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A problem of fundamental importance in the study of compact
topological semigroups is that of classifying in an intrinsic way each
of a certain class of such semigroups. Unfortunately, virtually nothing
has been done along these lines, even for such geometrically pleasing
semigroups as the affine semigroups introduced by the author and
H. Cohen in [3]. It is the purpose of this note to rectify this situation,
at least for several particular types of compact affine topological semi-
groups; namely, certain convolution semigroups of real valued regular
Borel measures on compact topological semigroups. The author's interest
in this problem dates back to the early papers of Peck [13] and Wendel
[21], and to some unpublished work of Wendel. Since that time, quite
a literature has developed as regards these semigroups (e.g., see the
bibliography), but almost without exception these papers merely study
the properties of the semigroups without making any attempt to
abstract sufficiently many of their properties to characterize them.

If S is a compact Hausdorff space and P(S) denotes the set of
all nonnegative regular Borel measures on S of variation norm one,
it is known that P(S) is a convex set which is compact in the weak-*
topology (a net {μa} of measures in P(S) converges weak-* to μe P(S)
if \fdμa—> \fdμ, for each real continuous function / on SJ. In

similar fashion, the unit ball B(S) of real-valued regular Borel measures
of norm g l is a compact convex set. When S is endowed with a
continuous associative multiplication, each of P(S) and B(S) becomes
a compact affine topological semigroup relative to convolution multipli-
cation (see [10]); when such is the case, we denote these semigroups
by S and S respectively. Note that our use of the symbol S differs
from that of Glicksberg in [10], where S, denoted the ball semigroup
of complex measures.

In §2, the following three types of images of the sets P(S) and
B(S) are determined:

(a) all extremal images of P(S); i.e., all continuous affine images
under mappings which preserve extreme points,

(b) all one-to-one affine bicontinuous images of P(S), and
(c) all one-to-one affine bicontinuous images of B(S). The common

requirements in each of (a), (b), and (c) are that the image K be
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compact and convex, have a separating family of real continuous affine
functions, and have a compact set of extreme points. In (b), the
additional requirement is that K be a simplex in the sense of Choquet
[2] or Loomis [12]. In (c), one must require the existence of a compact
subset T of K and a point z in K such that K is "symmetric relative
to z", T U (2z — T) is the set of extreme points of K, the closed convex
hull Kx of T is a simplex, and there exists on K a continuous real
afϊine function which vanishes at z and is one on Kt.

In § 3, the imposition of a topological semigroup structure on S
(and consequently on P(S) and B(S) via convolution) enables us to
use the results of §2 to characterize

(a) all extremal homomorphic images of S,
(b) all one-to-one affine bicontinuous and isomorphic images of S,

and (c) all one-to-one affine bicontinuous and isomorphic images of S.
The only requirement needed in addition to the corresponding ones in
§ 2 is that the set of extreme points of K in cases (a) and (b) be a
topological semigroup, while case (c) requires that the set T be a
topological semigroup and the point z be a zero of K.

In each of §§ 2 and 3 additional characterizations of some interest
are given. In our use of the Choquet simplex condition we prefer
the formulation Loomis gives in [12], and it is a pleasure to record
here the author's indebtedness to Professor Loomis for recent conver-
sations during a visit by him as consultant to a Banach Algebra seminar
at Louisiana State University.

