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A MORE GENERAL PROPERTY THAN DOMINATION
FOR SETS OF PROBABILITY MEASURES

T. S. PITCHER

In posing a statistical problem one specifies a set X, a o-
field S of subsets of X, and a collection M of probability
measures on (X,S)., It is often convenient to impose some
condition on M in order to avoid measure theoretic difficulties
and the condition most often used is domination, i.e., the
existence of a probability measure with respect to which each
of the measures in M is absolutely continuous. In this paper
we introduce a more general condition, which we call compact-
ness, implying the existence of a best sufficient subfield and
of certain estimates. It is also possible to characterize, under
this condition, those functions on /M admitting unbiased esti-
mates of certain types.

The increased generality thus afforded should be useful in dealing
with certain problems in stochastic estimation where M is not known
a priori to be dominated. In any case it is hoped that the present
exposition, which leans heavily on some of the more elementary parts
of functional analysis, will appeal to those who are oriented toward
that subject.

1. The compactness condition. We will assume throughout
this paper that the field S is closed with respect to M, that is that
S contains every set whose outer measure is 0 for each g in M. Such
sets will be referred to hereafter as M-null sets.

For each g in M, S-measurable f and real number p with 1=
p< < we will write ||f||,. for the (finite or infinite) number

1/p
[SI I dy] and || f||w,. for the p-essential supremum of |f|. For all
» =1 we define

1F 1l = SUDI1F e

and write E,(X, S, M) for the set of f with ||f|lpx < . In what
follows, whenever no confusion can result, we will write E, for
E (X, S, M) and || f||, for || fll,,x. We will also use the same symbol
for a measurable function as for its equivalence class in E,(X, S, M).

LEMMA 1.1. E, with || f]|, as norm ts a Banach space.

Proof. Only the completeness of E, needs to be proved. If (f,)
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is a Cauchy sequence in E,, we can choose a subsequence (f,,) satisfying
;'o=1||fn_1+1_f1bj”p < oo, Since

j2|=1”fn_1+1 _f'nJ”ﬂ,}l- = J_Z=1Hf,,j+1 -—fnJHp < oo

the sequence (fnj) converges almost everywhere with respect to each
¢ in M. Writing f for the limit of the f, ,'s we have

1F = Fuylly = S8R I1F = foy llos S 50D 55| oy = Fig s
< 3 s = Il

which goes to 0 as j goes to oo.

The spaces E, are new as far as we know but they are related
to spaces considered by other authors. In particular if M is a domi-
nated set of Borel measures on a locally compact Hausdorff space then
E, is a Kothe space (see reference [1]). The subset &, of the dual
space, introducted below, is closely related to the Kothe dual. On the
other hand if 1 < p < o and E, is reflexive it is an MT space (see
reference [3]).

Each g in M and h in L,(p) give rise to an element I(k, y) in

E (X, S, M)* through the formula (&, p)(f) = S fhdp.  Clearly

Uh, )| =B |lgu. We will write &,(X,S, M) for the set of all
finite linear combinations of such elements. &,(X, S, M) is a total
subset of E (X, S, M)*, i.e., if I(f) = 0 for some f in E,(X, S, M) and
every | in &,(X,S, M) then f=0. Hence %,(X,S, M) induces a
Hausdorff topoiogy on E,(X, S, M), namely the weakest topology in
which the elements of &,(X, S, M) are continuous. We will write
B,(X, S, M) for the unit ball in E,(X, S, M) and will generally shorten
B,(X, S, M) and &,(X, S, M) to B, and &, respectively.

DEFINITION. (X, S, M) is compact if and only if B,X, S, M) is
compact in the Z,(X, S, M) topology for some p, 1 < p < oo, It will
be seen later (Theorem 1.1) that if B,(X, S, M) is &,(X, S, M) compact
for some 1 < p < o it is compact for all such p.

We note before going on that M can always be replaced by the
set C(M) = [Xiaau|a; 20, X0, =1, p;e M] since || f|lu =
[fls.0an and &(X, S, M) = &,(X, S, C(M)).

