CONCERNING HOMOGENEITY IN TOTALLY
ORDERED, CONNECTED TOPOLOGICAL SPACE

L. B. TREYBIG

Throughout this paper suppose that L denotes a connected, totally
ordered topological space in which there is no first or last point, and
whose topology is that induced by the order.

A topological space S is said to be homogeneous provided it is
true that if (x, y)e S X S, there is a homeomorphism f from S onto
S such that f(x) =y. Let H denote the set of all homeomorphisms
from L onto L, and let I denote the set of all homeomorphisms which
map a closed interval of L onto a closed interval of L. Let H(I)
denote the set of all elements of H(I) which preserve order.

THEOREM 1. If L is homogeneous, then L satisfies the first axiom
of countability.

Proof. It suffices to show that for some point z of L there exists
an increasing sequence &, %,, --- and a decreasing sequence Y, ¥, * - -
such that each of these sequences converges to z. Suppose there is
no such point. Let P, P, --- denote an increasing sequence which
converges to a point P and @, Q,, --- a decreasing sequence which
converges to a point Q. There is an element g in H such that
9(P) = Q. In view of the preceding supposition, g is order reversing.
There is a point R such that ¢g(R) = R, and R is the limit of a se-
quence R, R, --- which is either increasing or decreasing. Suppose
the sequence is decreasing. The sequence g(R,), g(R.), - -+ is increasing
and converges to K. This yields a contradiction. The case where
R, R,, --- is increasing is similar.

THEOREM 2. The space L is homogeneous if and only if each
pair of closed subintervals of L are topologicaly equivalent.

Proof. Part 1. Suppose each pair of closed subintervals of L
are topologically equivalent and (x, y)e L X L. There exist elements
2z and w of L such that z <2z < w and 2 < y < w, and an element g
of I from |z, ] onto [z, y]. If g is order reversing there is an element
g of I, from |z, x] onto |2, ¥| which may be constructed as follows:
Let t denote the point of [z, «] such that g(f) =¢. ¢’ is defined by
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<u<
g'(u) = { ggu(:u) iz— :Z = ;} In any event, let ¢’ and A’ denote ele-

ments of I, which map [z, ] and [z, w], respectively, onto [z, ¥] and
ly, w], respectively. The function f defined by

u, u<zoru>w
fu) = {g'(u), U=y
h',(u)v 90<u§w

is an element of H, such that f(x) = y.
Part 2. Suppose L is homogeneous.

LemMA 1. If (x,y)e L x L, there is an element f of H, such
that f(x) =vy. Furthermore, if felI there is an element g of I,
having the same domain and range, respectively, as f.

Proof. Suppose g€ H and g(x) =y, but g is not in H,. There
is a point b such that b = ¢g(b) and an element A of H such that
h(x) = b. The function f = gh~'¢g*h is in H, and f(x) = y. The proof
of the second part of Lemma 1 follows easily from the first part and
the proof of Part 1 of Theorem 2.

LEMMA 2. Suppose [a, b] is a closed interval and f and g are
elements of I, defined on |a, b] such that f(a)= g(a) (f() = g(b)),
but that f(x) < g(x) for a <2 =b (@ Zx<b). If fla)<xz <f(d)
(9(a) < x, < g(b)) and x,, x,, --- 18 @ sequence such that x, = fg~(%,_,)
(x, = gf (x,-) for m =1, then x, x, 2, --- s a decreasing (in-
creasing) sequence which converges to f(a) (f(b)).

Proof of first part. The inequality a < g7(x,) < f%(x,) < b im-
plies that f(a) <z, = fg'(%,) < %, < f(b). Suppose it has been es-
tablished that f(a) < 2, < ®,., < f(b). The preceding implies that
a < g (x,) < fYx,) <b, which implies that f(a) < 2,., = fog7(x,) <
x, < f(b). Therefore, %, x,, @, -+ is a decreasing sequence bounded
below by f(a), and thus converges to a point = = f(a). Suppose
x > f(a). Since gf'(x) > x, there is a positive integer » such that
gf %) > x, > x, which implies that » > fg'(x,) = ®,.,. This yields
a contradiction, so © = f(a).

