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INCIDENCE MATRICES AND INTERVAL GRAPHS

D. R. FULKERSON AND 0 . A. GROSS

According to present genetic theory, the fine structure of
genes consists of linearly ordered elements. A mutant gene
is obtained by alteration of some connected portion of this
structure. By examining data obtained from suitable experi-
ments, it can be determined whether or not the blemished
portions of two mutant genes intersect or not, and thus inter-
section data for a large number of mutants can be represented
as an undirected graph. If this graph is an "interval graph,"
then the observed data is consistent with a linear model of
the gene.

The problem of determining when a graph is an interval
graph is a special case of the following problem concerning
(0, l)-matrices: When can the rows of such a matrix be per-
muted so as to make the l's in each column appear consecu-
tively? A complete theory is obtained for this latter problem,
culminating in a decomposition theorem which leads to a rapid
algorithm for deciding the question, and for constructing the
desired permutation when one exists.

Let A — (dij) be an m by n matrix whose entries ai3 are all either
0 or 1. The matrix A may be regarded as the incidence matrix of
elements el9 e2, , em vs. sets Sl9 S2, , Sn; that is, ai3 = 0 or 1 ac-
cording as et is not or is a member of S3 . For certain applications,
one of which will be discussed below, it is of interest to know whether
or not one can order the elements in such a way that each set S3

consists of elements that appear consecutively in the ordering. In terms
of the incidence matrix A, the question is whether there is an m by
m permutation matrix P such that the Γs in each column of PA occur
in consecutive positions. We shall describe a computationally efficient
method of answering this question, and of determining such a P when
one exists.

Given a family of sets Slf S29 , Sn, one can form the intersection
graph of the family by associating a vertex of the graph with each
set and joining two distinct vertices with an edge if their correspond-
ing sets have a nonempty intersection. Conversely, any finite graph
can of course be viewed as the intersection graph of a family of sets
(in many ways). If each set can be taken as an interval on the real
line, the graph is called an interval graph. Interval graphs have
been investigated in [ 7 , 5 , 3 ] . The problem posed above is closely
related to that of determining whether a given graph is an interval
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graph. Necessary and sufficient conditions for this are known [7, 3].
But our problem appears to be more general, and our approach is
quite different.

The study of interval graphs was stimulated in part by a bio-
logical application concerning the fine structure of genes [1, 7]. A basic
problem, posed in [1], is to decide whether or not the subelements of
genes are linked together in a linear order. A way of approaching
this problem is also described in [1]. Briefly, it is as follows. For
certain microorganisms, there are a standard form and mutants, the
latter arising from the standard form by alteration of some connected
part of the genetic structure. Experiments can be devised for deter-
mining whether the blemished parts of two mutant genes intersect or
not. Thus the mathematical problem becomes: Given a large number
of mutants together with information as to when the blemished portions
of pairs of mutants intersect, to decide whether this information is
compatible with a linear model of the gene or not. One example,
analyzed in [1], shows intersection data for 145 mutants of a certain
virus, for which it was found that a linear model was adequate.

In attacking the combinatorial problem posed at the beginning of
this section, it does not suffice to consider just the intersection graph
of the sets Su S3, , Sn. Instead, we focus attention primarily on a
more restricted graph, the overlap graph (§ 3), two sets being said
here to overlap if they have a nonempty intersection which is properly
included in each. The connected components of the overlap graph
partition the m by n incidence matrix A into m-rowed submatrices
A19 A2, , Ap. Thus we can take A = (Au A2, , Ap), where each
Ak corresponds to a component of the overlap graph. Then our main
theorem (Theorem 4.1) asserts that if there are permutations Pk> k —
1,2, •••,£>, such that PkAk has consecutive Γs in each column, there
is a permutation P such that PA has this property also. This some-
what surprising result, coupled with the fact that one can describe a
simple and direct construction (§ 5) for testing whether such Pk exist,
provides an answer to the existence question for a general incidence
matrix A.

2* A basic theorem* Let A be a (0, l)-matrix. We say that
A has the consecutive Γs property (for columns) provided there is a
permutation matrix P such that the Γs in each column of PA occur
consecutively. We note to begin with that the intersection graph of
A does not contain enough information to decide whether A has the
property or not. For example, the matrices
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have the same intersection graph, a triangle, but A2 does not have the
consecutive Γs property. The first question that naturally comes up,
then, is how much information about A is needed to decide whether
it has the property or not. Do we need to know A itself, or will
something less suffice? Theorem 2.1 below provides a partial answer
to this question; it shows that a knowledge of the matrix ATA is
enough. Here Aτ denotes the transpose of A.