Wo(y), the weakly topologized unit ball in L,(z¢) is compact if
1<p< o and hence so is the product space J.cx W, (1) with the
usual Tychonoff topology. The diagonal mapping ¢, which sends each
S in B, into the element of the product space whose value at W,(y)
is f maps B, in a one-to-one way into the product space and the
topology thus induced on B, is easily seen to be identical to the &,
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topology. Thus (X, S, M) is compact if and only if 4,(B,) is closed.
Elements of the product space will be written (f,). We will write
JF=yglp] if f is equal to g almost everywhere with respect to .

LeMMA 1.2. The jfollowing are equivalent:

1. (f.) ts the closure of i,(B,);

2. for every finite set p, -+, p, from M there is an f in B,
satisfying f= f,lpu] for 1 =1, m;

3. for every countable set (y;) from M there ts an f im B,
satisfying f= fulpl for all .

Proof. Clearly the third condition implies the second which in
turn implies the first. We will complete the proof by showing that
the first condition implies the third. Let v = 37,2y, let A, be
the set where dy,/dv and dpu,/dv are positive, and let g be the charac-
teristic function of a measurable subset of A, on which dp/dy, is
bounded. Since (f.) is in the closure of 7,(B,) there exists, for every

positive €, an & in B, for which ‘g(fM1 — h)gdyll < ¢ and

[, — g S, <e

dp,

=| [, = gz

form which it follows that ‘ S(f w — J ,Ln)gd)all < 2¢. Since ¢ is arbitrary,
S(fm — fu,)9dp, = 0 and hence f,, = f, [t] on A,. Thus, if we define
g, to be the characteristic function of the set where (dy,/dv) > 0 and

(dpy/dy) = 0 for j < m and set f= >7.,9.f., we have f=f, [¢,] for
all n. :

THEOREM 1.1. B,(X, S, M) s compact in the £,(X, S, M) topology
for some p, 1 < p < o if and only 1f B.(X, S, M) is compact in the
“(X, S, M) topology. The Z,X,S, M) topology coincides with the
Z(X, S, M) topology on B.(X,S, M) for all p with 1 < p < .

Proof. We will write £ for the function whose value at 2« is
f(x) if |f(x)|=n and O otherwise. The last assertion follows from
the fact that any function I(f, ¢) from &, is the uniform limit on B.
of the & -continuous functions I(f™, ). If 7,(B,) is compact, so is
its closed subset ¢,(B.). Hence B. is &,compact and consequently
&-compact if B, is &,-compact. Conversely, if B.. is & -compact and
(f.) is in the closure of 7,(B,), then ((1/n)f:”) is in the &-closure of
1,(B.) so there exists a b, in B. with nb, = f{"[¢] for all ¢ and it
is easily seen that wb, converges almost everywhere with respect to
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each ¢ to a function f which is therefore S-measurable and satisfies
S = fulp] for all p.

Another characterization of compactness is contained in Theorem
3.4.

THEOREM 1.2. If (X, S, M) is compact, so is (X, S, M') for any
M cM. If (X, S,M)is compact, so is (X, S, M) where M is the
set of probability measures v which are dominated by some countable
subset of M. (X, S, M) is compact ©f M is dominated.

Proof. The identity map from B.(X, S, M) to B.(X,S, M) is
continuous so its image is a compact subset of B.(X, S, M’'). Since
any equivalence class in B,(X, S, M’) contains an element f with
|f] =1 everywhere the image of B.(X, S, M) is all of B.(X, S, M’)
so the first assertion is proved. Any v in M has an expansion dv =
S fidy; where the y; are in M and the f; are nonnegative functions

with S, gfidyi —1. If & is bounded, the function I(k,v) on B. is

the uniform limit of the &-continuous functions >, I(inf (f;, n)h, ).
Hence no new continuous functions are added and the topology is the
same—in particular compactness is preserved. The last assertion follows
from the fact that (X, S, () is compact and that M is a subset of
some (#) if it is dominated.

