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ON TWO-SIDED H*-ALGEBRAS

PARFENY P. SAWOROTNOW

We call a Banach algebra A, whose norm is a Hilbert
space norm, a two-sided H *-algebra if for each x€ A there
are elements z!, 2”7 in A such that (xy, 2) = (y, '2) and (yx, 2) =
(y, zx7) for all y,ze€ A, A two-sided H*-algebra is called
discrete is each right ideal R such that {x”" |rx€ R} = {x! | x € R}
contains an idempotent ¢ such that ¢ = ¢! = e, The purpose
of this paper is to obtain a structural characterization of those
two-sided H *-algebras M which consist of complex matrices
x= (2|1, jeJ) (J is any index set) for which
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converges, Here ¢; is realand 1 < ¢; < a for all 7 € J and some
real a. The inner product in M is

(x, ) = % 1i%:5Yi5ts
and
w7 = (ltdXii , xl = tiltdxsi .
Then every algebra M is discrete simple and proper (Mz =0
implies # = 0). Conversely every discrete simple and proper
two-sided H *-algebra is isomorphic to some algebra M, An

incidental result is that the radical of a two-sided H *-algebra
is the right (left) annihilator of the algebra.

In this paper we will refer to such an algebra M above as a
canonical algebra. We studied two-sided H*-algebras (and more general
algebras) in two previous papers [4, 5]. When 2" = 2! for all z in A
we have the H*-algebras of Ambrose [1] and if we omit z' we have
the right H*-algebra of Smiley [6]. Incidentally, in [4, Theorem 2]
we proved that a proper right H*-algebra is a two-sided H*-algebra.
So most of the theory of this paper applies to a right H*-Algebra.

Our proof of the main result (Theorem 4) uses the technique of
Ambrose [1] and the lemmas about existence of minimal two-sided
projections (Theorem 3 and Lemma 6).

The author is very grateful to the referee for his suggestions for
the improvement of the paper.

2. A general theorem. The following theorem may be of an
independent interest (compare with §2 in [1]).

THEOREM 1. The radical R of each two-sided H*-algebra A
Received July 2, 1964.
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coincides with both the right and left annihilator of the algebra.

Proof. Ax = 0 gives (zy, 2) = (x,2y") = &'z, y") =0 for all y,ze A
so that A = 0. Thus »(A4), the right annihilator or A, and I(4)
coincide. Now consider B = r(A)” which is easily seen to be a two-
sided H*-algebra which is proper in the sense that »(B) = I(B) = 0.
The proof of Theorem 3.1 of [1] shows that each nonzero ideal of B
contains a nonzero idempotent (see also [3], page 101). This means
that B N R = (0) since radical cannot contain idempotents [2, page 309];
thus R = r(4) = I(A4).

COROLLARY. The following conditions are equivalent in any two-
sided H*-algebra (each one of these conditions can be used to define
a proper algebra):

(i) r(4)=0

(ii) 4 =0

(iii) 2" 4s unique for each xec A

(iv) o' ts unique for each xe€ A

(v) A is semi-simple.

Proof. Equivalence of (i) and (iii) ((ii) and (iv)) can be established
as in the proof of Theorem 2.1 of [1].

3. Invariant ideals. Unless otherwise stated A will denote a
simple proper two-sided complex H*-algebra. Note that both involutions
(x— x" and x — ') in A are continuous (This follows from the closed

graph theorem).
LeMMA 1. If xz,ye A then (x,y) = (¥, ") = (¥, 2Y).

Proof. The set I of linear combinations of products of members
of A is dense in A (because I is a two-sided ideal). If z = uv for
some u,v€A then (x,y) = (uv,y) = (u, yv") = Y'u, v") = (¥', vu") =
@', 7). Hence (x, ¥) = (¥%, 2") (and similarly (z, ) = (¥, #)) holds if
xze I. The lemma now follows from the continuity of the involutions.

COROLLARY. If S is any subset of A, then S™ = S? and SY =
S* (as in [4] S® denoted the set of elements of A orthogonal to S
and S™ (S') denotes the image of S wunder the involution x-— x"
(x— ).