THEOREM 2.1. Let A and B he (0, l)-matrίces satisfying

(2.1) ATA = BTB .

Then either both A and B have the consecutive Vs property or neither
does. Moreover, if A and B have the same number of rows and A
has the consecutive Vs property, then there is a permutation P such
that B = PA.

Proof. The first part of the theorem follows trivially from the
second. For assume (2.1) and let A be m by n, B be m' by n, with
m > mf. Then we may adjoin m — mf rows of 0's to B, thereby
obtaining an m by n matrix C satisfying ATA = CTC. The second
assertion of the theorem then implies C = PA, for some permutation
P. Consequently both A and C (hence both A and B) have the pro-
perty or neither does.

Let A and B be m by n. The second part of the theorem is
obviously valid for n — 1, and we proceed by induction on n. Suppress
the first column vector a of A and the first column vector b of B, and
call the resulting matrices A1 and Bλ. Thus

(2.2) A = (a, Λ) ,

(2.3) B = (6, B,) .

Clearly A1 has the consecutive Γs property and Aτ

ιA1 — BIBX. Hence,
by the induction hypothesis, we can permute the rows of B to obtain
a matrix B satisfying

(2.4) B = (b, A,) ,

the column vector b being a permutation of b.
We shall finish the proof by showing that, corresponding to each

TOW vector of B, there is an equal row vector of A. We begin by
noting that if the column vectors a of (2.2) and b of (2.4) have
common Γs (common 0's), the corresponding rows of A and B are equal
and can be paired off against each other. Having done this, consider
the submatrices of A and B consisting of the remaining rows. Call
these matrices A* and B*. Thus we may write
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(2.5)

(2.6)

A* = (a*, Af) ,

B* = (δ*, A*) .

Note that A* inherits the consecutive l's property from A, since sup-
pression of rows does not destroy the property, and hence we can
permute the rows of .A* to obtain a matrix

(2.7) A = (a,

in which the l's in each column occur consecutively. Applying the
same permutation to B* yields

(2.8) B = (b,

Now a and b are complementary (0, l)-vectors, that is, b is obtained
from a by interchanging O's and l's. We also have

(2.9) ATA = BTB ,

since A and B are obtained from A and B, respectively, by suppressing
certain equal rows and permuting rows. In particular, calculating the
inner product of ά with itself and b with itself, we have

(2.10) α α =

and hence a and b have the same number of Γs (hence also of O's),
so that the number of l's in a is equal to the number of O's in α.
Thus A and B have the following appearance:
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The matrices E and G in (2.11) have together the same number of
rows that F does, and we shall show that the rows of A corresponding
to F (corresponding to E and G) can be paired with equal rows of B
corresponding to E and G (corresponding to F).

To this end, let E and G have k and I rows, respectively, and let
Ep denote the p by p permutation matrix which reverses order,
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(2.12)

"We assert

(2.13)

that

Rv —

F =

0

= \*
\R

(

G_

Γ

)

•

For consider an arbitrary column vector c of A1 and write

(2.14) c=

corresponding to the partition (2.11) of A1# From (2.9) we have

α c = 6 c ,

and thus the number of Γs in / is equal to the number of Γs in e
and g. It follows from this and the fact that the Γs in c occur con-
secutively that

(2.15) / =

This establishes (2.13) and finishes the proof of Theorem 2.1.
We note the following corollary of Theorem 2.1.

COROLLARY 2.2. Let A and B be (0, l)-matrices satisfying (2.1).
If A has the consecutive Vs property and has no rows of 0's, then
there is a permutation P such that

(2.16)
0

Proof. Let A be m by n and let B be mr by n. Suppose m' < m.
Then we may adjoin m — mr rows of 0's to B, obtaining a matrix C
satisfying ATA — CTC. By Theorem 2.1, C is a row permutation of A,
violating the assumption that A has no zero rows. Consequently
w! ^ m. The conclusion now follows by adjoining m' — m rows of
0's to A.

It is of course not true in general that equation (2.1) implies
B = PA for m by n (0, l)-matrices A and B. A simple example is
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It would be interesting to know conditions on ATA in order that
A have the consecutive Γs property. Although we have not been able
to give a complete answer to this question in the sense of finding
some nice set of necessary and sufficient conditions, we shall establish
a theorem in § 4 which reduces the question to the consideration of
(0, l)-matrices having connected overlap graphs. Section 5 then provides
a simple construction for testing whether or not such a matrix has
the property.