l Preliminaries* Throughout this paper the letter K will denote
a compact convex subset of some real Hausdorff topological vector space.
A mapping / with domain K and range another such set is affine if
x, y 6 K and 0 S a S 1 imply f(ax + (1 - a)y) = af(x) + (1 - a)f(y).
The symbol L(K) will be used for the set of all continuous real valued
affine functions defined on K, and it is clear that L(K) needs not in
general distinguish points of K. If, however, the vector space con-
taining K is locally convex, the set L(K) will distinguish points, and
thus the assumption of local convexity (which we do not make) would
permit a considerable simplification in the statements of the theorems
to follow. If zeK, the symbol LQ(K) denotes the subset of L(K)
consisting of those functions each of which vanishes at z. It is easy
to see that L(K) separates points of K if and only if L0(K) does. If
each of L(K) and L0(K) is given the supremum norm, then both bocome
real Banach spaces and as such have adjoint spaces of real continuous
linear functionals, denoted respectively by L{K)* and LQ{K)*. In each
of these spaces we make use of the weak-* topology to embed K.
Explicitly, if x e K, denote by x [and x'] respectively the element of
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L(K)* [of L0(K)*] for which x(l) = l(x) for all leL(K) [x'(l) = l(x)
for all leL0(K)]. It is obvious that these mappings are one-to-one if
and only if L{K) separates points of K, and that each is affine and
continuous between K and its image, the latter given the relativized
weak-* topology. The embedding x —»x was used by Loomis in [12]
to formulate and extend Choquet's work [2]. Following Loomis, we
say that K is a simplex if (i) L(K) separates points of K and (ii) the
truncated cone Tr(K) = {az: 0 g a ^ 1, z e K) determined by K in
L{K)* is a lattice relative to the partial order: if x,ye Tr(K), then
x Sy ^V means y — xe Tr(K). Our only contact with Loomis's work
here (aside from borrowing some of his notation) is the use of his
Theorem 6 to prove (when K has a compact set of extreme points)
that K is a simplex if and only if K is the one-to-one affine bicontinuous
image of some P(S). The statement that K is an affine semigroup
means (see [3]) there exists an associative separately affine multiplication
on K; K is an affine topological semigroup if the multiplication function

is also (doubly) continuous. The semigroups S and S are important
examples of such semigroups, as are many semigroups of matrices.
Another important class of such semigroups is the class of group
extremal semigroups (the term is WendeΓs), where by definition the
compact affine topological semigroup K is group extremal if (i) it has
an identity element and (ii) the set of elements with inverse coincides
with the set of extreme points of K. Peck in [13] proved that each
such semigroup has a zero, and Wendel (unpublished) observed that
this result follows also from the fact that each such semigroup is the
homomorphic image of some S, with S a compact group.

2. Affine images of P(S) and B(S). In this section of the paper
K (as above) will be a convex compact set and E(K) will denote its
set of extreme points (a priori, possibly void). However, if L(K)
separates points of K, such is not the case; in fact, the Krein-Milman
theorem holds for K. The first theorem gives conditions on K neces-
sary and sufficient that K be the extremal image of some P(S).

THEOREM 2.1. Suppose that L{K) separates points of K. Then
K is the extremal image of some P(S) if and only if E(K) is compact.

Proof. Suppose first that there exists a compact space S and an
extremal mapping F (F is continuous affine onto and preserves extreme
points) of P(S) to K. By the Kelley-Arens theorem [1, Lemmas 3.1
and 3.2], the set of point measures on S is the set of extreme points
of P(S), hence is compact. Thus F(E(P(S))) is compact and contains
E{K) (this inclusion holds always). Since F is extremal, the other
inclusion is true also; i.e., E(K) is compact.
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Conversely, suppose E{K) is compact, and let S = E{K). By
assumption, the embedding K of K in L{K)* is one-to-one bicontinuous
affine and onto. We now define a mapping R on P(S) onto K which
is continuous affine and extremal. For μeP(S), and leL(K), let
RS) = ί ^ μ . Fix a partition {#*}?,* of S by Borel sets, ί< € j£<, 1 ^

i ^ n. Then Σ?=i «(«i)M^) = Σ?=i Ul)μ(Ei) = Σ?=i *(«<)/*(#<) (regarding
i as a linear functional on L(K)*) = l(Σϊ=iMEi)tih Since Σ?=iM#<) = 1>
/*(!£*) ^ 0, and ί< G S, clearly the sum Σ?=i K^i)ΰ e convex hull of S.
Since sums of the form Σ?=i K^ύK^i) converge to I Idμ, this implies
that i2μ e weak-* closed convex hull of S = K. It it clear that R
maps the extreme points of P(S) onto those of K and hence (since R
is obviously continuous and affine) R maps P(S) onto if. This completes
the proof.

The next theorem gives several different sets of necessary and
sufficient conditions that K be the one-to-one affine bicontinuous image
of a P(S). It perhaps should be remarked that the requirement that
K be a simplex can be stated without mentioning explicitly the embed-
ding K. We now do this, merely referring the reader to Loomis [12,
Theorem 6] for the verification. The result will be stated as Lemma
2.1.

