ON TWO-SIDED H*-ALGEBRAS

PARFENY P. SAWOROTNOW

We call a Banach algebra A, whose norm is a Hilbert space norm, a two-sided H^* -algebra if for each $x \in A$ there are elements x^i , x^r in A such that $(xy, z) = (y, x^iz)$ and $(yx, z) = (y, zx^r)$ for all $y, z \in A$. A two-sided H^* -algebra is called discrete is each right ideal R such that $\{x^r \mid x \in R\} = \{x^l \mid x \in R\}$ contains an idempotent e such that $e^r = e^l = e$. The purpose of this paper is to obtain a structural characterization of those two-sided H^* -algebras M which consist of complex matrices $x = (x_{ij} \mid i, j \in J)$ (J is any index set) for which

$$\sum_{i,j} t_i \mid x_{ij} \mid^2 t_j$$

converges. Here t_i is real and $1 \le t_i \le a$ for all $i \in J$ and some real a. The inner product in M is

$$(x, y) = \sum\limits_{i,j} t_i x_{ij} \bar{y}_{ij} t_j$$

and

$$x_{ij}^r = (t_i/t_j)ar{x}_{ji}$$
 , $x_{ij}^l = (t_j/t_i)ar{x}_{ji}$.

Then every algebra M is discrete simple and proper (Mx=0) implies x=0). Conversely every discrete simple and proper two-sided H^* -algebra is isomorphic to some algebra M. An incidental result is that the radical of a two-sided H^* -algebra is the right (left) annihilator of the algebra.

In this paper we will refer to such an algebra M above as a canonical algebra. We studied two-sided H^* -algebras (and more general algebras) in two previous papers [4, 5]. When $x^r = x^l$ for all x in A we have the H^* -algebras of Ambrose [1] and if we omit x^l we have the right H^* -algebra of Smiley [6]. Incidentally, in [4, Theorem 2] we proved that a proper right H^* -algebra is a two-sided H^* -algebra. So most of the theory of this paper applies to a right H^* -Algebra.

Our proof of the main result (Theorem 4) uses the technique of Ambrose [1] and the lemmas about existence of minimal two-sided projections (Theorem 3 and Lemma 6).

The author is very grateful to the referee for his suggestions for the improvement of the paper.

2. A general theorem. The following theorem may be of an independent interest (compare with § 2 in [1]).

THEOREM 1. The radical \Re of each two-sided H*-algebra A

Received July 2, 1964.

coincides with both the right and left annihilator of the algebra.

Proof. Ax=0 gives $(xy,z)=(x,zy^r)=(z^lx,y^r)=0$ for all $y,z\in A$ so that xA=0. Thus r(A), the right annihilator or A, and l(A) coincide. Now consider $B=r(A)^p$ which is easily seen to be a two-sided H^* -algebra which is proper in the sense that r(B)=l(B)=0. The proof of Theorem 3.1 of [1] shows that each nonzero ideal of B contains a nonzero idempotent (see also [3], page 101). This means that $B\cap\Re=(0)$ since radical cannot contain idempotents [2, page 309]; thus $\Re=r(A)=l(A)$.

COROLLARY. The following conditions are equivalent in any twosided H^* -algebra (each one of these conditions can be used to define a proper algebra):

- (i) r(A) = 0
- (ii) l(A) = 0
- (iii) x^r is unique for each $x \in A$
- (iv) x^i is unique for each $x \in A$
- (v) A is semi-simple.

Proof. Equivalence of (i) and (iii) ((ii) and (iv)) can be established as in the proof of Theorem 2.1 of [1].

3. Invariant ideals. Unless otherwise stated A will denote a simple proper two-sided complex H^* -algebra. Note that both involutions $(x \to x^r \text{ and } x \to x^i)$ in A are continuous (This follows from the closed graph theorem).

LEMMA 1. If
$$x, y \in A$$
 then $(x, y) = (y^{l}, x^{r}) = (y^{r}, x^{l})$.

Proof. The set I of linear combinations of products of members of A is dense in A (because I is a two-sided ideal). If x = uv for some $u, v \in A$ then $(x, y) = (uv, y) = (u, yv^r) = (y^lu, v^r) = (y^l, v^ru^r) = (y^l, x^r)$. Hence $(x, y) = (y^l, x^r)$ (and similarly $(x, y) = (y^r, x^l)$) holds if $x \in I$. The lemma now follows from the continuity of the involutions.

COROLLARY. If S is any subset of A, then $S^{rp} = S^{pl}$ and $S^{lp} = S^{pr}$ (as in [4] S^p denoted the set of elements of A orthogonal to S and S^r (S^l) denotes the image of S under the involution $x \to x^r$ $(x \to x^l)$).

LEMMA 2. If B is a closed right (left) ideal of A, then $l(B) = B^{rp} = B^{pl}$ $(r(B) = B^{lp} = B^{pr})$.