3* The overlap graph and component graph* We rephrase
the definition of "overlap" in terms of inner products of (0, l)-vectors.
Let a and b be (0, l)-vectors having m components. Their inner pro-
duct a-b satisfies

(3.1) 0 ^ a b ^ min (α α, b-b) .

If strict inequality holds throughout (3.1), that is, if a-b satisfies

(3.2) 0 < a-b < min (α α, b-b) ,

we say that a and b overlap. We also say that a and b are disjoint if

(3.3) α 6 = 0,

and that a contains b if

(3.4) a-b = b-b .

Now let A be an m by n (0, l)-matrix having column vectors
alf α2, , an. It is convenient, and imposes no loss of generality in
studying the consecutive l's property, to assume that a3- Φ 0, j —
1,2, •• ,w, and that αέ Φ a, for iΦj. Henceforth we frequently
make these assumptions and refer to such an A as proper.

There are various graphs one can associate with a (0, l)-matrix A
that are meaningful insofar as the consecutive l's property is concerned.
For instance, we can take vertices x19 x2, , xn corresponding to the
columns al9 a2, , an of A, and put in the following edges, some being
directed, others undirected: an edge [xίf Xj] directed from x{ to x3- if
a{ contains a3; an undirected edge (xi9 Xj) joining xt and x3 if ai and
a,- overlap. (If we go on to make this a "weighted" graph by as-
sociating with each edge (vertex) the appropriate inner product, then
Theorem 2.1 shows that we have included sufficient information to
decide whether A has the consecutive l's property). We shall not,
however, deal primarily with this full graph ^ — ̂ r(A)9 but shall
instead work mostly with two graphs derived from it, one of these
being an undirected graph, the other a directed graph.

The first of these is the graph obtained from j ^ ~ by including only
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the undirected edges (xi9 Xj) corresponding to overlapping column vectors
a€ and aJΛ We call this the overlap graph of A and denote it by
5f - gf (A).

The second of these graphs is obtained from ^ as follows: Let
Xl9 X2, *"9XP be the connected components of %?(A), considered as
vertices of a graph & — &(A). Direct an edge [Xi9 Xj] from vertex
Xt to vertex Xj if there is an x in Xt and a y in Xά such that [x, y]
is an edge from x to y in ^ " \ We call & the component graph of
A. The component graph £$ is obtained by condensing in j ^ ~ the
vertices of a connected component of ^ to a single vertex.

We give an example illustrating these concepts. Let
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Fig. 3.1. The full graph &(A) Fig. 3.2. The overlap graph
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X 3 = ( x 4 > x 5

Fig. 3.3. The component graph

The graphs _ ^ , gf, and & for A are shown in Figs. 3.1, 3.2, and
3.3, respectively.

Notice in the example that the component graph Sf is acyclic (has
no directed cycles) and transitive (if [X, Y] and [Y, Z] are edges, then
[X, Z] is an edge). We now prove that this is generally so.

THEOREM 3.1. The component graph &(A) of a proper (0,1)-
matrix A is acyclic and transitive.

Proof. We first show that £& is transitive. Let X, Y9 Z be com-
ponents of & (vertices of £^) such that [X, Y] and [Y, Z] are edges
in &. Hence there are vertices x,y,y',z of j ^ ~ with x in X, y and
y' in Y, and z in Z, such that [x, y] and [yf, z] are directed edges of
j ^ ~ m Moreover, since y and yf are in the same component of 2^, there
is a chain (y,yύ, (VuV*), •••, (l/*, 2/') of undirected edges joining y to
y' in ^ (hence in ^). Thus the matrix A has corresponding columns
α, b, b\ c and 6^ δ2, , bk such that α contains 6, &' contains c9 & and
i>! overlap, 6X and b2 overlap, , bk and br overlap. But if a contains
b and b overlaps bl9 then either a contains b1 or a overlaps δlβ The
latter of these alternatives is impossible, for otherwise x and yγ would
be in the same component of the overlap graph, contrary to choice.
Thus a contains bx. We may now repeat the argument with α, bu b2

in place of α, 6, 6X to show that a contains 62, and so on, finally de-
ducing that a contains 6'. Since V contains c, we see that a contains
o, and hence [x, z] is a directed edge in j ^ ~ . Consequently [X, Z\ is
a directed edge in 2ί, and £2f is transitive.