LEMMA 2.1. Suppose that L(K) separates points of K. Then K
is a simplex if and only if given {α^jΓ^ and {6̂ -}*=!, where ΣΓ=i α< =
Σ?=Λ = h ai^ °> bj^ 0, xify3-e K, 1 ̂ i ^ m , 1 ̂  j ^ n and ΣΓ-i^Λ =
Σ?=i &il/i> ί^βr6 exists {ckzk}l=1 tt iί/i Σϊ=i cfc — 1> CA; ̂  0 ami f̂c 6 iΓ,
l^k^p,for which (a) Σ L i < % = ΣΓ^α^i = ΣU hyh (b) {1,2, , p}

6β written as the pairwise disjoint union of sets {/;}Γ=i αncϋ {/j}ΐ=i,
1 ^ i ^ m, απrf bό = Σkejj ck,

THEOREM 2.2. The following conditions are mutually equivalent
for K: (1) K is the one-to-one affine bicontinuous image of some P(S),
(2) (a) E{K) is compact and (b) K is a simplex, (3) (a) L{K) separates
points of K, (b) E(K) is compact, and (c) each continuous real
function on E(K) is extendable to be in L(K).

Proof. (1) —» (2). Suppose F on P(S) to K is one-to-one affine
bicontinuous onto, where S is a compact Hausdorff space. It is easily
verified then that E(K) is compact and L{K) separates points of K,
for P(S) has these properties. It thus remains to prove that the
truncated cone Tr(K) determined by K in L(K)* is a lattice. Let C
be the truncated cone determined by P(S) in the vector space of all
real regular Borel measures on S. Clearly C itself is a lattice; we
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will now show that F has an extension G to all of C such that
( i ) G is one-to-one and affine on C onto Tr(K),
(ϋ) G(0) = 0, and
(iii) μ,veC implies μ<Lv ]ί and only if G(μ) ^ G(v). If this

can be proved, it will easily follow that Tr{K) is a lattice. Thus, we
proceed to the definition of G. If aμe C, with 0 S a g 1, μeP(S),
define G(αμ) = aF(μ). If aμ^bv, with αμ, δv e C and / = 1 on S,
then a = α ( /eZμ = ί /d(αμ) = ί jftf(δv) = δf /ώ; = δ; i.e., a=b. Thus,
if α = 0, αμ = δv =*0, and G(α/*) = aF(μ)S^ 0 = 6F(v) = G(δv). If
a Φ 0, then μ = v, so G(α/£) = αF(j«) = bF(v) = G(δv); i.e., G is well
defined on C into Tr(iQ. Clearly G is onto Tr{K). To show G is
one-to-one, let G(α/*) = G{bv). Then αi*\μ) = bF(v); i.e., αx = δ^, with
x,yeK. If Z is identically one on K then Z e L(K) and α — al(x) =
αx(Z) = δ^(i) = 6Z(i/) = δ; i.e., a = δ, and αF(^) = αjP(v). Since α = 0
implies α/* = 0 = δv, we can assume F(μ) = ^(v), whence μ — v and
aμ = bv. It is obvious that (and this has been proved already) G(0) = 0,
so it remains only to verify that G extends F (this is clear), that G
is affine, and (iii) holds. To prove G is affine, let aμ, bveC, O^
and let d = ca + (1 — c)b. If d Φ 0, then

- caF(μ) + (1 - c)δi^(v) = cG(aμ) + (1 -

If d = 0, then ( ld(cαμ + (1 - c)δv) = cαί ldμ + (1 - c)δί ldv =
(1 - c)δ = 0, hence caμ + (1 - c)δv = 0, and ca = (1 - c)δ = 0. The
desired result easily follows. Now, suppose Φ, ψeC, with Φ ̂  ψ. Then
(1/2)0 + (l/2)f = (l/2)f = (1/2)0 + (l/2)(α/r - 0), whence (l/2)G(t) =
(l/2)G(0) + (l/2)G(f) = (1/2)G(Φ) + (l/2)G(ψ - Φ) and this implies G(f) -
G(Φ) = G(f -Φ)e Tr(K); i.e., G(£> ̂  G(ir). To conclude (1) -> (2), we
suppose G(Φ) ^ G(ψ), with Φ, ψe C. Then there is α e C such that
G(α) = G(ψ) - G{Φ), so G{ψ) = G(α) + G(^). From this, it follows that
G(ψ/2) = (l/2)G(f) = G((α + )̂/2) and since G is one-to-one, (ψ/2) =
((a + φ)/2). Thus n/r = α + ^, ψ - Φ = aeC, and ^ ^ α/r.