LemMmA 2. If B is a closed right (left) ideal of A, then U(B) =
B'rT — Bﬁl (T(B) — BZP — BPT).
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Proof. From (B™”B, A) = (B™®, AB")= A'B™®, B")=(B™, B)=0
we conclude that BB =0. Thus B”cCl(B). If xB=0, then
0= (xB, A) = (z, AB") = (A’z, B") = (Ax, B"), AxC B and z< B by
Lemma 1 of [6]. This simple means that I(B) c B™.

DEFINITION. An ideal I in A is said to be tnvariant if I' = I

LEMMA 3. A closed (right, left) ideal I in A 1is imvariant if
and only if I* is imvariant.

Proof. Direct verification: I* = I"* = I = I,

CoROLLARY. A closed right (left) ideal R (L) is tmwvariant if
and only if (R?) = UR)" (r(L*) = r(L)?).

DEFINITION. An idempotent in A which is both left and right
self-adjoint will be called a two-sided projection.

LEMMA 4. If ec A is a left projection and eA is invariant, then
e 18 a two-sided projection.

Proof. From Ae = Ae” we have e¢” = ¢ which shows that e"=e
also.

THEOREM 2. A proper two-sided H*-algebra A ts an H*-algebra
of and only if each closed right (left) ideal of A is invariant.

Proof. In view of the first structure theorem (Theorem 1 in [4]
we may assume (without loss of generality) that A is simple. Now
the condition of the theorem implies that each left projection is a
right projection (Lemma 4) an vice-versa. From this it is not difficult
to show that both involutions coincide. This could be done either by
proving the second structure theorem (Theorem 4.3 of [1]) or by
showing that the set S of all linear combinations of products of pro-
jections is dense in A (using the arguments in proofs of Lemma 8 in
[4] and Theorem 1 in [5] one can show that S is a two-sided ideal).

4, Finite-dimensional algebras.

LEMMA 5. For each right projection f in A there exist a left
projection ec A such that (e,f —e)=0 and ef = ¢, fe=f. If f is
minimal then e 1s minimal also. A similar statement holds for a
left projection.
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Proof. Consider the closed right ideal R = {x — fx |z € A} = r(f)
and write f=e¢ + u with ee R’, we R. Then by Lemma 2 in [4] e
is a left projection such that R? = ¢A and R = r(e) = {x€ A|ex = 0}.
Also (e, f—¢e)=1(e,u)=0, ef =¢e(e +u)=e and fe= f(f —u)=f.
If f is minimal then minimality of e follows from the fact that
Af = Ae.

REMARK. The algebra 4 in Lemma 5 does not have to be finite-
dimensional.

THEOREM 3. FEvery finite-dimensional proper two-sided H*-algebra
A contains a minimal two-sided projection.

Proof. We may assume that A is simple. By Lemma 5 there
exists a sequence {fi, fs ***, fu, -} of minimal right projections and
a sequence {e, €, *++,¢,, -} of minimal left projections such that
AP =le + | Fu — eull’s llenll” = [| fass I + |l €0 — fass |l (and e, f, =
€ny Juln = Suy €afurs = furry Fari€n =€) Also ||f || S || fill = || e.]| for
each n. By the Bolzano-Weierstrass theorem there exists a subsequence
{9:} of {f.} (for simplicity we write g, instead of f,) and some ge A
such that g =limg,. Then g is right self-adjoint and idempotent.
From

WA =1fi—ellf + e = LI + I fo— el + -«
+ 1o — el + llen — farslP + 1| fasaIP

and || fosi |l 2 [ fasrn |l = [l gl it follows that || f, — e, [|— 0. Therefore
g = lime, also and so g is left self-adjoint.
k

It remains to show that ¢ is minimal. If xe€ A then for each k
there exists a complex number A, such that g,xg, = N9, ([4], page 52
and [1], page 380). Then \,g; tends to gxg. From | N, | = Nl -l g:]l =
Ngwxgell S Nl gulFllell = 11917112 it follows that A, has a subsequence
converging to some complex number A. Then gxg = Ag and so gAg is
isomorphic to the complex number field, from which we may conclude
that g is minimal.