Two unsolved problems should be mentioned at this point. First,
if (X,S, M;) are compact, is (X, S, M,U M, compact, or, what is
probably equivalent, is (M, S, Uz, M;) compact? Second, if (X, S, M)
and (Y, T,N) are compact and X X Y, S x T, and M x N are the
product space, the field generated by the S and T cylinder sets and
the set of product measures, is (X X Y, S x T, M x N) compact?
The second problem corresponds to the case of independent trials.

We close this section with a list of examples.

ExAMPLE 1. Let (@) be a parameter set and let (X,, M,, S.) be
compact with disjoint X,. Let X=U,X,, S=[4]|AN X,c8S.] and
extend M, to S be defining p(4) = (AN X,) for g in M,. Then
(X, S, U, M,) is compact for if (f,) is in the closure of 7,(B,) there
is, for each a, an f, with f, = f.[¢] for pte M, and the f obtained
by setting f equal to f, on X, is S-measurable and ¢,(f) = (f,). Note
that U, M, cannot be dominated if the parameter set is not countable
so that the compactness condition is really more general than domi-
nation.

ExAMPLE 2. Let X be the closed interval [0, 1], S the Borel sets
and M all the measures which are either concentrated at a point or
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else are absolutely continuous with respect to Lebesgue measure,
Every subset of [0, 1] gives rise to an element in the closure of 7,(B,)
on setting f, = 1 if p is concentated at a point « in A and 0 otherwise.
It is easily seen that (f.) = 1,(b) implies that b is the characteristic
function of A which is impossible if A isnotin S so (X, S, M) is not
compact. If only the point measures were involved we could replace
S by the set T of all subsets of X in which case (X, T, M) would Le
compact, but Lebesgue measure, of course, cannot be extended to 7.

ExAMPLE 3. Let w be a probability measure on (X, S) and for
some C =1 set M = [p]|p is absolutely continuous with respect to @

and (dg/dw) < C]. Then §|f ” do < sup,ex gmp dp < CS|f|” dw so
E (X, S, M) is equivalent to L,(w). Thus E, (X, S, M) is reflexive if
1 < p < . Reflexive E,’s are discussed in § 4.

ExAMPLE 4. Let v be a probability measure on (X, S) and let
M = [pt| ¢t is absolutely continuous with respect to v]. It is easily
seen that F, is isometrically equivalent to L..(v) forall p, 1 = p £ .

2. Sufficient subfields of S. We will need the following ex-
tension of S.

DEFINITION. S = [ A for every p in M, A is equal almost every-
where to an element of S].

It is clear that SC S and that every g in M can be extended to
S. A function b is S-measurable if and only if, for each p, it is
almost everywhere equal to an S-measurable function. S may properly
contain S, in fact, if M is the set of all point measures on X and S
is any field, then there are no M-null sets but S is the field of all
subsets of X.

THEOREM 2.1. If (X, S, M) is compact, then S = S.

Proof. As previously noted we can replace M by C(M), the
convex set spanned by M. Let b be an S-measurable function of
absolute bound 1. TFor each g there is a b, in B, equal p-almost
everywhere to b. (b,) is in the closure of 7,(B..) since for any g, «--, tt,
if v= (1/n) 37, pt;, then b, = b, [p4;] for each i. Hence there is an S-
measurable b, with b, = b, = b[¢] and b and b, clearly differ only on
an M-null set.

THEOl}EM 2.2. If(X,S, M) is compact and T is & subfield of S,
then (X, T, M) is compact.
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Proof. If (b,) is in the closure of 7,(B,(X, T, M)), then for every
M+, Ua there is a T measurable b’ with b = b.l]. Since Tc S=
S, b can be replaced by an S measurable 5" so (b,) is in the closure
of i,(B,(X, S, M)). Hence there is an S-measurable function b with
b=b,[x] for all ¢ and b is clearly T-measurable.

If T is a subfield of S, y is a probability measure on S, and f is
in L,(¢), then the conditional expectation' of f on T with respect to
p written E(f| T, ) is the unique 7T-measurable element of L,(x)

satisfying SgE(f | T, pydp = \gfdy for every T-measurable element of

L) If a=f=0b then a = E(f|T, ) =b. If there exists a T-
measurable function satisfying the above equation for all p in M, we
will write it E(f| T, M). If E®b|T, M) exists for each bounded S-
measurable b, the subfield 7 is said to be sufficient.