(2) — (1). Let S = E(K) and define i2 on P(S) into L(ίΓ)* as
in the proof of Theorem 1; thus R is an extremal mapping of P(S)
onto K, and there remains only the proof that R is one-to-one. Let
μ,ve P(S) with Rμ = Rv. Extend μ and v to the Borel sets of K
by defining them to be zero at Borel sets missing S (call these ex-
tensions μ and V), and note then that R^μ = R^, where, for example,
RW>) = \ Wj"> all I e L(K). The mapping Rr is the resultant mapping
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used by Loomis in [12], and in Theorem 6 he proved that (since K a
lattice clearly implies the set of all subelements of x = R]i = iϋf is
a lattice) there exists a unique extremal measure whose resultant is
x. Since S = E(K) is known here to be compact, this says [12, p. 517]
that μ = v. Thus R is one-to-one, and (1) is proved.

(2) —> (3). As was seen in the proof of (2) —> (1), the mapping
R on P(S) to K is one-to-one bicontinuous and affine onto, where
S = E(K). If / is continuous real valued on S, denote by h the
restriction to P(S) of the linear functional on the space of all real

regular Borel measures determined by / : h(μ) = I fdμ, all μeP(S).
JS

Then x e E{K) implies (denote by x the point measure on S determined

by x) f(x) = h{R-\x)) = h(x) = ( / » $ = f(x); i.e., / extends / to be
JS

in L(K).

(3) -> (1). If μ,veP(S) and Rt= Rv, where S = E(K), and /

is continuous real valued on S, let / be its extension to K to be

continuous and affine. Then I fdμ = I fdμ = I Jdv — \ fdv, i.e., μ
JS JS JS JS

and v are equal as functionals on the space of real continuous functions
on S. The Riesz theorem then implies μ — v as measures. This
concludes the proof of Theorem 2.

REMARK 2.1. It is easy to verify that in the preceding theorem
the condition (c) of part (3) may be replaced by (c'): each continuous
real function / on S = E(K) is uniquely extendable to feL(K). It
follows then that f—>f is an isometric isomorphism of C(S) onto L(K),
where C(S) is the space of real continuous functions on S, and each
space is given the supremum norm.

We conclude §2 now with our characterization of all one-to-one
affine and bicontinuous images K of real unit balls of measures. The
conditions given here (in Theorem 2.3) are quite natural with possibly
one exception: the requirement that LQ(K) contain a function which
is identically one on T seems somewhat artificial. However, some
remarks regarding this condition are made following the proof of the
theorem, and these may help place the condition in proper perspective.

THEOREM 2.3. The following conditions are mutually equivalent
for K:

(1) K is the one-to-one affine bicontinuous image of some B(S),
(2) (a) there exists zeK and compact TaK such that xeK

implies 2z - x e K and E{K) = T U (2s - T) (b) if Kx denotes the
closed convex hull Of T, then Kx is a simplex, (c) L(K) separates
points of K and LQ(K) contains a function which is identically one
on Ku
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(3) (a) part (a) of (2) holds and (b) L(K) separates points of
K and each continuous function f on T is extendable to an feL0(K).

Proof. (1) —> (2). Let F be a one-to-one affine bicontinuous
mapping of B(S) onto K, where S is a compact Hausdorff space. Let
z = F(0), T = the image under F of all measures determined by the
points of S. If x e K, there exists μeB(S) such that F(μ) = x. Then
2z-x = 2F(0) - F(μ) = F(2-0 - μ) = F(-μ) e K. The Kelley-Arens
theorem [1, Lemmas 3.1 and 3.2] says £U( — S) is the set of extreme
points of B(S), where S is the set of point measures. Hence E(K)~
F[Sϋ(-S)] = F(S){JF(-S) = T{J(2z - T). Thus (a) of (2) is verified.
Using the Kelley-Arens result again (S is the set of extreme points
of P(S))9 Kλ = F(P(S)) hence Theorem 2.2 implies Kλ is a simplex.
Since B(S) has a separating family of continuous real affine functions
vanishing at 0 and contains one which is identically one on P(S), part
(c) of (2) follows easily. Thus, (2) is proved.