Later (corollary to Theorem 4) we will see that each finite-dimen-
sional proper simple two-sided H*-algebra is isomorphic to a canonical
algebra M. In fact each such an algebra is discrete in the sense of
the next definition.

5. Discrete algebras.,

DEFINITION. A two-sided H*-algebra A is said to be discrete if
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each invariant ideal in A contains an invariant ideal of the form eA
where ¢ is a left projection.

Because of Lemma 4 this definition is equivalent to the corre-
sponding definition in the introduction.

LEMMA 6. FEach tnvariant closed right ideal R in a discrete two-
stded H*-algebra A contains a minimal two-sided projection.

Proof. By Lemma 4 R contains a two-sided projection e. The
set eAe is a finite-dimensional proper two-sided H*-algebra included in
R. The lemma now follows from Theorem 3.

COROLLARY. Fach discrete proper two-sided H*-algebra A contains
a (maximal) family {g;} of mutually orthogonal minimal two-sided
projections such that A =3, g;.A = >, Ag; = 3, 9,Aq;.
7 3 .7

THEOREM 4. FEach simple discrete proper two-sided H*-algebra
A 1is isomorphic to a canonical algebra.

Proof. Consider the family {g;} of the last corollary and select
g:i € g;Ag; such that gi; = g5, 9:595 = gi and g;; = g; for each ¢, 5, k
(as in [1], page 381). Then the g;;’s are mutually orthogonal. We set
t=1lg:ll; then 1 <¢; for each ¢ and also || g;; [|* = (94:, 95:) = || 9: | = &
for each j (and a fixed 7). Also one can show that gj; = ¢7*#g;; (note
that (g.s, 9:5) = (9:i9%5, 9:) = (9%, 95;) and that g7; is a scalar multiple
of g;;). Let e;=t/t;'"g;;, then (e;, e:;;) = tit;, el = (t:/t;)e;; and
e5; = (t;/t;)e;;. The theorem now is easy to complete (see for example
the proof of Theorem 4.3 in [1]). Boundedness of the set {t;} follows
from continuity of the right involutions: take a fixed k¥ and consider
¥; = gix, then ||z || = 67 || g || = €708 and || 27| = 8.

COROLLARY. Fach finite-dimensional proper simple two-sided
H*-algebra ts isomorphic to a canonical algebra M for some finite
set J.

6. Remark on the algebra M. To complete the paper we show
that the canonical algebra M in the introduction is discrete. For each
k let e, be the matrix x;; = 6%0% (d%, 0% are Kronecker deltas). Then
{e:} is a maximal family of mutually orthogonal minimal two-sided
projections in M. Let R be an invariant closed right ideal in M. Let
e in {e,} be such that eR+ 0. Let R, = (eM)" = r(¢e); then R, =
RN (RN R)” is an invariant closed nonzero right ideal (note that
R, =0 would imply RC R, = r(e) since R, is the orthogonal comple-
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ment of R N R, relatively to R).

Suppose that R, is not minimal. Let ¢,, e, be two orthogonal left
projections in R,. Let x = ne, + pe. (A, ¢ are scalars) be such that
(x,e)=0. If 2¢ =0 then ex'=0 and so R, N R,+* 0 (note that
2! = Ne, + [e, belongs to R,). If xe # 0 then xzeM contains a left
projection e, ([4], Lemma 5), ¢; = xey for some ye M. Then (e, e) =
(wey, e) = (x, ey"e) = 0 (since ey’e is a scalar multiple of ¢) from which
it follows that e,e = 0 ((ese, e,¢) = (€3, €¢) = 0). But then ee, = 0 since ¢,
and ¢ are both left self-adjoint. So we see that also in this case
there exists a nonzero element z in B, N R,. But this implies 2z€ RN R,
and ze€ (RN R,)", which is impossible.

Thus R, is minimal and so it is of the form R, = gM for some
(minimal) left projection g.
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