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Let N denote a set of n distinct elements al9 a2f , an and let

= {Sl9 S2, •••, Sm}, m = (f) be the collection of all sets formed

by selecting h elements at a time from N. If S< = {ail9 ai2, , aifι}

is any set in <9*{h) and if Γ is any mapping of N onto itself, then

Γ induces a mapping Ψ of £f(h) onto itself defined by StΨ =

{ahΓ9ahΓ9 • • ,aihΓ). We seek conditions under which, conversely, a

mapping of ^ ( λ ) onto itself must be of this induced type.
If Ψ is a mapping of £f(h) onto itself, it will be said to "preserve

maximal intersections" if each two of its sets which intersect on
h — 1 elements are mapped to two sets which also have h — 1 elements
in common. It will be shown that if n Φ 2h this is sufficient to imply
that Ψ is induced by a mapping of JV onto itself.

We observe first that to each set Si in S^(h) there corresponds
a set S* in S^{n — h) and which consists of those elements of N not
in S^ And to any mapping Ψ of S^{h) onto itself there corresponds
a mapping Ψ* of £f(n - h) onto itself defined by SfΨ* = (SiW)*, i =
1,2, « ,m. Clearly, if Ψ preserves maximal intersections so does Ψ*
and both Ψ and Ψ* are induced mappings or neither is. Thus it
suffices always to consider the case h g n — h, that is, h g n/2.

THEOREM 1. If nΦ2h and if Ψ is a mapping of £f(h) onto
itself which preserves maximal intersections, then Ψ is induced by
a mapping of N onto itself.

Proof. The theorem is trivially correct for h = 1. For a proof
loγ induction, we suppose the theorem true up to some value h — 1
and consider Ψ to be a mapping of £f{h) onto itself, where 1 < h < n/2.

Each set in S^{h — 1) belongs to exactly n — h + 1 sets in S^{h)
and we wish to show that these sets in S^(h) must map under Ψ to
n — k + 1 sets which also have a set of h — 1 elements in common.
Suppose that this is not the case. Then there exists a set in S^{h — 1),

we may take to be T = {au a2, , ah^}9 such that the sets in
which contain T do not map under Ψ to a collection of sets

with a common intersection of h — 1 elements. Let

(1) Si = {al9 α2, , ah-l9 ak+i}, i = 0,1, , h, , n - h

denote the sets of S^{h) which contain T. There is no loss of gener-
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ality in supposing that it is the intersection of S0Ψ and S ^ which is
not contained in S2Ψ. Since Ψ preserves maximal intersections, we can
denote

( 2 ) S0Ψ = {b» δ2, , bk-u bh} , SJΓ = {bl9 δ2, , bk-19 bh+1},

where each bi is an element from N and i Φ j implies b{ Φ bjf i, j =
1, 2, , h + 1. Because S2Ψ does not contain {δx, δ2, , 6A_i}, but
must intersect S0Ψ and &S7* on h — 1 elements, SaSF must contain both
bh and bh+1 and fail to possess just one elements from blt δ2, , bh-x.
Since there is nothing to distinguish the possibilities, we may suppose
that S2Ψ does not possess bl9 and hence that

( 3 ) S2Ψ = {b2,---,bh-ubh,bh+1}.

Because n > 2h, there are at least h + 2 sets St defined by (1)
and so at least h — 1 sets Si9 where 2 < ί ^n — h. And the Ψ images
of all these sets must possess bubh, and bh+1. For suppose biφSiΨ.
Since Si¥ intersects S0Ψ on h — 1 elements and not on δx then
{δ2, δ3, •••, δ J c S y F . And since S ^ intersects S ^ on h - 1 ele-
ments and not on bί9 then {δ2, •••, bh, bh+1}cSiΨ. But then SiΨ =
{δ2, •••, bh, bh+1} — S2Ψ, which is impossible for ί Φ 2. In the same
way, bh $ SiΨ implies StΨ = i S ^ and 6A+1 g SiΨ implies S ^ = So?3*,
neither of which is possible for 2 < ί S w> — h.

From the last argument it follows that for i > 2, StΨ must be
of the form

( 4 ) SiΨ = {6lf δ,, bh+1, xlf , α;fc_3} ,

where {α?!, x2, , α?A_3} is a subset of {δ2, δ3 , δA_i}, which is clearly
impossible if h — 2 But in any case, there are at least h — 1 different
sets SiΨ, where ί > 2, and each of these is determined by the h — 3
order subset of {δ2, , δA_i} which it contains. And since there are
only h — 2 mutually different such subsets, the sets SiΨ, i > 2, cannot
all be distinct, which contradicts the fact that if is a one-to-one
mapping.

It is now established that for each set T in S^{h — 1) there exists
a set Tr in £^{h — 1) such that all the sets in S^(h) which contain
T are mapped under Ψ to all the sets in S^(h) which contain T".
But then the correspondence T—>T' is clearly a mapping of S^(h — 1)
onto itself, say the mapping Φ.

