CONCERNING HOMOGENEITY IN TOTALLY ORDERED, CONNECTED TOPOLOGICAL SPACE

L. B. TREYBIG

Throughout this paper suppose that L denotes a connected, totally ordered topological space in which there is no first or last point, and whose topology is that induced by the order.

A topological space S is said to be homogeneous provided it is true that if $(x, y) \in S \times S$, there is a homeomorphism f from S onto S such that f(x) = y. Let H denote the set of all homeomorphisms from L onto L, and let I denote the set of all homeomorphisms which map a closed interval of L onto a closed interval of L. Let $H_0(I_0)$ denote the set of all elements of H(I) which preserve order.

THEOREM 1. If L is homogeneous, then L satisfies the first axiom of countability.

Proof. It suffices to show that for some point z of L there exists an increasing sequence x_1, x_2, \cdots and a decreasing sequence y_1, y_2, \cdots such that each of these sequences converges to z. Suppose there is no such point. Let P_1, P_2, \cdots denote an increasing sequence which converges to a point P and Q_1, Q_2, \cdots a decreasing sequence which converges to a point Q. There is an element Q in Q such that Q(P) = Q. In view of the preceding supposition, Q is order reversing. There is a point Q such that Q(Q) = Q, and Q is the limit of a sequence Q, which is either increasing or decreasing. Suppose the sequence is decreasing. The sequence Q(Q), which is increasing and converges to Q. This yields a contradiction. The case where Q, Q, Q, Q, Q, Q, Q, Q. is increasing is similar.

THEOREM 2. The space L is homogeneous if and only if each pair of closed subintervals of L are topologically equivalent.

Proof. Part 1. Suppose each pair of closed subintervals of L are topologically equivalent and $(x, y) \in L \times L$. There exist elements z and w of L such that z < x < w and z < y < w, and an element g of I from [z, x] onto [z, y]. If g is order reversing there is an element g' of I_0 from [z, x] onto [z, y] which may be constructed as follows: Let t denote the point of [z, x] such that g(t) = t. g' is defined by

Received September 5, 1962, and in revised form June 20, 1963. Abstract 62 T-102, Notices, V. 9, June 1962. The author wishes to express his appreciation to the National Science Foundation for financial support.

 $g'(u) = \begin{cases} u, & z \leq u \leq t \\ gg(u), & t < u \leq x \end{cases}$. In any event, let g' and h' denote elements of I_0 which map [z, x] and [x, w], respectively, onto [z, y] and [y, w], respectively. The function f defined by

$$f(u) = \begin{cases} u, & u < z \text{ or } u > w \\ g'(u), & z \le u \le x \\ h'(u), & x < u \le w \end{cases}$$

is an element of H_0 such that f(x) = y.

Part 2. Suppose L is homogeneous.

LEMMA 1. If $(x, y) \in L \times L$, there is an element f of H_0 such that f(x) = y. Furthermore, if $f \in I$ there is an element g of I_0 having the same domain and range, respectively, as f.

Proof. Suppose $g \in H$ and g(x) = y, but g is not in H_0 . There is a point b such that b = g(b) and an element h of H such that h(x) = b. The function $f = gh^{-1}g^{-1}h$ is in H_0 and f(x) = y. The proof of the second part of Lemma 1 follows easily from the first part and the proof of Part 1 of Theorem 2.

LEMMA 2. Suppose [a, b] is a closed interval and f and g are elements of I_0 defined on [a, b] such that f(a) = g(a) (f(b) = g(b)), but that f(x) < g(x) for $a < x \le b$ ($a \le x < b$). If $f(a) < x_0 < f(b)$ ($g(a) < x_0 < g(b)$) and x_1, x_2, \cdots is a sequence such that $x_n = fg^{-1}(x_{n-1})$ ($x_n = gf^{-1}(x_{n-1})$) for $n \ge 1$, then x_0, x_1, x_2, \cdots is a decreasing (increasing) sequence which converges to f(a) (f(b)).

Proof of first part. The inequality $a < g^{-1}(x_0) < f^{-1}(x_0) < b$ implies that $f(a) < x_1 = fg^{-1}(x_0) < x_0 < f(b)$. Suppose it has been established that $f(a) < x_n < x_{n-1} < f(b)$. The preceding implies that $a < g^{-1}(x_n) < f^{-1}(x_n) < b$, which implies that $f(a) < x_{n+1} = fg^{-1}(x_n) < x_n < f(b)$. Therefore, x_0, x_1, x_2, \cdots is a decreasing sequence bounded below by f(a), and thus converges to a point $x \ge f(a)$. Suppose x > f(a). Since $gf^{-1}(x) > x$, there is a positive integer n such that $gf^{-1}(x) > x_n > x$, which implies that $x > fg^{-1}(x_n) = x_{n+1}$. This yields a contradiction, so x = f(a).