Proof. From $(B^{rp}B, A) = (B^{rp}, AB^r) = A^lB^{rp}, B^r) = (B^{rp}, B^r) = 0$ we conclude that $B^{rp}B = 0$. Thus $B^{rp} \subset l(B)$. If xB = 0, then $0 = (xB, A) = (x, AB^r) = (A^lx, B^r) = (Ax, B^r), Ax \subset B^{rp}$ and $x \in B^{rp}$ by Lemma 1 of [6]. This simple means that $l(B) \subset B^{rp}$.

DEFINITION. An ideal I in A is said to be invariant if $I^r = I^l$.

LEMMA 3. A closed (right, left) ideal I in A is invariant if and only if I^p is invariant.

Proof. Direct verification: $I^{pl} = I^{rp} = I^{lp} = I^{pr}$.

COROLLARY. A closed right (left) ideal R (L) is invariant if and only if $l(R^p) = l(R)^p$ ($r(L^p) = r(L)^p$).

DEFINITION. An idempotent in A which is both left and right self-adjoint will be called a two-sided projection.

LEMMA 4. If $e \in A$ is a left projection and eA is invariant, then e is a two-sided projection.

Proof. From $Ae = Ae^r$ we have $ee^r = e$ which shows that $e^r = e$ also.

THEOREM 2. A proper two-sided H^* -algebra A is an H^* -algebra if and only if each closed right (left) ideal of A is invariant.

Proof. In view of the first structure theorem (Theorem 1 in [4] we may assume (without loss of generality) that A is simple. Now the condition of the theorem implies that each left projection is a right projection (Lemma 4) an vice-versa. From this it is not difficult to show that both involutions coincide. This could be done either by proving the second structure theorem (Theorem 4.3 of [1]) or by showing that the set S of all linear combinations of products of projections is dense in A (using the arguments in proofs of Lemma 8 in [4] and Theorem 1 in [5] one can show that S is a two-sided ideal).

4. Finite-dimensional algebras.

LEMMA 5. For each right projection f in A there exist a left projection $e \in A$ such that (e, f - e) = 0 and ef = e, fe = f. If f is minimal then e is minimal also. A similar statement holds for a left projection.

Proof. Consider the closed right ideal $R = \{x - fx \mid x \in A\} = r(f)$ and write f = e + u with $e \in R^p$, $u \in R$. Then by Lemma 2 in [4] e is a left projection such that $R^p = eA$ and $R = r(e) = \{x \in A \mid ex = 0\}$. Also (e, f - e) = (e, u) = 0, ef = e(e + u) = e and fe = f(f - u) = f. If f is minimal then minimality of e follows from the fact that Af = Ae.

REMARK. The algebra A in Lemma 5 does not have to be finite-dimensional.

THEOREM 3. Every finite-dimensional proper two-sided H^* -algebra A contains a minimal two-sided projection.

Proof. We may assume that A is simple. By Lemma 5 there exists a sequence $\{f_1,f_2,\cdots,f_n,\cdots\}$ of minimal right projections and a sequence $\{e_1,e_2,\cdots,e_n,\cdots\}$ of minimal left projections such that $||f_n||^2=||e_n||^2+||f_n-e_n||^2, ||e_n||^2=||f_{n+1}||^2+||e_n-f_{n+1}||^2$ (and $e_nf_n=e_n, f_ne_n=f_n, e_nf_{n+1}=f_{n+1}, f_{n+1}e_n=e_n$) Also $||f_n||\leq ||f_1||\geq ||e_n||$ for each n. By the Bolzano-Weierstrass theorem there exists a subsequence $\{g_k\}$ of $\{f_n\}$ (for simplicity we write g_k instead of f_{n_k}) and some $g\in A$ such that $g=\lim g_k$. Then g is right self-adjoint and idempotent. From

$$||f_1||^2 = ||f_1 - e_1||^2 + ||e_1 - f_2||^2 + ||f_2 - e_2||^2 + \cdots + ||f_n - e_n||^2 + ||e_n - f_{n+1}||^2 + ||f_{n+1}||^2$$

and $||f_{n+1}|| \ge ||f_{n+p}|| \ge ||g||$ it follows that $||f_n - e_n|| \to 0$. Therefore $g = \lim_{n \to \infty} e_{n_k}$ also and so g is left self-adjoint.

It remains to show that g is minimal. If $x \in A$ then for each k there exists a complex number λ_k such that $g_k x g_k = \lambda_k g_k$ ([4], page 52 and [1], page 380). Then $\lambda_k g_k$ tends to gxg. From $|\lambda_k| \leq |\lambda_k| \cdot ||g_k|| = ||g_k x g_k|| \leq ||g_k||^2 ||x|| \leq ||g_1||^2 ||x||$ it follows that λ_k has a subsequence converging to some complex number λ . Then $gxg = \lambda g$ and so gAg is isomorphic to the complex number field, from which we may conclude that g is minimal.

Later (corollary to Theorem 4) we will see that each finite-dimensional proper simple two-sided H^* -algebra is isomorphic to a canonical algebra M. In fact each such an algebra is discrete in the sense of the next definition.

5. Discrete algebras.

DEFINITION. A two-sided H^* -algebra A is said to be discrete if

each invariant ideal in A contains an invariant ideal of the form eA where e is a left projection.