THEOREM 2.3. If T is a sufficient subfield for (X, S, M), then
T=T.

Proof. Let b be a bounded 7T-measurable function and b’ =
Eb|T,M). b—b" is T-measurable and if ¢ is any other bounded 7-
measurable function, there is for each g a T-measurable function ¢,

with ¢ = e,[¢] so g(b — V)edpt :S (b — ¥)c,dpe = 0. Hence b differs from
the T-measurable function o’ only on an M-null set.

THEOREM 2.4. If T is a sufficient subﬁeld Sfor (X, § M) then
(X, S M) is compact if and only if (X, T, M) is compact and
[blbe BAX, S, M) and E®|T, M) = 0] is compact in the Z(X,S, M)
topology.

Proof. Suppose first that (X, S, M ) is compact. Then (X, T, M)
is compact by Theorem 2.2. B,(X, §, M) is &, compact and hence so
ig its closed subset B.(X, §, M). Thus it only remains to show that

=[b|E®|T, M) =0] is & closed. But if ¢is in the closure of K,
¢ is in M and f is a bounded 7-measurable function then there is a
sequence (b,) from K with

Scfdp = lim Sb,, fdp = lim SE(bnl 7, M)fdp = 0

and it follows that E(c| T, M) = 0, i.e., that K is closed.

Suppose conversely that (X, T, M) is compact. If (b,) is in the
closure of 4,(B.(X,S, M )) then (Z(, | T, y)) is in the closure of
1(Bo(X, T M)) since b,, = b[y;] for v =1, , n implies E'(b,, | T M) =

! For definitions and properties of sufficient and pairwise sufficient subfields and
conditional expectations, see [2].
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E®|T, M)[p;] for © =1, .-+, n. Hence theseisa T-measurable ¢ with
¢c=E®b,| T, M)[p] for all g2 in M. ((1/2), — ¢) is thus in the closure
of 7%(0) N B.(X, §, M) so if this set is compact and hence closed there
is a b in B.(X, §, M) with b = (1/2)(b, — ¢)[¢] for all g. Thus (b), =
i(c + 2b) is in B.(X, S, M).

THEOREM 2.5. If (X, S, M) is compact, then there exists a best
sufficient subfield of S, i.e., a sufficient subfield T such that TC T,
Jor any other sufficient subfield T,.

Proof. Let T, be the subfield generated by all the functions
[dp/d(pe + v)] for g and v in M. T, is pairwise sufficient,” i.e., for
any ¢ and v in M and b in B.(X, S, M) there is a T,-measurable &’
with ' = E(b | T,, p)[p¢] and V' = E(b | T,, v)[v]. This property is easily
extended to finite subsets of M*® and it follows that (E(b| T\, 1)) is the
closure of ©,(B.(X, S, M)) so there is a b” with b = E(b| T,, p)[p] for
all p. 0" is T -measurable and " = E®| T, M) so T,= T is a suf-
ficient subfield. By Theorem 2.1 S = S and thus by Theorem 2.3 any
sufficient subfield 7, of S has T, = Tl. It is known* that T, contains
T, if it is sufficient so T, = f‘lj TO =T.

3. Estimation. If F' is a real-valued function on M and f is an
estimate of F, that is, an S-measurable function, then one measure of the
error to be expected from f is e,(f) = supuex || — F (1) |lp,ne

THEOREM 3.1. If (X, S, M) is compact, F'is a bounded function
on M, and 1 < p = oo, then there is an [ in E/(X,S, M) which
minimizes e,(f).

Proof. Replacing F' by aF we can assume that sup,c, | F(p)| =
1/3). If a= inf,eﬂp e,(f), then a =< ¢,(0) = sup,ex | F(p) | = (1/3). Let
(f,) be a sequence from FE, with e,(f,) converging to a. For large

enough n, [[f, Lo, = 1f0 — F() |l + 1 F() | = ex(f2) + [ F(p)[ =1 so
f. is in B,. The sequence has a point of accumulation f in B, and
for any ¢ in M and h in L,(p),

7 = Fayndp | = tim (5., — F()hap
= limsup | £y, = F(2) |l S B

so ||f— F(llp. = a and hence e,(f) = a,

2 Tbid.
3 Tbid.
4 Ibid.
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An estimate is said to be unbiased if Sfdy = F(p) for all pin M.