For h = 2, Φ is a mapping of N onto itself. If {aif a3) is any
set in c$^(2), then α ^ belongs to the Ψ images of all sets which
possess a,i, so a{Φ belongs to {aif a3)Ψ. By the same argument, aάΦ
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belongs to {ai9 a,)Ψ. Since a,Φ φ a,-Φ, it follows that {aif a3)Ψ = {a{Φ9 ajΦ}
and hence that Ψ is induced by Φ.

If h > 2, consider any two sets in £*(h - 1), whose intersection
is maximal, say

( 5 ) Tx = {al9 α2> , αfe_2, α ^ J , T2 = K , α2, , α*-a, αk} .

The set S = {au a2, , α j in S^(h) maps to a set SΨ = {&i, 62> , &*}•
Since 2\ and T2 are contained in S, 2\Φ and TaΦ are h - 1 order
subsets of SW. Since TΊ =£ T2f and 0 is a one-to-one mapping, TXΦ φ T2Φ,
so the order of TXΦ Π T,^ is h — 2. Thus 0 preserves maximal inter-
sections and so, by the inductive hypothesis, Φ is induced by some
mapping Γ of N onto itself.

Now S = {aua2f * ,αA} contains Ί \ and T2 defined in (5) so SΨ
contains TXΦ and ΓaΦ. But TλΦ = {axΓf a2Γ, ., α ^ Γ } , and Γ2Φ =
{^Γ, , αΛ_2r, αAΓ}. Since α,Γ ̂  aάΓ \ί i Φ j , it follows that SΨ =
{aJΓ, a2Γ, , ahΓ), and hence that Ψ is induced by Γ.

The theorem is not true for n = 2fc, since then the correspondence
of Si and S* is a non-induced mapping of S^(h) onto itself which
preserves all orders of intersection.1

Consider next an ordinary, finite graph G, that is, one with n
vertices {pu p2, , pn} where each two vertices have at most one join
and none is joined to itself. Let c(pif pj9 pk) denote the subgraph of
G induced by G on the set of vertices which does not include pif pjf pk,
and let m(G) be the notation for the join-measure of G, that is the
number of joins in G.

THEOREM 2. If G and H are ordinary nth order graphs and if
there is a mapping of the vertices of G onto those of H such that
for some integer fc, 1 < h < n - 1, all corresponding subgraphs of
order h have the same join measure, then the mapping is an iso-
morphism of G and H.

Proof. For h = 2 the condition becomes the definition of an iso-
morphism, so assume that 2 < h < n - 1. Let {plf p2f , pn} be the
vertices of G and let the vertices {ql9 qi9 , qn) of if be labeled so that
q{ is the image of Pi under the given mapping ψ, i = 1, 2, , n.

Let {ph, Pi3, , pih+1} be the vertices of any subgraph G{ of order
h + 1 in G,1 and let c(pijc; G{) denote the subgraph of Gi defined on all
the vertices of G* except pik. Since any join in Gi belongs to all the
border subgraphs of Gi except two,we have,

This general exception was pointed out to the writer by P. Erdos.
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By the same reasoning,

I k=h+l

( 2) miG.Ψ) = -j-±-j Σ m[c(qik; GtΨ)] .

Since, by assumption,

(3) m[c(pik; G,)] = m[c(qik; G ^ ) ] , for all pi]c and qik ,

it follows that m{Gx) = m(GiΨ).
Thus if ?F preserves the join measure on ft-order subgraphs it

does so on h + 1 order subgraphs, and, by the same reasoning, pre-
serves the join measure on all subgraphs of order equal to or greater
than h. In particular, m(G) — m(H). Then if p(Pi) denotes the degree
of piy it follows from

(4) ρ{pd = m(G) - m[c{p%)\ , i = 1, 2, . . , n

and

(5) piqd = m(iir) - mtc^,)] , i = 1, 2, , n

that

( 6 )

since ra
Now, corresponding to p{ and ^ in G, let ε<y be 1 or 0 according

as Pi and p y are or are not joined. Let e{y be defined in a similar
way with respect to q{ and qj9 Then, by simple counting,

( 7 ) m(G) = m[c(pit pά)\ + ρ(p{)

and

( 8 ) m(iϊ) - m[c(qί9 qs)] + piq,) + p(qά) -

Comparing the terms in (7) and (8) it follows that εiS = e^ for all i, j,
i Ψ j, and hence that Ψ is an isomorphism of G and H.

As a corollary of these theorems it follows that two wth order
graphs are isomorphic if and only if there is a one-to-one correspond-
ence of their subgraphs of some order h, 1 < h < n — 1, in which
corresponding subgraphs have equal join measure and the correspond-
ence preserves maximal intersections.
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