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THE ASYMPTOTIC NATURE OF THE SOLUTIONS
OF CERTAIN LINEAR SYSTEMS OF
DIFFERENTIAL EQUATIONS

A. DEVINATZ

Suppose y'(t) = [A+ V()+ R(t)]y(t) is a system of differential
equations defined on [0, ), where A is a constant matrix,
V(t)— 0 as t — oo and the norms of the matrices V'(t) and R(t)
are summable, If the roots of the characteristic polynomial
of A are simple, then under suitable conditions on the real
parts of the roots of the characteristic polynomials of A + V(t)
a theorem of N. Levinson gives an asymptotic estimate of the
behavior of the solutions of the differential system as ¢{— oo,
In this paper Levinson’s theorem is improved by removing the
condition that the characteristic roots of A are simple. Under
suitable conditions on V{(¢) and R(t) and the characteristic roots
of A+ V(t), which reduce to Levinson’s conditions when the
characteristic roots of A are simple, asymptotic estimates are
obtained for the solutions of the given system.

The proof given here, with essential modifications, will follow the
proof given by Levinson [3] [2, p. 92]. One interest in the improved
theorem is in its application to the problem of finding the deficiency
index of an ordinary self-adjoint differential operator, which will appear
in a subsequent paper. We shall establish the following.

THEOREM.! Let A be a constant m X n matrix whose mintmal
polynomial is of degree n and is of the form

A0 = T1 (v = N, N Ay for G £k, Sim=mn.
k=1 k=1

Let ¢+ 1=maxn,, V() an n X n matriz with (¢ + 1)-times continu-
ously differentiable elements satisfying t*| v (@) |""e L' for 1< r <
g+1 and V(t)—0 as t—oo. Let the roots of det (A+ V() —rI)=0
be (MO} and for t =71, we suppose the minimal polynomial of
A+ V() s

20, 1) = T 0= ()
where \(t) — N, as t — o, For a given k, let
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11f A is an n X n matrix with entries a:; we shall write | A| = Xij|ai;]. If
is a vector with entries x; we shall write |2| = X | 2. ].

(63



76 A. DEVINATZ

dii(t) = Re(ni(t) — Ni(2)) ,

and suppose that all j,1 < j =< n, fall into one of two classes I, and
t

I, where je I, if and only if t¢ expgdkj—> © as t— oo and
0

(|t—z‘|q—l-1)exp—gtd,”~<M<oo for t=7=0,

jel, if and only if S’dk,. <logM for t=t=0. Let R(t) be a
matriz  valued fungtion with measurable elements such that
| R(t)|e L'. Let {q,; 1 =5 = n} be a set of “principal wvectors”
Jor Nis tee., Qi = (A — NI) gy, (A — NI)*7'gy,, # 0 and (A —
Nel)"*Gry, = 0. Then, given the differential equation

(1.1 y'(t) =14+ V@) + R@Oly®)

there exists a t, and a fundamental system of solutions {y.;(t);1 =
i=n,1=k=m} such that

j—1 ¢ —1
[(Tt:l_)' exp || n@de | vslt) - g — 0,1 — oo .

2. We begin the proof by first considering a differential system
of the form

2.1 ¥'(t) = (A@®) + RQ)y(®) ,

where A(t) is a matrix with blocks {J;(t)} down the main diagonal
and zeros elsewhere, J;(t) being an %; X n; matrix with the same
number \;(t) down the main diagonal, 1 down the superdiagonal and
zeros elsewhere, and R(t) has measurable entries with t*|R(¢)|e L',
where ¢ + 1 = max{n;,1 < j < m}.

One fundamental matrix ¥ for the system

(2.2) y'(t) = A)y(t)

has blocks {P;}* down the main diagonal and zeros elsewhere, where
P; is an m; X n; matrix of the form

1 ¢ 2! -« t"(n; — 1)!
. 0 1 ¢t -t (n; —2)!
(2.3) Py(t) = eXpS Nl .
to . .
0O - - - 0 1
This may be checked by a direct computation. Again, it may be easily
checked that
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1 —t 820 — 31 «en (= 1) (n; — 1)1

L0 T Rl e (—1)TT Yy — 2)
P(t) = exp — St N .
0

and
(2.4) I t—17) (t—opf2le--(t—1)")(n; — D!