THEOREM 3.2. If (X, S, M) ts compact, F' is a bounded function
on M,and 1 < p < oo, then 4f there is an unbiased estimate of F in
E,, there is one which minimizes e, (f) among all the unbiased esti-
mates of F in E (X, S, M).

Proof. C, = [ flfeB, and Sfd;z = F(p) for all p] is an &,-closed
and hence compact, subset of B,. The proof is essentially the same
as the proof of Theorem 3.1 with B, replaced by C,.

We will say that an estimate f of F' is p-admissible if f is in
E (X,S, M) and there is no g in E (X, S, M) with ||g — F(¢)l,,. =
1f — F() |l for all g2 in M and ||g — F)lyo < |If — FO) I,y for
some v in M. We will say that f is a p-admissible unbiased estimate
of F if f is an unbiased estimate of F' in E,(X, S, M) and there is no
unbiased estimate g of F in E,(X, S, M) with ||g — F(©)|,. =
ILf — F() s, for all pgeM and [lg— F)l,, <I|f—F@)|,, for
some v in M.

THEOREM 3.3. Suppose (X, S, M) is compact, F is a bounded
Sunction on M and 1 < p < . Then for every esttmate f of F in
E(X,S, M) there is a p-admissible estimate f, of Fwith || fo—F (10)|],,.=
|| f— F() |y, for all p in M and for every umbiased estimate g of
F in E(X, S, M) there is a p-admissible unbiased estimate g, of F
with || go — F () |lpu = 19 — F() Iy, for all p in M.

Proof. We will write g < hif ||g — F(¢)|l,,. = [|h — F(t0) ||,,. for
all ¢ in M, and D, for the set [h|h < g]. D, is &, closed and if &
is in D, then ~

2l = 1A — F() o + | F(2) |
=llg = F() o + 1 F () |
<lgll, + 2sup | F(p)| = K

Hence all the D, for g < f are compact subsets of KB,. Thus if D,,
is a linearly ordered set of such sets, i.e., &, < &, implies DMICD%,
their intersection is nonempty. Clearly D,c D,, for any g in the
intersection and any «. By Zorn’s lemma then there is a minimal
such D, and any element of D, satisfies the conditions for f,. The
proof for the unbiased case is similar.

Theorem 3.3 does not hold without the assumption of compactness.
If in Example 2 we set F(¢) =1 for g which are concentrated on a
point x in some fixed nonmeasurable set A and F(¢) = 0 for all other
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(tin M it is clear that any estimator of F' can be improved upon.
The compactness of (X, S, M) does not imply that E,(X, S, M) is
reflexive (see Example 4) but the next theorem shows that E}*(X, S, M)
is the direct sum of the image of E, (X, S, M) under the natural map
and the annihilator of (X, S, M) if (X, S, M) is compact and L < p < o,

THEOREM 3.4. (X, S, M) s compact if and only tf for each
1<p <o and L wn EF*X,S, M) with ||L|| = A there is an f in
E(X,S, M) with || fllox = A and L(l(h, p)) = Shfd/z Sor all pin M
and h wn L,(p).

Proof. Suppose the condition of the theorem is satisfied and (f.)
is in the closure of ©,(B,). The functional L on &, given by L(l(k, ) =