(2) -> (3). Since TcE{K), it is obvious that TcE(K^. On
the other hand, the closed convex hull of T is Kl9 hence T (being
closed) contains E(K^\ i.e., T = E(Kτ). Consider the embeddings K'9
Kl, and -Kl in L0(K)* of (respectively) K, Kl9 and (2z - Kx). Since
K[ and —Kl are compact convex sets whose union contains T' U —Tf —
E{Kr), it is clear that the convex hull of Kl U —Kl is compact (and
convex) and thus coincides with Kf. Now Kl is a simplex (by Theorem
2.2) with E{Kλ) = Tr, so each continuous real function on Tr can be
extended to be continuous and affine on Kl. This fact together with
the fact that x—>x' is one-to-one affine and bicontinuous on K onto
K' reduces the problem to proving that each continuous affine / on
Kl extends to a continuous affine function on Kf which vanishes at
z' = 0e L0(K)*. Fix such an /, and let ax' + (1 - a){-yr) e K', where
O ^ α ^ l , x,y eKx (note that Kf is the union of the line segments
[p, q], with p e Kl, q e -Kl). Define f[ax' + (1 - a)(-y')] = af(xf) -
(l-a)f(yf). We show first that / is well defined. Let ax' + {l-a){-y') =
bw' + (1 - b){-V), with 0 ^ α, b ^ 1, x,y,w,te Kl9 and let l0 e L0(K)
be one on Kx. Then lo(ax' + (1 — a){—y')) = alo(x) + (1 — a)lo(—y) =
a + (1 — α)(—1), since l0 = — 1 on 2a; — JSLΊ. Similarly, lo(bw' +
(1 - δ)(-t')) = 6 + (1 - 6)(-l) so 2α - 1 = 26 - 1, and α = 6. But
then αcc' + (1 - a){-y') = αwf + (1 - α)(-f), hence ax' + (1 - α)ί' =•
αw' + (1 - a)yr. Since / is affine, af(x') + (1 - α)/(ί') = α/(^')_ +
(1 - a)f(y'), so α/(a5') - (1 - α)/(τ/') - af(wj - (1 - α)/(f); i.e., / is
well defined. That / extends/ follows from f(x') = /(I x' + 0 -(-a?')) =
1 •/(»') - 0 •/(—»') =/(»'). To P r o v e / is continuous on K', let
{aax^ + (1 — aa)(—y'a)} be a net in Kf converging (weak-*) to ax' +
(1 — a){—yr). The net {(aa, x'a, —yf

Λ)} in the compact space [0,1] x
Kl x (—Kl) has a subnet, say {(aβ9 x'β, —y'β)}, converging in the product
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space to (δ, w, — t). It follows that aβx'β + (1 — aβ)(—yr

β)—>bw' +
(1 + &)(-«'), whence bw' + (1 - δ)(-ί') = ax' + (1 - a){-y'), and α=δ.
Thus, αα' + (1 - a)(-y') = aw' + (1 - δ)(-f). But then (as above)
af(x') + (l-a)f(t') = af(w') + (l-a)f(y'), whence / K ^ + (l-α
α β /(^) - (1 - aβ)f(y'β) - α/W) - (1 - α)/(t') = af(x') - (1 - α)
f[ax' + (1 — a,)(—y')]; i.e., / is continuous. Note also that /(0) =
7[(l/2)a' + (l/2)(-»')l = d/2)/(s') - (1 - (l/2))/(s') - 0. Finally, we
show / is affine. To this end, let axf + (1 — a)(—y') and bw' +
(1 - b)(-t') eK'f 0 ^ c ^ 1. Then ^ = c[αί»' + (1 - a)(~y')] +
(1 - c)[bw' + (1 - δK-ί')] = cαα' + (1 - Φ ; + c(l - αK-y') + (1 -
c)( l-δχ- ί ' ) . If d - cα + (l-c)δ, then 1-d = c(l-α) + ( l -c) ( l -δ) .
If then cί ̂  0, d Φ 1,

α _

= c[af(x') - (1 - α

c)[bf(w') - (1 -

Each of the cases cϋ = 0 and d = 1 is resolved into easily handled
sub-cases, and the arguments will be omitted. This completes the
proof of (2) — (3).