: 0 1 t—7) e (t—7)(n; — 2)!
P;(t)P;(t) = exp er,- .

0 . . . 0 1

~

Let us fix k and let ¥, be that matrix with zeros everywhere
except for diagonal blocks {P;;je I}, where each such P, has the
same position as in the matrix ¥. Let ¥, be the corresponding type
matrix with diagonal blocks {P;;je I,}. Clearly ¥ =¥, + ¥,.

Let e; be the vector with jth component equal to d,;, 0;; being
the Kronecker symbol. Now set ¢ =1+ 3%Zin;, where 1 =1 = n,,
and consider the equation

(2.5) §0) = Titges + | 1OV ORI
— | ror- @R .

It may be checked by a straightforward computation that, at least
formally, ¢ is a solution to (2.1). Hence, if it can be shown that a
solution to (2.5) exists, where the integrands are in L', then this
solution will also be a solution to (2.1).

We proceed by successive approximations. Choose ¢° = 0 and hence
o' = U(t)e,. It follows that

(2.6) 1§ — ¢ | < [eXp S:OReM] E /51

Now, the matrix ¥,(t)¥ (r) has blocks along the main diagonal which
are zero in those positions for which je€ I, and of the form (2.4) in
those positions for which je I,. Hence, using the hypothesis of the
theorem of §1, for ¢, < 7 =<t we have

@.7)
T (T ()R()| = C[|t — |7 + 1] exp (- &idk,) exp (SiRer |R(z)

< CM|R(?)]| eXpStReNk,
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where C is a suitable constant dependent only of q. In the same way,
for t = 7 < oo,

2.8) |77 )RE)| = CM[|t — 7|* + 1]| R(z) | exp ~81Rexk .
t
Using the estimates (2.6), (2.7) and (2.8) we arrive at the estimate

|¢* — ¢'| exp —StReM
(2.9) , " . .
< CM{St |B@)| 5, w/ilds + S [B@[[It -7l + 15 f"/j!d’c}.

Now using the fact that z*?| R(r)|e L' we can choose f, so large so
that

(2.10) |6 — ¢'| exp —StRexk <1/2 for t=1t,.
to

Using (2.7), (2.8) and (2.10) and proceeding by induction we find that
for j =1,

|¢3+ — ¢7 | exp — S: Re,
@11) = (1/2)]’*1CM{SZ |R(c) | de + S:’[;t — P+ 1]|R()| dr}

= 172y .

This means that there exists a function ¢ so that on every compact sub-
interval of [t,, ), ¢’ goes uniformly to ¢, and indeed, using (2.6),

2.12) | — ¢'| = (1/2) " exp S Rewn,, |¢] = C[to + 1] expgj Ren, .

The estimates (2.12) taken together with the estimate (2.8) shows that
the integrands in (2.5) are in L' and that indeed ¢ is a solution of

that equation.
We claim that

(2.13) [6(6) — T (t)e,] exp — S‘ Ne—0 as t— oo .

To show this, it is enough to show that

(2.14)  exp <—StRexk>St T (T HD)R()(@)dr — 0 as t— co, and
t t

2.15)  exp <—S‘Rexk>g”;v‘z(t)yf-l(r)R(f)gs(z)dz—»0 as t— oo .
t ¢

Using (2.12) and (2.8) we see that the norm of (2.15) is less than or
equal to
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CZMS”[M —)o + 1][e? + 1] R() | de,
t

which goes to zero as t — . To prove (2.14) we use the fact that
t oo

te eXpS di;— . Choose t; so that CMS: |R(z) || ¢(r)|dr < e. Then
t,

the norm of (2.14) is less than or equal to'

e+ exp ([ Bon) 1701|1770 || B@) |16 d

Now,

exp (—StRexk> [T = Ct? 3, exp — Stdkj——>0 as t— oo,
to J€I,

to
Hence we see that (2.14) is valid.
t
The vector [exp —S ?»k]élf (t)e; has the entry t*77Y/(l — 7 — 1)! in the
t,
% 4 7 position, 0 =5 < - 1, and zero elsewhere. Hence

(2.16) { (ltl_"ll)! exp S:ohk}—lgzﬁ(t) 6, —0 as f—co.