ghf,kd/vc is well defined for if I(h, 1) = l(g,v) and f is an element of
B, satistying f= f.lp¢] and f=jf]v] then L(U(h, 1)) = Uk, )(f) =
Wg, v)(f) = L(l(g,v)). L is also bounded on &,(X,S, M) since, for
some f in By(X,S, M) with f = flp] [LQAR, )] =]Uk, )(N)] =
HZUIAN = 11T). By the Hahn-Banach theorem L has an extension L
to B, *(X,S, M) so there is an f in E,(X,S, M) with L(l(k, p)) =
Shfd/x - Shfﬂd/j for all z#in M and h in L(p). Clearly f= f.lz]
for all ¢ in M, i.e., ©,(B,) is closed and hence (X, S, M) is compact.
Suppose conversely that (X, S, M) is compact and L is an element of
E*(X, S, M). It will be sufficient to do the case ||L||< 1. For each
o we can define a linear functional L, on L,(x) by setting L.(h) =
L({l(h, ). Since | L,(h)| = || Uk, ) || = || h]l,,. there is an f, in L, ()
with || fullp, =1 and L,(h) = Shfﬂd/z. The proof will be completed if
we can show that (f,) is in the closure of 7,(B,) for then there will
be an f with f= f.[¢] and L(ith, 1)) = Lo(h) = Shfdﬂ = U(h, p)(f). For
any fty, +++, M, let v = (1/n) 37, p;,. By the argument above there is
an f, satisfying S fohdy = L(l(h,v)) for all h in L,(dv). If h; is in
L,(t;), then hydp,/dv) < nh; is in L(dy) so

ma = h = 1, )

= L0, 1) = |Fu ot
and hence f, = f, [¢;] for j =1, ---, n.
TEEOREM 3.5. If (X, S, M) is compact and 1 < p < oo, then a

bounded function F' on M has an unbiased estimator in E, (X, S, M)
of morm mnot greater than A tf and only tf
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n

< A sup
HAllp=s1

g e F(1)

: ¢ Sfdﬂi

1=

for every finite set of real mumbers (c;) and elements (y;) from M.

Proof. The linear functional L, given by: L (>%,cl(, p)) =
S 6. F (1) has bound not greater than A on its domain, hence, by
the Hahn-Banach theorem, it has an extension L in E}* of norm not
greater than A. By the preceding theorem there is an f in E, with

1£1l, = A and {fdp = LQ(L, 19) = L1, 1) = F(). The converse is
trivial since if f is the assumed estimate,

e

e, )

= A sup iizzlciSfdyil .

HFIl,st

4. Reflexivity of E, (X, S, M). We have already given (Example
3 of § 1) an example in which E (X, S, M) is reflexive for all 1 < p < .
It is clear that the set M used there could be chosen considerably
smaller while still retaining the property that E (X, S, M) is equivalent
to L,(w) for each 1 < p < o. The following example shows that this
is by no means the more general case of a reflexive F, (X, S, M).

EXAMPLE 5. Let g be a nonatomic probability measure on (X, S)
and y a point in X such that the set (y) is in S. Choose p and s
with 1 = p<s< . For each g in L,(y) let y, be the measure
defined by

\Flgi= dp
[llran]™ e

[ e, =

where

[1g1d

[fioran]™

An application of Holders inequality shows that ¢, =0 so g, is a

g9

positive measure and since deg =1 it is a probability measure. We

will write g, for the probability measure concentrated at y and set
M =[p,lg9e L,(r)]. We have, using Holders inequality for the pair
(s/p, (s/s — p)),
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\ Pls , 1—(p[s)
Ji1r d, = [Vrae] {Dor ar] + ol f@I

T Mera

={[[irrae]"} +1r@r
={[{irrau]"+ 1@}

={|irrae+ w]V

SO || fllp,ux = Cllfllsntuge - Setting g = inf (| f], n) for f in E(X, S, M)
we have

£ 120 = |11 dey = [glgi"d,a]m

so f is in L,(zp). Finally,
(K2l z% | F17 d(pey + 1)
1

|
= {[[irran]"+ 1)

2
= of[firran]" + 17w}

= of 171 ace + m) |

0 || fllouing = | Fllowe = ClI Flloprn, and Ey(X, S, M) is reflexive.
In this example M is unbounded, that is no o-finite measure ®
exists with (dv/dw) <1 for all v in M. Choosing p = 1 also gives a

case where E (X, S, M) is reflexive.

LEMMA 4.1. If E(X,S, M) 1is reflexive then &,(X,S, M) 1is
norm dense in E,(X,S, M)* and all | in E (X, S, M)* are countably
additive, t.e., if (f,) 18 a nonincreasing sequence of fumctions in
E (X, S, M) converging to 0 except on an M-null sct then I(f,) con-
verges to 0.