(3) -> (1). Define R on B(T) into L0(K)* as usual: for μeB(T)
and ϊ e LQ(K), let i?μ(ϊ) = \ ϊd/i. By an argument similar to one used
before, R maps B{T) onto the weak-* closed convex symmetric hull
in LQ{K)* of T'. This set is K', and as before R is affine and con-
tinuous, so the proof that R is one-to-one is all that remains. Let
μ,veB(T) and i2μ = Rv. Then if / is continuous on T, it has an

extension / t o be in L0(ίΓ). But then ί fdμ == ( /d^ = i?μ(/) = JSV(/) =
/<iy = I fdv, and /i = v as functionals on the real continuous

T m JT

functions on T. The Riesz theorem completes the proof that μ — v,
and thus the theorem is concluded.

L E M M A 2 .2 . Suppose K is compact convex, with zeK and TcK
such that xeK implies 2z — xeK and T is compact. Let further
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L0(K) separate points of K, E{K) = T U (2s - T), and K± be the
closed convex hull of T. The following conditions are then mutually
equivalent:

(1) L0(K) contains l0 which is one on Klf

(2) 0 ^ α, B 1, x, y,w,te Kλ and axr + (1 - a)(—y') = bwf +
(1 — &)(—*') imply a — b,

(3) each leL{K^) can be extended to an TeL0(K).

Proof. The implication (1) -> (3) is part of the proof of (2) — (3)
of the previous theorem. If (3) holds, then since L(KX) contains the
function which is constantly one on Klf clearly (1) holds; i.e., (3)—> (1).
The proof that (1) —> (2) is also in the proof of (2) -> (3) of Theorem
2.3, so it remains only to show that (2) —* (1). This proof, however,
is also found in (2) —> (3) of the previous theorem, for all that was
needed to extend feL{K^) to feL0(K) was condition (2) of the present
lemma. In particular, then, the function identically one on Kλ is
extendable; i.e., (1) holds.

REMARK 2.2. Given the hypotheses of Lemma 2.2., each of (1)
through (3) of that lemma is equivalent to the geometric condition:
Let C be the cone {axr; a ^ 0, x e KJ in LQ(K)* determined by Kl.
Then 0 is not in Kl and each Φ Φ 0 in C is uniquely representable
as φ = ax', for some a > 0 and x e Kx. The proof of this statement
is quite easy, as follows. Let ax' = by', with a, b > 0, x,y e Klm Then,
by (1) of Lemma 2.2, a = alo(x) = lo(ax') = lo(by') = blo(y) = b, hence
a = b and thus x' = y'm Clearly, 0 is not in Kl. Conversely, if this
geometric condition obtains, let 0 f§ a, 6 g 1, x, y, w,te Kx and ax' +
(l-a)(-y') = bw' + (1 —6)( —t'). Then ax' + (l-δ)t ' - bw' + (l-a)y'.
Let d = a — b + 1, and note that b — α + l = 2 — d. Thus if d Φ 0,
d Φ 2, we have that d[(a/d)x' + ((1 - b)/d)t'] = 2- d[(b/(2 - d))w' +
((1 - α)/(2 - d))y'], hence (by the condition) d = 2 - d. Thus d = 1,
and a = δ. Note that if cί = 0, then α + l = ί ) g l implies α ^ 0, so
α = 0 and 6 = 1. But then —y' = w', which says (l/2)(w' + y') = 0e Kl.
If d = 2, then b + 1 = a ^ 1 implies 6 = 0 and α = 1. Then x' = -t',
and again 0 e Kl. This completes the proof.

3«. Affine hotαotnorphίc and isomorphic images of S and SL In
this section we are interested in homomorphic and isomorphic (as well

as affine) images K of the convolution semigroups S and S. The
essential difficulties involved in the characterizations we obtain have
already been solved in §2, and the additional requirements are
(primarily) that (a) K be a compact affine topological semigroup and
(b) E{K) or T be a compact topological semigroup.



488 H. S. COLLINS

The following lemma takes care of most of the additional difficulties
encountered when one requires a topological semigroup structure on S
and K.

LEMMA 3.1. Let K be a compact affine topological semigroup, L
a norm closed linear subspace of L(K) separating points of K, and
TczE(K) be a compact sub-semigroup of K. Denote by x-+x° the
embedding of K into L*, giving L* the weak-* topology determined
by poίntwise convergence on L, and let A (let B) respectively denote
the closed convex symmetric hull of T° (the closed convex hull of I70)-
Then:

(1) If R on P(T) into L* is defined (for μeP(T),leL) by

RJJ) — \ Idμ, then R is a continuous affine homomorphism of T onto Br
JT

(2) If A is contained in K° and has 0 as a zero and Q on B(T)

into L* is defined (for μeB(T) and leL) by Qμ(ΐ) = \ Idμ, then Q1

ΪZ JT

is a continuous affine homomorphism of T onto A. Note that R and
Q are the mappings of Theorem 2.1 and 2.3 respectively, if L — L(K)
and L0(K) respectively.