Let us designate the solution we have obtained in the previous
considerations by ¢;. Then the set of solutions {¢,}? is a fundamental
system for (2.1). Indeed, it is clear that the determinant of the matrix
@ with the vectors ¢, as columns is nonzero for ¢ sufficiently large.

3. In order to use the results of §2 to prove the theorem of §1
it will be necessary to establish the following.

LEMMA. Suppose the matrix A + V(t) salisfies the conditions of
the theorem of §1. Then for all sufficiently large t there exists o
differentiable and invertible matrix P(t) such that ¢7| P~ t)P'(t) | e L',
POIA + V()P () s a Jordan canonical form, P({)— P and
P t)y— P as t— , where PAP™ 1is a corresponding Jordan
canonical form for A, and the columms of P~ are a given set of
principal vectors for A.

Proof. Let A, N, -++, N, be the distinct eigenvalues of 4. Since
the coefficients of the characteristic polynomial of A + V() are con-
tinuous functions of ¢ in a neighborhood of o, using the hypothesis
of the theorem, there exists a neighborhood of o so that A + V(¢)
has eigenvalues \(t), + -+, A,(f) which are continuous for all ¢ in that
neighborhood. In particular, this means that \,(f) — X\, as t — co.

In fact, for ¢ sufficiently large, each \,.(t) is (¢ + 1)-times continu-
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ously differentiable. To see this, we consider the characteristic poly-
nomial

(3.1) Fn, 6) = 3 o = (=1 IT 0= x0),

where f;(t) is (q + 1)-times continuously differentiable. If we set
G\, t) = 8" F' (N, t)/on"+"", then G,(\.(7), T) = 0, but 0G,(\(7), T)/ON = 0.
Hence, the implicit function theorem tells us that there exists a neigh-
borhood about 7 and a (¢ + 1)-times continuously differentiable function
1., defined in this neighborhood, so that g,(z) = \.(7) and G.(t£,(t), £)=0.
Moreover, if any other continuous function satisfies the last two con-
ditions, then this other function coincides with f, in some neighbor-
hood of 7. Hence M\, (t) = p(t) in some neighborhood of 7, which
proves our assertion.

Let {g.;;1 =<7 < n,} be a given set of principal vectors for ), and
let @ be the matrix whose columns are {q., -+, Quy @1y ***) Qany ** *,
Qwmis ***» un, ), in the given order. Then, since the minimal and charac-
teristic polynomials of A are of the same degree, @ '4Q is in the
Jordan canonical form (see e.g. [1], Ch. XVII). If V, is the subspace
generated by {g.;;1=J5 = n,}, then A is reduced by V,. Hence, if
we set

7 = T1 (A= 1),

then this matrix is reduced by V, and the restriction of 7, (4) to V,
has an inverse. Let us set h, = 7;'(4)¢4.,, Where by 7;'(4) we mean
the inverse of the restriction of x,(A) to V..

Let us write the minimal polynomial, ¥(\, t), of A + V() as

AN, ) = (A — M) (N, 8)
where
w0 1) = TT 00— M)

Set gy, (t) = m(A + V (), ©hy; then since 7,(A + V(¢), 1) — m(4) as
t — oo, it follows that if we set

%) = (A + V(1) — Ml0))"¥77q4,,(T)

the set {g,;(t)}7* forms a set of principal vectors for the eigenvalue
Mi(t), provided t is sufficiently large. Indeed for ¢ sufficiently large,

(A + V() — M) g4, (8) = 0,
but
(A + V(@) — M@)*qap = X(A + V (), Dh = 0.
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If Q(t) is the matrix whose columns are the vectors

{QM(t); Y qlnl(t)! qu(t), +--, Q2n2(t), ) qml(_t)’ ) qmnm(t)} ’

in the order given, then Q'(¢)[4 + V(¢)]Q(¢) is in the Jordan canonical
form ([1]).