Proof. For any [ outside the closure of the convex set &, there
is an L in Ef* with L()=1 and L(¥,) =0 by the Hahn-Banach
theorem. By reflexivity L is the image of some f in E,, but L(%,) =
#,(f) = 0 implies that f = 0 which is a contradiction. The countable
additivity of elements of E now follows directly from the fact that
they can be approximated in norm by elements of ;.
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LeMMA 4.2. If E(X, S, M) is reflexive for some 1< p < co, f
1s in E(X, S, M) and f, is equal to f on the set where |f(x)|=n

and vanishes elsewhere then Sup,cy glf —fuldpe—0. If f 4s in
E(X, S, M) then ||f — fullp.x — 0.

Proof. We may suppose that f = 0. If the first assertion is false

for f then there is a 6 >0 and a sequence (g, from M with
S( f—fJodp, = 0. The equation [,(h) = Sh( f— f)Vedpy, defines an ele-
ment 1, in Ej with ||l || < S(f— Fdp, < 211 Fllue.  Since the unit

ball in E} is weakly compact the sequence [, has a point of accumu-
lation I. fY* is in K, and

l(fl/l’) — }irilgf]/p(f . f’lbj)llqd;’lnj
= lim S(f — fu)dpt,, Z 0> 0

while
WA = lim (F0(F = F ) odpe,, = 0

which contradicts the countable additivity of [. If f is in E, then,
since |f— fu P S || FIP — | fu 21,

sup {7 — £ dpe < sup |11 = 17,171

which goes to 0.

It is easy to construct examples, nonreflexive of course, for which
the bounded functions are not dense in E,(X, S, M). If we take M
to be [¢. |7 = 1,2, ---] where p, is defined by: Sfdy,, = gnﬂf(x)dx and
set f(¥) = n'"* for n < @ < n + (1/n) and 0 elsewhere, ||F — b|[,x =1
for any bounded b.

We can replace M by C(M), the set of finite convex combinations
of elements of M, as already noted. Let K, be the weak closure in
E(X, S, M)* of the set [I(1, )| e C(M)]. K, is weakly compact if
E (X, S, M) is reflexive.

LemMA 4.3. If E(X, S, M) s reflexive every element | of K,
can be represented im the form I(f) = gfdu for some probability
measure v. Let M, =1[v|l(1,v)e K,|. Then E,(X,S,M)=FE,/(X,S,M)),
in fact || fllow = oy Sfor all fin EXX, S, M).

Proof. Any | in K, is positive and countably additive and has
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(1) =1 so can be represented as a probability integral, i.e., I(f) =
gfdv. “For any f in E (X, S, M) if f, is the function whose value is

S(x) or 0 depending on whether | f(x)| = = or not and (z;) is a sequence
from C(M) with I(1, pt;) converging to [ we have

[1717 v = tim 17,17 a
= tim lim {| £, " dps; < Tim 1 £, 12

In the reflexive case this latter limit is || f]|5,» Which completes the
proof.,

THroREM 4.1. If E (X, S, M) is reflexive M) is dominated.

Proof. We define measures y, in M;, sets A, in S, and numbers
«, inductively as follows: a; =1, A, = X, p, is arbitrary, a,,, is the
supremum of the numbers p(A) for x« in M, and A such that p,(4) =
p(A) =+ = p,(A) =0, and p,., and A4,., are chosen to satisfy

#n-'ﬂ(An»i 1) = (an—'cm) and #1(An+1) == )un(An-Ll) =0.

(«,) is a decreasing sequence and if lima, =aand B, = A4, — Ur.,. 4;
then the B, are disjoint, p,(B,) = /2, and p,(B,) =0 if m > n. Let
[ be a point of accumulation of I(1, p,) in E,(X, S, M)* and let f, be
the characteristic function of the set Ui, B:,. Then (f,) decreases
to 0 but

UFD) = lim (g.dpe,, = lim (7. dpe,, = a2

so that @ = 2lim, . I(f,) = 0. Now if z;(4) =0 for all< and g is in
M, then p(A) =< 2a; for each ¢ so M, is dominated by >, 27",.