To show that &r is acyclic, it suffices, since £2f is transitive, to
show that both [X, Y] and [Y, X] cannot be edges of £&. Suppose
they were edges of £&. Then, as above, the matrix A would have
columns al9 a2, , ak and bu 62, , bι with the following relations
holding: a1 contains bt; bt contains ak; aγ overlaps α2, •• ,α fc_1 overlaps
ak; &! overlaps & 2>"#^z-i overlaps bt; and no a{ overlaps any bj. It
then follows as above that aι contains bt. Similarly we deduce that bι

contains α1# Thus ax = bt. Since ax and 6Z are necessarily distinct
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columns of A, this violates our assumption that A has no pair of equal
columns. Consequently & is acyclic. This completes the proof of
Theorem 3.1.

Theorem 3.1 shows that £& is the graph of a partial ordering.
This partial ordering is special in the sense that an element can have
at most one immediate predecessor, as Theorem 3.2 below shows. Con-
sequently, if we omit from &ί every edge whose existence is implied
by transitivity, the resulting graph is simply a collection of rooted
trees. (For example, in Fig. 3.3, omitting the edge [Xl9 X4] produces
a single tree with root Xx).

THEOREM 3.2. Each vertex of the component graph &(A) of a
proper (0, l)-matrix A has at most one immediate predecessor.

Proof. It suffices to show that if [X, Z] and [Y, Z] are edges of
&, then either [X, Y] or [Y, X] is an edge. Thus, let [X, Z] and
[Y, Z] be edges of 3ί. It follows that A has columns α, 6, cl9 c2, ,
ck with the following relations holding: a contains cu b contains ckf

and successive pairs of c's overlap. Thus a contains ck. Since b also
contains ck and a and b do not overlap, then either a contains b or b
contains a. Consequently, either [X, Y] or [Y, X] is an edge of 3ί.

In § 4 we shall use the structure of the component graph to prove
the decomposition theorem mentioned in § 1. This structure will also
be exploited later in developing a complete algorithm for arranging the
rows of a matrix A to make its Γs appear consecutively in each column,
when this is possible. For these purposes, we note here another fact
about the full graph j^~{A) that has not been stated explicitly, although
its proof is contained in that of Theorem 3.1.

THEOREM 3.3. Let X and Y be components of the overlap graph
&{A) of a proper (0, lymatrix A, such that there is an x in X and
y in Y with [x, y] an edge of ^"{A). Then [x, y'] is an edge of

for arbitrary yf in Y.

Theorem 3.3 shows that each column of A corresponding to Y
plays exactly the same role with respect to columns of A corresponding
to X. That is, each "F-column" will be contained in certain of the
"X-columns" and disjoint from the others. This pattern is the same
for every Y-column.

4* The decomposition theorem* For an arbitrary (0, l)-matrix
A, we can rearrange columns if necessary and write

(4.1) A = (Al9A2, -,Ap),
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where each submatrix Ak, k — 1,2, , p, corresponds to a component
Xk of the overlap graph &{A). We term (4.1) an overlap decomposition
of A. It is of course unique, apart from the ordering of the sub-
matrices. We refer to these submatrices as overlap components of A,
or briefly, components of A. If A has just one component, we say
that A is connected.

THEOREM 4.1. A (0, l)-matrix A has the consecutive Vs property
if and only if each of its components has the property.

Proof. The necessity is obvious. To prove sufficiency, we may
assume that A is proper and proceed by induction on the number p of
components of A, the case p = 1 being trivial.

Before going to the induction step, we first remark that if a
matrix has the consecutive Γs property and has equal rows, such rows
can be brought together in a permuted form which makes the Γs in
each column consecutive. To see this, it suffices to observe two things.
First, if a row is deleted from a matrix having the consecutive Γs
property, the resulting matrix has the property. On the other hand,
if a deleted row is one of a pair of equal rows, then it can be rein-
serted adjacent to its counterpart in the permuted matrix, and the Γs
in each column are still consecutive.

To establish the induction step, let A be a proper matrix having
p components, each of which has the consecutive Γs property, and
write

(4.2) A = (A1,Λa, . . . , A P ) ,

where Ap corresponds to a minimal element in the partial ordering
given by £&(A). Now delete Ap from A. By the induction assumption,
the matrix

(4.3) A' = (A19A*, - . . , i l j

has the consecutive Γs property, and hence, by the above remark,
there is a permutation P such that PA! has consecutive Γs in each
column and like rows of PA occur together. Consider

(4.4)

We may select a topmost and bottommost 1 in Bp, and write

(4.5) B = Bx B2

* *

. . . *

• B,_i

. . . *

0

Bp

0
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where the first and last rows of Bv each contain at least one 1. Now
consider the matrix

(4.6) (B19Bif •• , 5 , _ 1 ) .