LEMMA 3. If $c \in L$ there exist an interval [a, b] and elements f and g of I_0 with domain [a, b] such that f(a) = g(a) = c and f(x) < g(x), for $a < x \le b$; or if $c \in L$ there exists an interval [a, b] and elements f and g of I_0 with domain [a, b] such that f(b) = g(b) = c and f(x) < g(x), for $a \le x < b$.

Proof. Suppose that for each element (x, y) of $L \times L$ there is a unique element f of H_0 such that f(x) = y. Let u_1, u_2, \cdots denote an increasing sequence converging to a point u, and for each n, let f_n denote the element of H_0 such that $f_n(u) = u_n$. If x is an element of L and n a positive integer, then $f_n(x) < f_{n+1}(x) < x$; for if this is not the case, the graph of f_n intersects the graph of f_{n+1} , or the graph of f_{n+1} intersects the graph of the identity homeomorphism, and in either event there is a contradiction to the unique homeomorphism hypothesis. If for some x, the sequence $f_1(x), f_2(x), \cdots$ converges to a point y < x, the element g of H_0 such that g(x) = y has the property that its graph either intersects the graph of the identity function or the graph of f_n , for some n. Therefore, for any x in L, the sequence $f_1(x), f_2(x), \cdots$ is increasing and converges to x.

For each positive integer j, let a_{j1}, a_{j2}, \cdots and b_{j1}, b_{j2}, \cdots denote sequences such that (1) $a_{j1} = f_j^{-1}(u)$ and $b_{j1} = f_j(u)$, and (2) $a_{jn} = f_j^{-1}(a_{j,n-1})$ and $b_{jn} = f_j(b_{j,n-1})$, for n > 1. Suppose u < x and (r,s) is an open interval containing x. Let n denote an integer such that $r < f_n(x)$ and $x < f_n(s)$. Since $u < x < f_n(s)$, it follows that $a_{n1} = f_n^{-1}(u) < s$. If a_{n1} is not in (r,s), let K denote the set of all a_{nj} such that $a_{nj} < x$ and let z = 1.u.b.K. If $z \le r$, there is an element a_{nj} of K such that $f_n(z) < a_{nj} \le z < f_n(x)$, which implies that $z < f_n^{-1}(a_{nj}) = a_{n,j+1} < x$, which is a contradiction. In any event, some a_{nj} is an element of (r,s). The preceding argument clearly indicates that $\sum (a_{ij} + b_{ij})$ is a countable set dense in L, so L is a real line and the unique homeomorphism hypothesis is contradicted.

There exist elements h and k of H_0 and points s and t of L such that h(s) = k(s), but h(t) < k(t). Suppose s < t. Let a denote the largest element x of L such that h(x) = k(x) and x < t. There is an element p of I_0 with domain [k(a), k(t)] such that p(k(a)) = c. The functions f = p(h) and g = p(k) and the interval [a, t] satisfy the first conclusion of the lemma. The case t < s yields the second conclusion.

LEMMA 4. Suppose [a, b] is a closed interval and c is a point. If x > c, there is a point y in (c, x) and an element f of I_0 mapping [a, b] onto [c, y].

Proof. Let U denote the set of all x > c such that there is a homeomorphism from [a, b] onto [c, x], and let V denote the set of all x < c such that there is a homeomorphism from [a, b] onto [x, c]. The sets U and V exist because of the existence of elements h_1 and h_2 of H_0 such that $h_1(a) = c$ and $h_2(b) = c$. Let u = g.1.b. U, v = 1.u.b. V and suppose that c < u.

Case 1. Suppose the first conclusion of Lemma 3 holds There exists a point u_1 , an interval [p,q], and elements f and g of I_0 having domain [p,q], and such that (1) $c < u_1 < u$, (2) $f(p) = g(p) = u_1$, and (3) f(x) < g(x), for $p < x \le q$. There is a point r such that p < r < q, g(r) < u, and g(r) < f(q), and an element k of I_0 having domain [p,q] such that (1) k(r) = u, and (2) $k(x) \ge g(x)$ for $x \in [p,q]$. The function h defined on [p,q] by $h(x) = kg^{-1}f(x)$ is an element of I_0 such that (1) h(q) > u, (2) h(p) = k(p), and (3) h(x) < k(x), for $p < x \le q$. There is a point x_0 such that $u \le x_0 < h(q)$ and an element f_0 of I_0 mapping [a,b] onto $[c,x_0]$. Let x_1,x_2,\cdots denote a sequence such that $x_n = hk^{-1}(x_{n-1})$ for $n \ge 1$, and let f_1, f_2, \cdots denote a sequence of functions defined on [a,b] such that for $n \ge 1$ (1) $f_n(x) = f_0(x)$, for $a \le x \le f_0^{-1}(u_1)$, and (2) $f_n(x) = hk^{-1}f_{n-1}(x)$, for $f_0^{-1}(u_1) < x \le b$. For each n, f_n is a homeomorphism from [a,b] onto $[c,x_n]$, but, according to Lemma 2, $x_n < u$ for some n. This yields a contradiction, so u = c.