Because of Lemma 4 this definition is equivalent to the corresponding definition in the introduction.

Lemma 6. Each invariant closed right ideal R in a discrete two-sided H^* -algebra A contains a minimal two-sided projection.

Proof. By Lemma 4 R contains a two-sided projection e. The set eAe is a finite-dimensional proper two-sided H^* -algebra included in R. The lemma now follows from Theorem 3.

COROLLARY. Each discrete proper two-sided H*-algebra A contains a (maximal) family $\{g_i\}$ of mutually orthogonal minimal two-sided projections such that $A = \sum_i g_i A = \sum_i A g_i = \sum_i g_i A g_i$.

Theorem 4. Each simple discrete proper two-sided H^* -algebra A is isomorphic to a canonical algebra.

Proof. Consider the family $\{g_i\}$ of the last corollary and select $g_{ij} \in g_i A g_j$ such that $g_{ij}^l = g_{ji}$, $g_{ij} g_{jk} = g_{ik}$ and $g_{ii} = g_i$ for each i, j, k (as in [1], page 381). Then the g_{ij} 's are mutually orthogonal. We set $t_i = ||g_i||$; then $1 \leq t_i$ for each i and also $||g_{ji}||^2 = (g_{ji}, g_{ji}) = ||g_i||^2 = t_i^2$ for each j (and a fixed i). Also one can show that $g_{ij}^r = t_i^{-2} t_j^2 g_{ji}$ (note that $(g_{ij}, g_{ij}) = (g_{ij} g_{ij}^r, g_{ii}) = (g_{ij}^r, g_{ji})$ and that g_{ij}^r is a scalar multiple of g_{ji}). Let $e_{ij} = t_i^{l/2} t_j^{-1/2} g_{ij}$, then $(e_{ij}, e_{ij}) = t_i t_j$, $e_{ij}^l = (t_i/t_j) e_{ji}$ and $e_{ij}^r = (t_j/t_i) e_{ji}$. The theorem now is easy to complete (see for example the proof of Theorem 4.3 in [1]). Boundedness of the set $\{t_i\}$ follows from continuity of the right involutions: take a fixed k and consider $x_i = g_{ik}^r$, then $||x_i|| = t_i^{-2} t_k^2 ||g_{ki}|| = t_i^{-1} t_k^2$ and $||x_i^r|| = t_k$.

COROLLARY. Each finite-dimensional proper simple two-sided H^* -algebra is isomorphic to a canonical algebra M for some finite set J.

6. Remark on the algebra M. To complete the paper we show that the canonical algebra M in the introduction is discrete. For each k let e_k be the matrix $x_{ij} = \delta_i^k \delta_j^k$ (δ_i^k , δ_j^k are Kronecker deltas). Then $\{e_k\}$ is a maximal family of mutually orthogonal minimal two-sided projections in M. Let R be an invariant closed right ideal in M. Let e in $\{e_k\}$ be such that $eR \neq 0$. Let $R_1 = (eM)^p = r(e)$; then $R_2 = R \cap (R \cap R_1)^p$ is an invariant closed nonzero right ideal (note that $R_2 = 0$ would imply $R \subset R_1 = r(e)$ since R_2 is the orthogonal comple-

ment of $R \cap R_1$ relatively to R).

Suppose that R_2 is not minimal. Let e_1 , e_2 be two orthogonal left projections in R_2 . Let $x=\lambda e_1+\mu e_2$ (λ,μ) are scalars) be such that (x,e)=0. If xe=0 then $ex^l=0$ and so $R_1\cap R_2\neq 0$ (note that $x^l=\overline{\lambda}e_1+\overline{\mu}e_2$ belongs to R_2). If $xe\neq 0$ then xeM contains a left projection e_3 ([4], Lemma 5), $e_3=xey$ for some $y\in M$. Then $(e_3,e)=(xey,e)=(x,ey^re)=0$ (since ey^re is a scalar multiple of e) from which it follows that $e_3e=0$ ($(e_3e,e_3e)=(e_3,e)=0$). But then $ee_3=0$ since e_3 and e are both left self-adjoint. So we see that also in this case there exists a nonzero element z in $R_2\cap R_1$. But this implies $z\in R\cap R_1$ and $z\in (R\cap R_1)^p$, which is impossible.

Thus R_2 is minimal and so it is of the form $R_2 = gM$ for some (minimal) left projection g.

BIBLIOGRAPHY

- 1. W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386.
- 2. N. Jacobson, The radical and semi-simplicity for arbitrary rings, Amer. J. Math. 67 (1945), 300-320.
- 3. L. H. Loomis, An introduction to abstract harmonic analysis, New York, 1953.
- 4. P. P. Saworotnow, On a generalization of the notion of an H*-algebra, Proc. Amer. Math. Soc. 8 (1957), 49-55.
- 5. ———, On the imbedding of a right H*-algebra into Ambrose's H*-algebra, Proc. Amer. Math. Soc. 8 (1957), 56-62.
- 6. M. F. Smiley, Right H*-algebras, Proc. Amer. Math. Soc. 4 (1953), 1-4.

THE CATHOLIC UNIVERSITY OF AMERICA