Proof. The statements regarding Q and R (except for those
involving the homomorphism properties) are proved exactly as in
Theorems 2.1 and 2.3. It therefore suffices, for example, to prove
that Q is a homomorphism, so let μ,veB(T). Suppose first μ —
Σf=i α»A, » = Σi=i hvj9 with Σ Γ α< = 1 = Σ ί h and ai9 bs ^ 0, μί9 vs

extreme points of B(T), all i and j . Then μv = Σ»,i aJ>sfΛiVjf sα
Qμv = Σi. j toihQiipj If both μ{ and vβ are point measures determined
respectively by t< and sβ e T, then QHVj = Qa, where a is the point
measure determined by ί̂ - e T. But then QJJL) = I Ida = 1(^8ά) =
(tiSjy(l) = (t\ 8j)(i) = (QH Qyj)(l); i.e., Qμ<v, = Qμ< QVj. Now if
a,βeB(T), then - α •/? = -(a-β) - α (-i8) and ( - α ) (-/3) = α /3.
Thus if PiiVj) is each the minus of a point measure, say μ{ = — α i f

^ = - f t , then Q^VJ = Qa.βj = Qai Qβj = a;0.»°, with x,yeT. On the
other hand Qμί QVi = (-aj°) ("-tf°) = (2-0 - x°)(2-0-y°) = 4 . 0 - 2 - 0 -
2 0 + x° y° =*a?° y°; i.e., Qμ ί V j = Qμ< QVj. If (say) ̂  and as are point
measures, with vά = -ah then QHVj = -QVj= — (Qμ< Q Λ j ) = - ( ^ 0 ̂ /°).
with x,yeT. On the other hand Qμi QVj = x° (-?/0) = ̂ ° (2 0 - y°) =
2 - 0 - (αj°.tf°)= - ( ^ 0 /̂°); i.e., in all cases, Qμ<Vj = Oμ, Qvr Thus,
Qμv = Σί,i aibsQ^j = (Σί α»Qμ4) ( Σ i & A , ) = Qμ Qv Suppose next that
t* = Σ?=i αίft» w i t h ft extreme points of B(T). Then ^v = Σ?=i α ί f t y ,
so Qμv = Σ?=i QiQw Let {vα} be a net of convex combinations of
extreme points of B(T) converging to v\ then ftvα—>α^y, so Q
continuous implies QH QVa = Qμ,iVa —*a Qμ^ Since QH QVa —\ QH Qvr

it follows t h a t Qμ ί V = QH Qv, 1 ^ i ^ ^ , hence Qμ v = Σ ? = 1 α<(Qμ< Qv) =
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(Σ?=i aiQ^) -Qv = Qμ.- Qv Now let μ, v be arbitrary, {μa} a net of
convex combinations of extreme points converging to μ. Then, by
the preceding, Qμα Qv = Qw ->α ζ>μv, while Qμa Qv —>a Q^ Qv. Thus,
Q is a homomorphism and the argument for R is similar, though
simpler.

THEOREM 3.1. Suppose K is a compact affine topological semigroup
with L(K) separating points of K. Then K is the extremal homo-
morphic image of the convolution semigroup T of measures over some
compact Hausdorff semigroup T if and only if E{K) is a compact
semigroup.

Proof. It is now obvious that the extremal homomorphic image
of a T has a compact semigroup of extreme points. For the converse,
use Theorem 2.1 and Lemma 3.1, letting the L of Lemma 3.1 be L(K),
T = E{K), and letting the mapping be the R of Lemma 3.1, part (1),

COROLLARY 3.1.1. Suppose K is a compact affine topological
semigroup with L{K) separating points of K. Then K is group
extremal {i.e., K has an identity and E{K) is a compact group) if
and only if K is the affine continuous homomorphic image of some
T, with T a compact topological group.

Proof. Suppose first that K has an identity element and E{K)
is a compact group. Now by WendePs theorem [3, Theorem 1] the
maximal group T containing the identity is contained in E{K), hence
E{K) = T. Now the mapping R of Theorem 3.1 and Lemma 3.1 (since
T is a group and R is a homomorphism) is extremal, so K is the
affine continuous and homomorphic image under R of T. If this
condition holds, then K is the extremal image of a semigroup of
measures over a compact group, hence E{K) is a compact group and
K has an identity. This completes the proof.