Notice that the elements of Q(f) are polynomial functions in
N (@)} and the elements of A + V(¢), and hence the elements of Q~'(¢)
are rational functions in these variables, where the denominator of each
rational function is det Q(¢f). Hence, if we set P(t) = [det Q(¢)]Q7'(t),
then the elements of P(¢) are polynomials in the previously mentioned
variables and P(¢)[A + V(¢)]P7%(t) is in the Jordan canonical form.
Further, from the assumptions of the lemma, and the manner of con-
struction of Q(f), it is clear that Q(f) — @, where Q'AQ is in the
Jordan canonical form. Hence P(t) — P, where PAP~"is in the Jordan
canonical form.

Since PY(t) — P, it is clear that P~%(¢) is bounded in a neigh-
borhood of infinity. Hence, if we can show that t*|P’(t)|e L' we
will have proved the lemma. The elements of P’(t) are linear functions
of {\i(?)}r and {v;(t)} (the entries of V’(t)) with coefficients which are
bounded in a neighborhood of infinity. Since, by hypothesis ¢* | v};(t) | € L,
if we can show that #7|\j(f)|e L' we will be done.

Use (3.1) to obtain

0" F (M(2), ) _ i FrR N4t
ot =

= (=1 mad T ) — @) [ -

Since I (Mi(t) — Nj(8))" is uniformly bounded away from zero and
Mi(t) is bounded, in a neighborhood of <o, it follows that there exists
a constant N such that

B2 INGI=N[IAPO] " S NS

Each function f; is the sum of suitably signed products of elements
of A+ V(). A typical term in the sum representing f; is say
a,(t) « -« a;(t), where a,(f) is an entry of A + V(¢). The n, derivative
of this product is given by

3 G @V (E) <+ a§(D)

where C;,,...,; , are the constants which appear in the multinomial ex-
pansion of (2, + -+- + 2;)" and the sum is taken over all j-tuples of
nonnegative integers, (¢,, ++-, %;), whose sum is n,. Hence if
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(3.3) | a{i «-. i) | e L1
it will follow that t*?| A\, |e L' and hence t*| P'(t)| e L.
If >i.,4, = n,, we may apply Holder’s inequality to get,

(3.4) S“tﬁ« IT atn |
¢ r=1

f*x é li_[ [S {2 l a/(z',) ‘Uzr]wlnk ,
r=1LJ¢,

where we make the convention that if ¢, = 0, then

Iy

| @, |l = sup | a,(t) | = [S | @l i”ir]"
tzty to

From the hypothesis of the lemma it follows from (3.4) that (3.3) is
satisfied and hence lemma is proved.

4, Using the results of §2 and § 3 it is now an easy matter to
finish the proof of the theorem stated in § 1. Make the transformation
2(t) = P()y(t) in (1.1) and we get the equation

4.1) o' = [P(A+ V)P~ — P-'P' + PRP |z .

The matrix P(A + V)P~ is in the Jordan form of the matrix A(t) of
(2.1) and t*|PRP™' — P7'P’|e L*. Hence, we may apply the results
of §2 and for ¢t =1+ >*in;,1<1=<mn, we find a solution z; such
that

tl—-l t —1
[(—l———l)—' expgt )»,,] 2,(t) —e;,—0 as t— oo .
— 1) .

Hence, if y,(t) = P7(t)x;, we get

[tH Sx]l(t) P76, —0 ast
i - - 6.; g as —> oo,
a1 exp k| Y
where P~ = lim,.,, P7%(%).

The vector P, is the ith column of P~* which by Lemma 3 can
be taken to be the given principal vector ¢,,. Since the vectors
{@; 1 =1 < n,,, 1 £ k < m} are linearly independent, the vectors {y;(t)}"
form a fundamental set of solutions of (1.1). This completes the proof
of the theorem.

Note added in proof. The theorem of this paper can be gener-
alized in the following way. Using the same notation as in the theorem
let p be a real number satisfying the inequality 0 < p < q. Suppose
further that for each given k all integers j, 1 < j < n, fall into two
classes I, and I, where I, is the same as in the hypothesis of the
theorem but now I, is the collection of 7 so that
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t
(!t——z’|”—|—1)expg dy < M< o for t=720.

Then under the hypothesis that &t ?|v{P({)|Y, 1=<r=q¢+1, and
t* 7| R(t)| are summable, the conclusion of the theorem holds. The
proof of the generalized theorem follows the proof given in the text
mutatis mutandis.
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