LEMMA 4.4. For each g in E (X, S, M) there is a 1t in M) with
[l917 dpe = l1g it if BAX, S, M) is reflewie.

Proof. Let I(1, 2) be a point of accumulation of a sequence I(1, y,)
with Sl g dp, — 1 glltx. Setting gi(x) equal to g(x) or 0 depending on
whether | g(x)| = k or not we have

191 dee = tim {1 g, 17 dpe = tim tim [ 17 a1,

= limlim ({191 dpes, = 119 — 01115 )

k J
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THEOREM 4.2. If E(X, S, M) is reflexive and 1 < p < o then
Jor every 1 in E (X, S, M)* there is a g in E(X,S, M) and a p in
M with

florar =gl =1,
o) = 1|
and

L=1T|[U(lg|""sign(g), ) .

Proof. We will write g** for | g |"*sign (¢g) throughout this proof
and will assume that |[I||= 1. Since the unit ball in E,(X, S, M) is
compact it contains a g with I(g) = ||!|| and clearly || g||,,» =1. By

the preceding lemma the convex set of ¢’s in M’ with \|g|"dpx =1 is

nonempty. We wish to show that the set C = [l(g"“l, ) I SI glPdp = 1]

is weakly closed and hence compact and since C is convex it will be
sufficient to show that it is strongly closed. If I(1, ¢,) converges to I
and g is an accumulation point of the p, then for any bounded &

Ug™, p)(h) = Hm Ug™™, g1, )(h) = T'(R)

so l(g" ™, ) = 1. A straightforward argument similar to the proof of
Lemma 4.4 shows that g[ g|"dy =1 and completes the proof that C is

closed.

If [ is not in C then by reflexivity and the Hahn-Banach theorem
there is an &, in E,(X, S, M) with c¢(h) < a < 8= Il(h,) for all ¢ in
C. Replacing h, by b = h, — ag and setting v = 8 — a we have ¢(h) <
0 <v=1IUh). For every ¢ =0

U + e = A+ &0’ < sup {19 + bl v
so there exists v, in M’ with
1+ pey = S(l g1” + peg”h)dy, + ofe)
or

pr < % (Sl g1 v, — 1) + pllg"", »)(R) + o(L) .

It follows that S|g|” dy, — 1 and then, by using bounded approxima-
tions to |g|” and applying Lemma 4.2, that Slgl” dpe =1 and hence
U(g"?, w)(h) = 0 whenever [(1, ) is a point of accumulation of the
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I(1,v.). But, setting h,(x) equal to hA(x) or 0 depending on whether
| h(z)| < n or not, we have

Ug™™, p)(h) = lim Ug"™, u(h,)
= lim lim g™, %, ) (0,)
= h_mm/ - Hh - hn“p,u) =7v>0

which is a contradiction.

THEOREM 4.3. If 1< p< =, E(X,S, M) is reflexive and L 1is
a linear subset demse im each L,(pt) for p wm M, them L is dense in
E,(X,S, M).

Proof. If L is not dense there is an element [ in E with (L) =10
but { #0. But [ =1k, ) for some g in M, and » in L,(y¢) and h

must be 0 since Shfdp vanishes for f in a dense subset of L,(z).

The above theorem does not hold if we only require L to be dense
in L,(¢) for ¢ in M. For example let X = [0, 2], S be the Borel sets

and M = [1,]0 < a < 1] where gfd;za - Sa+lf(x)dx. Then E,(X, S, M)
is equivalent to L,(dx) for all p and g, is in M, for every 1 < p < oo,
The set L = [f |feE, and Slf (x)dx = 0] is dense in each L,(y,) since
it contains, for each ¢ in L,,(jua) the function g,

1 a+1 .
__S g@yde f0<z<a
a a

9 = g(z) fa<z=<a+l
0 fat+tl<as2.

L is not dense in E, (X, S, M) for any p since I(1, p,) is in every
E (X, S, M)* and (1, p)(L) = 0.
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