LEMMA 3. If ce L there exist an interval |a, b] and elements f
and g of I, with domain [a, b] such that f(a) = g(a) = ¢ and f(z) < g(x),
for a < x < b; or if ce L there exists an interval [a, b] and elements
fand g of I, with domain [a, b] such that £(b) = g(b) =c and f(x) < g(x),
Jor a = x <b.
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Proof. Suppose that for each element (x,y) of L x L there is
a unique element f of H, such that f(x) =y. Let u, u, --- denote
an increasing sequence converging to a point #, and for each =, let
J» denote the element of H, such that f,(u) = u,. If z is an element
of L and n a positive integer, then f,(¥) < fo.i(%) < x; for if this is
not the case, the graph of f, intersects the graph of f,.;, or the
graph of f,,, intersects the graph of the identity homeomorphism,
and in either event there is a contradiction to the unique homeo-
morphism hypothesis. If for some 2, the sequence fi(x), fix),--+ con-
verges to a point ¥ < %, the element g of H, such that g(x) =y has
the property that its graph either intersects the graph of the
identity function or the graph of f,, for some n. Therefore, for any
% in L, the sequence fi(x), fy(%), --- is increasing and converges to x.

For each positive integer j, let a;, a;, --- and b;, b;,, - -+ denote
sequences such that (1) a;, = f;7*(w) and b;; = fi(u), and (2) a;, =
fi¥a; .—) and b;, = fi(b; ._.), for n > 1. Suppose u < & and (7, s) is
an open interval containing z. Let % denote an integer such that
r < fux) and x < f,.(s). Since u < x < f.(s), it follows that a,, =
So(w) < s. If a, is not in (7, s), let K denote the set of all a,; such
that a,; < 2 and let z = 1l.u.b. K. If z < r, there is an element a,;
of K such that f,(2) < a,; < z < f,.(x), which implies that z < £, (a,;) =
@, i1 < ®, which is a contradiction. In any event, some a,; is an
element of (r,s). The preceding argument clearly indicates that
> (a;; + b;;) is a countable set dense in L, so L is a real line and
the unique homeomorphism hypothesis is contradicted.

There exist elements % and k& of H, and points s and ¢ of L such
that h(s) = k(s), but A(t) < k(t). Suppose s < t. Let a denote the
largest element = of L such that h(x) = k(x) and z < ¢t. There is an
element p of I, with domain [k(a), k(t)] such that p(k(a)) = ¢. The
functions f = p(k) and g = p(k) and the interval [a, t] satisfy the
first conclusion of the lemma. The case t < s yields the second con-
clusion.

LemmA 4. Suppose [a, b] is a closed interval and ¢ is a point.
If x> c, there is a point y in (¢, x) and an element f of I, mapping
[a, b] onto [e, y].

Proof. Let U denote the set of all £ > ¢ such that there is a
homeomorphism from [a,b] onto [c, 2], and let V denote the set of
all ¢ < ¢ such that there is a homeomorphism from [a, b] onto [z, c].
The sets U and V exist because of the existence of elements 4, and
h, of H, such that h,(a) =c¢ and hyb) =c. Let u=g.l.b.U, v =
l.u.b. V and suppose that ¢ < u.
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Case 1. Suppose the first conclusion of Lemma 3 holds There
exists a point u,, an interval [, ¢], and elements f and ¢ of I, having
domain [p, ¢], and such that (1) ¢ < u, < u, (2) f(p) = 9(p) = u,, and
(8) f(z) < g(x), for p < x < q. There is a point » such that p < r < g,
9(r) < u, and g(r) < f(q), and an element % of I, having domain [p, q]
such that (1) k(r) = u, and (2) k(x) = g(x) for x € [p, q]. The function
h defined on [p, q] by h(x) = kg~'f(x) is an element of I, such that
(1) Maq)>u, (2) Wp)=Fk(p), and (3) h(zx) < k(z), for p <z =q.
There is a point x, such that v < %, < h(q) and an element f, of I, map-
ping [a, b] onto [c, w,]. Let #, x, --- denote a sequence such that
%, = hk™(x,-,) for n = 1, and let f,, f,, --- denote a sequence of func-
tions defined on [a, b] such that for n =1 (1) f.(x) = fu(x), for a <
2 = fi'(w,), and (2) f.(x) = hk'f,_(2), for fi*(u) < x <b. For each
n, f, is a homeomorphism from [a, b] onto [c, x,], but, according to
Lemma 2, 2, < u for some n. This yields a contradiction, so u = ec.

