 ^ ^ Ξ - ^ M - ^ λ (mod3).

flr(w) 2! 8!

In the next place we have [1, (6.2)]

(5.7) - ^ i S ΣArr-Γ TTTΓ ( m o d ^
(p - 1)! «=i (n(p - 1))!

for all p. As for g\u)/81, we have by (3.16)

3! "iy ' ? (2n + 1)1 '

g[(u) = 1 + ig\u)g'(u) = 1 + ig\u) = flr'(tt) (mod 3)

It follows that

and a little manipulation leads to

<5 8)
 Ψ-^WTW

 (mαJ3)

If we recall that

cp = —Ap (mod p)
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and make use of (5.1), (5.3), (5.5), (5.6), (5.7) and (5.8) we get the
following analog of the Staudt-Clausen theorem:

THEOREM 5. The coefficients β2n defined by (5.1) satisfy

(5.9) β2n = G2n--^-- Σ ^ ,

3 P-1/2Λ p

where G2n is an integer,

(2 n = l (mod 3)(1 n =£ 1 (mod 3)

and the summation is over all primes p > 3 such that p — 112n.

6. The following values of An were computed by R. Carlitz in
the Duke University Computing Laboratory.

A5 =7, A7 = 127,

A9 = 17.257,

An = 7.34807,

A18 - 20036983,

Λ16 - 17.134138639,

A17 = 7.49020204823,

A19 = 127.163.467.6823703,

A21 - 23.109.6291767620181,

A23 = 7.655889589032992201*,

A2δ = 17.94020690191035873697*,

The numbers marked with an asterisk have not been factored com-
pletely but at any rate have no prime divisors < 104.
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