REMARK 3.1. The group extremal semigroups of the preceding
corollary are known to always have a zero [13, 3]. Familiar examples
of such semigroups are the closed unit disc of complex numbers, with
ordinary complex multiplication, and the interval [ — 1,1] of reals,
with ordinary multiplication.

In the following theorems S will always be a compact semigroup.

THEOREM 3.2. The following conditions are mutually equivalent
for the compact affine topological semigroup K:

(1) K is the one-to-one affine bicontinuous and isomorphic image
of some probability semigroup S,



490 H. S. COLLINS

(2) (a) E(K) is a compact topological semigroup, and (b) K is
a simplex,

(3) (a) L(K) separates points of K, (b) E(K) is a compact semi-
group, and (c) each continuous real function f on E(K) is extendable
to feL(K).

Proof. If (1) holds, then Theorem 2.2 implies everything claimed
in (2) save the statement that E(K) is a semigroup, and this follows
because E(K) is the isomorphic image of a semigroup, namely S. Now
the implication (2) —> (3) follows directly from (2) and Theorem 2.2.
To conclude the proof of the theorem, we show that (3) —•> (1). Here
again we use Lemma 3.1, letting T = E{K), L = L(K), and the
mapping be the R of Lemma 3.1. Note this function is the same as
that used in (3) —> (1) of Theorem 2.2. The result of applying Lemma
3.1 and Theorem 2.2 is that K is the one-to-one bicontinuous affine
and isomorphic image of f under R.

THEOREM 3.3. Let K he a compact affine topological semigroup.
The following conditions are mutually equivalent.

(1) K is the one-to-one affine bicontinuous and isomorphic image

of some real unit ball semigroup S,
(2) the same as (2) of Theorem 2.3 except for the additional

requirements that the z and T of that theorem be a zero for K and
a semigroup, respectively,

(3) the same as (3) of Theorem 2.3 except requiring additionally
that the z and T of that theorem be a zero for K and a semigroup,
respectively.

Proof. The only conditions which need to be checked (in virtue
of Theorem 2.3) are those involving the semigroup structures on the

spaces involved. Thus, in (1) —> (2), the zero of S maps onto z (hence
z is a zero for K) and S maps onto T (hence T is a semigroup). The
implication (2) —• (3) follows immediately from Theorem 2.3 and the
additional assumptions on z and T. To prove, finally, that (3) —» (1),
note that z maps into 0 e LQ{K)* under the embedding K into K';
thus, 0 is a zero for K'. Further, T maps onto T' and the closed
convex symmetric hull A of Tr in Lύ(K)* is K'. In Lemma 3.1, then,
we take L = LQ{K)*, and let Q on B(T) onto Kf be as in that lemma.
Then Lemma 3.1 together with Theorem 2.3 insure that Kr is the

one-to-one affine bicontinuous and isomorphic image of T, so also then
is K. This completes the proof.

REMARK 3.2. A simple example illustrating the last two theorems
may be constructed in the plane, as follows. Let the K of Theorem
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3.3. be all pairs (x, y) of reals such that | x | + | y | ^ 1, and let T =
{i, j}, where i = (1, 0), j = (0, 1). Define i2 = i, f = j , ij = ji = j .
The multiplication (on the entire plane) is defined as follows: (aί +
bj)(cί + dj) = α c ί + (ad + be + b d ) j . T h e n K λ i s { ( a ? , y): x , y ^ 0 , x +
y = 1}, a simplex, and is affinely isomorphic with [ —1, 1] with usual
multiplication. K itself is, of course, a unit ball semigroup of measures,
with z = (0, 0).

Examples of similar nature could be constructed on any finite
simplex, of course, the requirements being that multiplications of a
suitable nature be defined on the set of vertices. It is clear that
exactly n distinct geometric figures exist in w-space on which proba-
bility semigroup structures can be defined; namely, the n simplexes
each with i vertices, 2 ^ i ^ n + 1. Thus the number of distinct
probability semigroups in %-space is =Σΐi} A(i)f where A(i) is the
number of distinct associative multiplications on a set of i elements
(isomorphic and anti-isomorphic semigroups are identified).
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