Case 2. If the second conclusion of Lemma 3 holds, then it
follows, by an argument similar to the one in Case 1, that v = c.
Let u, denote a point between ¢ and %, and g an element of H, such
that g(¢) = u,. There is a point %, such that ¢ < u, < u, and an ele-
ment A of I, mapping [a, b] onto [g7'(u,), ¢]. The function g(k) is an
element of I, mapping [a, b] onto [u, u,]. Let k£ denote an element
of H, such that k(a) = ¢. Since k(b) = u, there is a point ¢ such that
k(t) = gh(t). The function f defined by

. k(x), asx=t

F@ =\ ohwy, t<z<b

is an element of I, which maps [a, b] onto [c, #,], so in this case also,
the assumption ¢ < % leads to a contradiction.

The proof of the main result now follows easily. Suppose [a, b]
and [c, d] are closed intervals and g an element of H, such that
9(b) = d.

Case 1. g(a) < c. There is a point e such that ¢ < ¢ < d and an
element % of I, mapping [a, b] onto [c, e]. As in case 2 of Lemma 4,
a homeomorphism from [a, b] onto [¢, d] may be constructed from g
and h.

Case 2. g(a) >c. There is a point ¢ such that a < e < b and
an element k& of I, mapping [c, d] onto [a,e]. However, A is an
element of I, mapping [a, ¢] onto [¢, d], and a homeomorphism from
[a, b] onto [c, d] may be easily constructed from g and A~".

In order to establish the next theorem it is helpful to use a result
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of Richard Arens’. A linear homogeneous continuum (LLHC) has been
defined by G. D. Birkhoff as any set of elements which 1. is simply
ordered 2. provides a limit for any monotonely increasing (or decreas-
ing) sequence 3. is isomorphic to every nondegenerate closed sub-
interval of itself. In [1] Arens shows, among other results, the
following (reworded by the author).

THEOREM A. If I is an LHC and for each positive integer p,
I, denotes I, then the space I' = I, x I, X -+ with the lexicographic
order s also an LHC.

THEOREM 3. If L is homogeneous, |a, b] is a closed interval, and
for each positive integer p, I, denotes |a,b], then the space x =
L x I x1I,x -« with the topology induced by the lexicographic order
18 also homogeneous.

Proof. Let [uu WUgy =+ 05 Vyy Vyy = ’] and [xlv Xsy + 3 Y1, Y, + -+ | denote
closed subintervals of X. Let uw and v denote elements of L such
that v < min {u,, #;} and v > max {v;, y;} for 1 =1,2,3, ---, and let ¢

denote an element of I, which maps [u, v] onto [a,b]. The function
F defined by F'(t,, t, t,, --+) = [g(ty), ti, ts, ---] is an order preserving
homeomorphism from [u, v] X I, X I, X +++ onto |a, b] X [, X I, X «--
Theorem A shows that any two subintervals of the latter are homeo-
morphie, so it follows that |®,, %, +; ¥y, Y, - - - | and [%y, Uy, ++ =} Uy, gy |
are homeomorphic. Therefore, by theorem 2, X is homogeneous.

Suppose L,, L,, L,, --- denotes a sequence of spaces such that (1)
L, is the real line, and (2) for each n, L,,, is constructed from L,
by a Theorem 3 type construction. The main theorem of Arens’ paper
|2] yields the result that if ¢ # j, then L, is not homeomorphic to L;.
Is it true that if a homogeneous space L’ satisfies the axioms stated
on the first page and also has the property that it can be covered by
a countable collection of closed intervals, then L’ is one of the spaces
Lu L2) Ls: e ?

In part 2 of Theorem 2 the construction indicated gives an order
preserving homeomorphism from [a, b] onto [¢, d]. This leads naturally
to the following question: If L’ satisfies the axioms of L, is homo-
geneous, and [a, b] is a closed subinterval of L’, then is there an
order reversing homeomorphism from [a, b] onto [a, b] ?
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