We assert that all rows of (4.6) are identical. To see this, observe
first that since Xv is a minimal element in the partial ordering, each
Xk9 k = 1, 2, •••,?> — 1, either dominates Xp (there is an edge from
Xk to Xp in &{A)) or is unrelated to Xv (there is no edge from Xk

to Xp or from Xp to Xk). Suppose Xk is unrelated to Xpm Then, since
the first and last rows of Bv contain a 1, it follows that the first and
last rows of Bk are all O's, for otherwise there would be a column of
Ap and a column of Ak which are not disjoint. On the other hand,
suppose Xk dominates Xp. It then follows from Theorem 3.3 that the
first and last rows of Bk are equal. Hence the first and last rows of
(4.6) are equal, and consequently, by the selection of P, all rows of
(4.6) are equal.

We may now permute the rows of Bp to make its Γs consecutive
in each column. Such a permutation merely shuffles like rows in (4.5),
and thus A has the consecutive Γs property.

Any component of A which has no more than two columns obvi-
ously has the consecutive Γs property. We may thus state the follow-
ing corollary of Theorem 4.1.

COROLLARY 4.2. If each component of a (0, l)-matrix A has at
most two columns, then A has the consecutive Vs property.

5* Testing a connected matrix for the consecutive l 's pro-
perty* In this section we shall describe a construction for deciding
whether a connected matrix A has the consecutive Γs property. The
essential idea is not to search explicitly for a permutation P which
rearranges A, but rather to attempt to build up a permuted form of
A, column by column, imposing necessary inner-product requirements
on the columns of the configuration.

Let α, 6, c be distinct column vectors of A such that a overlaps
b and b overlaps c. If A has the consecutive Γs property, then there
is a row permutation of A which contains the configuration C1 or C2

described below (and illustrated in Figs. 5.1 and 5.2) according as

(5.1) a-c < min (α δ, b-c)

or

(5.2) a c 2̂  min (α 6, δ c)

holds. The configuration C1 is obtained by writing down α α Γs con-
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secutively in a column, then 6 δ consecutive l ' s in a second column so
that these two strings of l 's overlap (at the bottom of the first, say)
o n α ί) l 's, then a third string of c-c l 's, overlapping the second string
in the same way that the second overlapped the first (at its bottom)
on b c l ' s . The configuration C2 differs from C1 only by making the
third string of l ' s overlap the second opposite to the manner in which
the second overlapped the first.

b ca
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1

Fig. 5.1. The Configuration CΊ Fig. 5.2. The Configuration C2

Note that while we have two choices in placing the second string
of l 's relative to the first (top or bottom of the first), it is immaterial
which of these we select. Moreover, having selected one, there is no
further latitude in positioning the third string of l 's, since its position
relative to the second is determined by (5.1) or (5.2) and the position
of the second relative to the first. After constructing the configura-
tion Ci or C2, we can then check the inner product of its first and
third columns. If this is not equal to α c, we know immediately that
A does not have the consecutive l ' s property.

Three column vectors of A which can be ordered so that the first
and second overlap and the second and third overlap will be termed a
rigid triple of A. Our construction for a connected A will be based
on singling out a spanning subtree of &{A) and then positioning strings
of l 's, using rigid triples obtained from this tree.

Instead of describing the computation formally, we shall consider
an example which will make the process clear. Let
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A spanning subtree of the overlap graph ^{A) is shown in Fig. 5.3
below.

Fig. 5.3. A Spanning Subtree of

On the first step, we may position the rigid triple 1, 3, 5 to obtain
the configuration of Fig. 5.4 below.

1

1 1

1 1

1 1 1
1 1

1

Fig. 5.4

The inner products of this configuration agree with the corresponding
ones of A, and we proceed to add column 6, positioning it relative to
1 and 5 (5, 1, 6 form a rigid triple), to obtain the configuration shown
in Fig. 5.5.