Case 2. If the second conclusion of Lemma 3 holds, then it follows, by an argument similar to the one in Case 1, that v=c. Let u_1 denote a point between c and u, and g an element of H_0 such that $g(c)=u_1$. There is a point u_2 such that $c< u_2< u_1$ and an element h of I_0 mapping [a,b] onto $[g^{-1}(u_2),c]$. The function g(h) is an element of I_0 mapping [a,b] onto $[u_2,u_1]$. Let k denote an element of H_0 such that k(a)=c. Since $k(b)\geq u$, there is a point t such that k(t)=gh(t). The function f defined by

$$f(x) = egin{cases} k(x) \;, & a \leq x \leq t \ gh(x) \;, & t < x \leq b \end{cases}$$

is an element of I_0 which maps [a, b] onto $[c, u_1]$, so in this case also, the assumption c < u leads to a contradiction.

The proof of the main result now follows easily. Suppose [a, b] and [c, d] are closed intervals and g an element of H_0 such that g(b) = d.

Case 1. $g(a) \leq c$. There is a point e such that c < e < d and an element h of I_0 mapping [a, b] onto [c, e]. As in case 2 of Lemma 4, a homeomorphism from [a, b] onto [c, d] may be constructed from g and h.

Case 2. g(a) > c. There is a point e such that a < e < b and an element h of I_0 mapping [c, d] onto [a, e]. However, h^{-1} is an element of I_0 mapping [a, e] onto [c, d], and a homeomorphism from [a, b] onto [c, d] may be easily constructed from g and h^{-1} .

In order to establish the next theorem it is helpful to use a result

of Richard Arens'. A linear homogeneous continuum (LHC) has been defined by G. D. Birkhoff as any set of elements which 1. is simply ordered 2. provides a limit for any monotonely increasing (or decreasing) sequence 3. is isomorphic to every nondegenerate closed subinterval of itself. In [1] Arens shows, among other results, the following (reworded by the author).

THEOREM A. If I is an LHC and for each positive integer p, I_p denotes I, then the space $I' = I_1 \times I_2 \times \cdots$ with the lexicographic order is also an LHC.

THEOREM 3. If L is homogeneous, [a,b] is a closed interval, and for each positive integer p, I_p denotes [a,b], then the space $x = L \times I_1 \times I_2 \times \cdots$ with the topology induced by the lexicographic order is also homogeneous.

Proof. Let $[u_1, u_2, \cdots; v_1, v_2, \cdots]$ and $[x_1, x_2, \cdots; y_1, y_2, \cdots]$ denote closed subintervals of X. Let u and v denote elements of L such that $u < \min\{u_i, x_i\}$ and $v > \max\{v_i, y_i\}$ for $i = 1, 2, 3, \cdots$, and let g denote an element of I_0 which maps [u, v] onto [a, b]. The function F defined by $F(t_0, t_1, t_2, \cdots) = [g(t_0), t_1, t_2, \cdots]$ is an order preserving homeomorphism from $[u, v] \times I_1 \times I_2 \times \cdots$ onto $[a, b] \times I_1 \times I_2 \times \cdots$. Theorem A shows that any two subintervals of the latter are homeomorphic, so it follows that $[x_1, x_2, \cdots; y_1, y_2, \cdots]$ and $[u_1, u_2, \cdots; v_1, v_2, \cdots]$ are homeomorphic. Therefore, by theorem 2, X is homogeneous.

Suppose L_1, L_2, L_3, \cdots denotes a sequence of spaces such that (1) L_1 is the real line, and (2) for each n, L_{n+1} is constructed from L_n by a Theorem 3 type construction. The main theorem of Arens' paper [2] yields the result that if $i \neq j$, then L_i is not homeomorphic to L_j . Is it true that if a homogeneous space L' satisfies the axioms stated on the first page and also has the property that it can be covered by a countable collection of closed intervals, then L' is one of the spaces L_1, L_2, L_3, \cdots ?

In part 2 of Theorem 2 the construction indicated gives an order preserving homeomorphism from [a, b] onto [c, d]. This leads naturally to the following question: If L' satisfies the axioms of L, is homogeneous, and [a, b] is a closed subinterval of L', then is there an order reversing homeomorphism from [a, b] onto [a, b]?

REFERENCES

- 1. R. Arens, On the construction of linear homogeneous continuu, Boletin de la Sociedad Matematica Mexicana, 2 (1945), 33-36,
- 2. ———, Ordered sequence spaces, Portugaliae Mathematica, volio (1951), 25-28.