® © © ©
1

1 1
I 1
1 1 1
II 1

1 1

Fig. 5.5

Checking the inner product of column 6 with all others in the
configuration shows that we have no contradiction yet, and so we add
column 4, positioning it relative to 1 and 3, to obtain the configuration
of Fig. 5.6.
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1

1

1

1

Fig. 5.6

1

1

Again all inner products of column 4 with preceding columns of
the configuration check out properly. We then add column 2, position-
ing it relative to 1 and 6, obtaining the configuration of Fig. 5.7.
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1
Fig. 5.7

Since the inner products of column 2 with all preceding columns
in the configuration of Fig. 5.7 agree with the corresponding inner
products of columns of A, Corollary 2.2 shown that the matrix
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obtained from Fig. 5.7 by rearranging columns and filling in O's so
that B has no zero rows, is a row permutation of A.

A complete test for a general matrix A is now clear. First deter-
mine the connected components of A. This can be easily done in such
a way that corresponding spanning subtrees are automatically obtained.
Simply select an arbitrary column and find all columns it overlaps; then
select one of these and determine any new columns it overlaps, and so
on. When no new columns can be determined, a spanning subtree for
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one component has been found. The configuration building process
described above can then be applied to each component. (In actual
computation, one would build the configuration simultaneously with the
determination of a connected component.)

If one measures the efficiency of this method by calculating an
upper bound on the number of times that it is necessary to compute
(or look up) the inner product of two (0, l)-vectors, it is not difficult
to see that if A has n columns, such a bound is of the order O(n2).

6* Fitting the components together• If no contradiction in
inner products is encountered in the construction outlined in the pre-
ceding section, one can go on to find the desired row permutation of
A by fitting the various connected submatrices together in an appro-
priate way, using the partial ordering of components given by £&(A)m

(We assume that A is proper.) The proof of Theorem 4.1 indicates
how to proceed. Again we shall not describe the process in detail, but
shall illustrate it with the example of § 3.

The configuration-building procedure of § 5 produces the matrices

1 0"

1 1

1 1

1 1

1 1

1 1

1

1

1

J52 =

0

0

0

0

0

0

1

1

0

0
0

0

0

0

0

0

1

1

0
0

0

0

0

1

1

0

0

0
0

0

0

1

1

0

0

0

0
0

0

0

0

0

1

1

1

To fit these together, we first determine the maximal elements in
Here there is just one, corresponding to Bu and we have:

1 0

1 1

1 1

1 1

1 1

1 1

1

1
0

0

0 1
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(If there were more than one maximal element, the determined part
of the configuration at this point would appear as a direct sum.)

Next suppress the maximal elements in 3f{A) and look for the
new maximal elements in the reduced graph. Here there are two,
corresponding to B2 and J53. By Theorem 3.3, each column of B2(BB)]
is contained in certain columns of Bγ and disjoint from the remaining,
and this pattern is the same for all columns of B2(Bd). Hence it suf-
fices to test one column of B2(B3) to find this pattern. We can do
this by referring to ATA or ^"(A). The single column of B2 is con-
tained in both columns of Bί9 whereas columns of Bd are disjoint from
the first column of B1 and contained in the second. We now fit in B2

by sliding its nonzero part (the part between a topmost and bottom-
most 1 of B2) to the top of the consecutive group of equal rows of
Bλ consisting of (1, l)-pairs. Similarly, we fit in B3 by sliding its non-
zero part to the top of the consecutive group of (0, l)-rows of Bλ.
This gives the configuration

® ( D ® ® ( 5 ) ( 6 ) ( 7 ) ( 8 )

1
1
1
1
1
1
0
0
0

0
1
1
1

r-i

1
1
1
1

0
1

r-i

1

r-i

1
0
0
0

0
0
0
0
0
0
1
1

0

0
0
0
0
0
0
0

r-i
r-i

*

The new reduced component graph consists of the single element
corresponding to B4, and we see from ^~(A) that each column of B4

is contained in columns 1, 2, 3 and is disjoint from columns 4 and 5.
Consequently we slide the nonzero part of B± to appear at the top of the
consecutive group of (1,1,1, 0, 0)-rows in the configuration. This yields
a row permutation of A whose Γs appear consecutively in each column:

®r-i

1
1
1
1
1

0
0
0

©
0
1
1
1

r-i

1
1

r-i

1

©
0

r-i
r-i

r-i

1

r-i

0
0
0

©
0
0
0
0
0
0
1
1
0

©
0
0
0
0
0
0
0
1
1

©
0
0

r-i
r-i

0
0
0
0
0

©
0
1

r-i

0
0
0
0
0
0

©
0
0
0

r-i
r-i

r-i

0
0
0
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Note that at each stage in solving the example, we automatically-
had equal rows occurring together (see the proof of Theorem 4.1) and
hence did not need to permute rows of the configuration before fitting
in another piece. It is not difficult to show inductively that this will
always be the case, provided the prescription of sliding the nonzero
part of the new piece to the top of the group of like rows which
precede it is followed. A relevant fact in making such a proof is that
the nonzero part of the new piece contains no zero rows. This follows
from connectedness and consecutivity of Γs, and justifies our termi-
nology.

7* Application to interval graphs* The methods developed in
preceding sections can be applied to the problem of determining when
a graph is an interval graph. As noted in § 1, various sets of neces-
sary and sufficient conditions that a graph be an interval graph are
known. Moreover, computational methods based on some of these have
been described [7, 3]. The procedure we shall outline appears to be
more efficient. In addition, a specific representation in terms of intervals
can be easily produced if desired.

We begin by reviewing certain concepts and results that will be
relevant. The first of these is that of a rigid circuit graph [2, 7].
An undirected graph1 ^ is a rigid circuit graph if every circuit of
<& with more than three vertices has a chord. Here a chord is an
edge not in the circuit which joins two vertices of the circuit. It
is easy to see that an interval graph must be a rigid circuit
graph [7]. We also recall the following basic result about rigid
circuit graphs [2]: Every rigid circuit graph & has a simplicial vertex.
Here a vertex s of Ŝ  is simplicial if all the neighbors of s in 2^
form a simplex or clique in & (i.e,, each pair of neighbors of s is
joined by an edge.) Thus s together with its neighbors is also a clique
in gf.

Rigid circuit graphs have been characterized in various ways [2, 7].
For our purposes, the following procedure for testing the rigid circuit
property will be appropriate:2 Search for a simplicial vertex in 5^; if
one is found, supress it and repeat the procedure in the reduced graph.
It follows that ^ is a rigid circuit graph if and only if this process
terminates in the deletion of all vertices of &. For if ^ is a rigid
circuit graph, then <& contains a simplicial vertex, and deletion of
vertices maintains the rigid circuit property. Conversely if *& has a
circuit with more than. three vertices which has no chord, then no

1 All graphs considered in this section are finite and undirected, and have no
multiple edges or loops.

2 This simple test has apparently not been noted before. See [7], where a more
complicated test is used.
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vertex of this circuit can be deleted in the process.
Figures 7.1 and 7.2 show examples of rigid circuit graphs, the

vertices being numbered in such a way that successively suppressing
the next vertex in the numbering fulfills the test.

3 7 4

Fig. 7.1

We shall return to rigid circuit graphs in a moment, but at this
point we need to introduce a certain incidence matrix which can be
associated with an arbitrary graph &. We call this matrix the domi-
nant clique vs. vertex matrix. As will be obvious, it specifies & com-
pletely. Let gf be any graph. We can consider the family of all sets
of vertices which form cliques in 2^ and partially order these by set
inclusion. The maximal elements in this partial ordering will be
termed the dominant cliques of 5^. Since two vertices of & are
joined by an edge if and only if they belong to some dominant clique,
the dominant clique vs. vertex incidence matrix characterizes &.

Such incidence matrices for the graphs of Figs. 7.1 and 7.2 are
shown in Figs. 7.3 and 7.4, respectively.

1 2 3 4 5 6 7 8

"1 0 1 0 1 0 1 0'

0 1 0 1 0 1 1 0

0 0 0 0 1 0 1 1

0 0

1 2 3 4 5 6

"10 0 1 1 0 "

0 1 0 1 0 1

0 0 1 0 1 1

0o o o i i ij [o o o l l :
Fig. 7.3 Fig. 7.4

For rigid circuit graphs, the determination of the dominant cliques
can be carried out in conjunction with the test for the rigid circuit
property described above. Upon deleting a simplicial vertex, simply
list it together with its neighbors in the reduced graph. If the original
graph 2^ has n vertices, this yields a set of n cliques. The dominant
ones of these n cliques are the dominant cliques of 2^. For these are
certainly cliques of 2^. Moreover, if & is an arbitrary clique in 2^,
consider the first vertex of ^ which is deleted in the process. At
this stage we list a clique <g7/ that includes ^ .

The theory and methods we have developed for studying the con-
secutive Γs property can now be applied to interval graphs via Theorem
7.1 below.
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THEOREM 7.1. A graph <& is an interval graph if and only if
the dominant clique vs. vertex incidence matrix of gf has the con-
secutive Vs property.

Proof. Let D be the dominant clique vs. vertex incidence matrix
of gr, so arranged that the Γs in each column occur consecutively.
Suppose the first and last Γs in the j-th. column of D occur in posi-
tions fj and lj9 respectively. Then ^ is the intersection graph of the
intervals [/,- - 1, lj], j = 1,2, ---,n.

Conversely, let 5f be the intersection graph of a set of n (closed)
intervals Ij9 j = 1, 2, , n. Let the distinct endpoints el9 e2, , em

of these intervals be ordered so that e1 < e2 < < em. Then the m by
n incidence matrix A = (α^ ), defined by setting ai3- = 1 or 0 according
as et is or is not in I5, has consecutive Γs in each column. Moreover,
D is obtained from A by deleting rows. Hence D has the consecutive
Γs property.

The incidence matrix of Fig. 7.3 has the consecutive Γs property;
that of Fig. 7.4 does not. (A rearranged form of Fig. 7.3 is shown
in Fig. 7.5). Consequently the graph of Fig. 7.1 is an interval graph
(its "intervals" being displayed in Fig. 7.5), but that of Fig. 7.2 is not.

1

1

0

0

0

2

0

0

0

1

3

1

0

0

0

4

0

0

0

1

5
1

1

0

0

6

0

0

1

1

7
1

1

1

1

8

0

1

1

0

Fig. 7.5

8* Consecutive Γs and total unimodularity* A (0, l)-matrix
A is said to be totally unimodular [6] if each of its square submatrices
has determinant ± 1 or 0. It follows from known sufficient conditions
for the total unimodularity property that if A has the consecutive Γs
property, then A is totally unimodular [6]. This fact can also be proved
directly without difficulty by induction on the number of rows in a
square matrix having the consecutive Γs property. The total uni-
modularity property has significant implications in linear inequality
theory. In particular, if A is totally unimodular, and if 6 is a vector
having integral components, then the convex polyhedron defined by the
linear inequalities

Au > b ,
(8.1)
v } u^ 0

has all integral extreme points. That is, if u is an extreme solution
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of (8.1), then u has integral components. Consequently, the linear
program

An ^ b ,

(8.2) u ^ 0 ,

minimize c>u

always has integral solution vectors u, provided A is totally unimodular
and b is integral. In (8.2), c is a given real vector.

We can apply these facts and Theorem 7.1 to derive a certain
combinatorial duality theorem for interval graphs which, though similar
in some respects to known results about rigid circuit graphs [2, 4],
does not hold for the latter. To state this theorem, we first require
a definition. We shall say that a set of vertices in a graph & re-
presents all dominant cliques of %? provided each dominant clique
contains some vertex of the set. Our interest is in a minimum re-
presentation, that is, a set of vertices which represents all dominant
cliques and has minimum cardinality over all such sets.

THEOREM 8.1. Let 5f be an interval graph. Then the minimum
number of vertices of & required to represent all dominant cliques
is equal to the maximum number of dominant cliques that are
mutually disjoint.

Proof. Let D be the dominant clique vs. vertex incidence matrix
of &. In view of Theorem 7.1 and the preceding discussion, the prob-
lem of finding a minimum representation of dominant cliques can be
posed as that of solving the linear program

Du ^ 1 ,

(8.3) u ^ 0 ,

minimize l u .

Here 1 is a vector all of whose components are unity. The dual of
(8.3) is

Dτw ^ 1 ,

(8.4) w ^ 0 ,

maximize l w

Since D is totally unimodular, so is Dτ, and thus the program (8.4)
also has (0, l)-solution vectors w. Consequently (8.4) asks for the
maximum number of dominant cliques that are pairwise disjoint. Thus
Theorem 8.1 follows from the duality theorem for linear inequalities.

It can be seen similarly that if 5^ is an interval graph, then the
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maximum number of vertices, no two of which are in the same domi-
nant clique (i.e., the maximum number of vertices, no two of which
are joined by an edge) is equal to the minimum number of dominant
cliques that cover all vertices (i.e., the minimum number of cliques
that cover all vertices). This theorem is in fact known to be true
more generally for rigid circuit graphs [2,4]. But Theorem 8.1 is
false for rigid circuit graphs. The graph of Fig. 7.2 is a case in point,
since the minimum number of vertices required to represent all domi-
nant cliques is two, whereas the maximum number of mutually disjoint
dominant cliques is one.
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