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A CHARACTERIZATION OF THE GROUP
ALGEBRAS OF FINITE GROUPS

MARC A. RIEFFEL

The following is proved:

MAIN THEOREM. Let A be a finite dimensional
Archemedian lattice ordered algebra which satisfies the
following axioms:

MO If f,g,he A, and if / ^ 0, then
(1) Mgvh)= v{/i*flr+ /,<*: /Ί^O, Λ^O,
(r) (gvh)*f= V{flτ*/i + A*/2: /i ^ 0, /, ^ 0,
P If /, g e A, and if / > 0, g > 0, then f*g > 0.

Then there exists a finite group G such that A is order and
algebra isomorphic to the group algebra of G.

Some similar results are obtained for finite semigroups, and
a few applications of these results are given. In particular
it is shown that the second cohomology group, H2(S, R)9 of
any finite commutative semigroup, S, with coefficients in the
additive group of real numbers, R, is trivial.

It is well known that two nonisomorphic finite groups can have
isomorphic group algebras (over the real or complex numbers) (see
e.g. [5, p. 305]). On the other hand, Kawada [4] has shown that if
the group algebra is considered as an ordered algebra (with the usual
partial ordering obtained by viewing its elements as functions on the
group), then if the group algebras of two groups are order as well
as algebraically isomorphic, then the two groups are isomorphic (in fact
Kawada proved this for the much more general case of locally com-
pact groups). In view of this result it is natural to try to characterize
those ordered algebras which occur as the group algebras of finite
groups. In this paper we prove the characterization stated above.

All of our results are stated for ordered algebras over the real
numbers, but with trivial modifications they apply to ordered algebras
over the complex numbers. We will always denote the product of two
elements, / and g, of an algebra by f*g.

As we will indicate in § 2, a finite dimensional Archemedian lattice
ordered vector space is always boundedly lattice complete, so the right
hand sides of MOi and MOr always exist.

It follows, of course, from Kawada's result that G in the Main
Theorem is unique to within isomorphism.

In § 1 we will give some motivation for axiom MO.
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Hewitt and Zuckerman [3, Theorem 4.2.4] have extended Kawada's
result to the convolution algebras of finite semigroups. It is thus
natural to try to characterize those ordered algebras which occur as
the convolution algebras of finite semigroups. Unfortunately no ana-
logue of axiom MO seems to hold in this case, and instead we have
imposed an axiom which seems to us to be somewhat more artificial
than axiom MO. Even then we are successful only in the com-
mutative case (see Corollary 5.11) though we come close in the non-
commutative case.

Finally, in § 6 we give several applications of some of our results.
We prove here that H\S, R) = 0 for a finite commutative semigroup,
S, and we give an example to show that this need not be true for
noncommutative semigroups. The existence of such examples lies at
the heart of our difficulties in characterizing the convolution algebras
of noncommutative semigroups. However even for noncommutative
finite semigroups we do show that there is a canonical way of choosing
cocycle representatives for the elements of H2(S, R), which gives a
convenient way of computing H2(S, R).

Throughout our paper we will use the following notation. Instead
of writing "finite dimensional Archemedian lattice ordered algebra" we
will write "FDALO algebra". If A and B are two ordered algebras,
we will write A = B to mean that A and B are order as well as
algebraically isomorphic. If S is a finite semigroup (or group), L(S)
will denote its convolution algebra. There are two equivalent ways of
defining the convolution algebra of a semigroup. It can be defined to
be the vector space of real-valued functions on the semigroup, with
convolution as multiplication, or it can be defined to be the algebra
of formal linear combinations of elements in S with coefficients in the
real numbers, R. We will use both definitions interchangeably, as
each has certain advantages. In particular the second is functorial,
whereas the first is not.

We are indebted to Calvin C. Moore for bringing to our attention
the relevance of the cohomology theory of groups to our work.

1* Axiom MO* We will discuss only axiom M.OI, an entirely
parallel discussion applying to MOr. In §4 we will see that the two
axioms are independent.

Our motivation for conjecturing axiom MO is the Riesz decompo-
sition of a linear functional on a partially ordered vector space into
its positive and negative parts (see e.g. [2, p. 38]). For if we let
h = 0 in MOΪ we obtain

1.1 f*g+= V{/i*flr: 0 ^ / ^

Further, in view of the relation
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g V h = h + (g - h)+ ,

axiom M.OI is entirely equivalent to 1.1, for

+ V {/>($ - Λ): 0 ̂  Λ ̂  /}

ff + /2*Λ: Λ ̂  0, /2 ̂  0, Λ + Λ = /} .

Now if we consider the operator on A consisting of multiplying ele-
ments of A on the right by g, we see that 1.1 is a formula for the
positive part of this operator, which is exactly the analogue of the
Riesz formula for the positive part of a linear functional.

We now show that axiom M.OI holds in the group algebra of any
finite group.

LEMMA 1.2. Let A be any boundedly lattice complete lattice
ordered algebra. If f, g,he A and if f ^ 0 then

1.3 f*(gvh)^ V{f*g + Mh: f^O, f2 ^ 0, Λ + Λ=f}.

Proof. We note that the right hand side always exists since for
such fx and f2

fi*9 + fι*h ^ / * | f l f | + f * \ h \ .

As indicated in the discussion above it is sufficient to show that

But this is clear from the fact that if 0 g fx ^ /, then

fi*ΰ = fi*g+ — fi*g~ ^ fi*g+ ^ / * # + .

PROPOSITION 1.4. If G is a finite group then L(G) satisfies axiom
MO.

Proof. It is clear that L(G) is boundedly lattice complete so that
Lemma 1.2 applies. Then, as indicated above, it is sufficient to show
that if /, g e A and if / ̂  0 then

1.5 f*g+ ^ V{/i*flr: O ^ Λ ^ / } .

Now for any t e G define an element, fu of L(G) by

(/(s) if g(8-H) ̂  0

0 if g(s-H) < 0 .
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Then it is clear that 0 ^ / ^ / . Furthermore it is trivial to check
that (ft*g)(t) = (f*g+)(t), and 1.5 follows immediately.

2* Pure elements* We now begin the proof of the Main Theorem.

The first fact which we will need is that any Archemedian vector
lattice of finite dimension n is order and vector space isomorphic to Rn,
the n-told Cartesian product of real lines, with the usual product partial
order (see [1, p. 240] where this fact is attributed to M. Mannos; see also
[2, p. 39]). As a first consequence, any finite dimensional Archemedian
vector lattice is boundedly lattice complete. In particular, as in Lemma
1.2 the right hand sides of axiom MO always exist.

Now if the group algebra, L(G), of a finite group, G, is viewed
as the algebra of formal linear combinations of elements of G, then
there is a natural embedding of G into L(G). Under this embedding
the elements of G become elements of L(G) of the following type.

DEFINITION 2.1. An element, /, of a partially ordered vector
space is said to be pure if / > 0 and if whenever f^g^O it follows
that g — af for some real number α.

Then if we wish to find a group associated with an algebra satisfying
the conditions of the Main Theorem we would hope in some way to
find its elements among the pure elements of A. Now it is clear that
in Rn the pure elements are exactly the positive elements all but one
of whose coordinates are zero. Since A is isomorphic as a vector lattice
to Rn it follows that A has a sufficient number of pure elements, in
the sense that we can choose a basis for A consisting of pure ele-
ments, or, more generally, given any family of linearly independent
pure elements of A it can be extended to a basis for A by adjoining
pure elements.

Now if A is to be isomorphic to a group algebra, it should be the
case that the product of pure elements of A is pure. We now show
that this is implied by either of axioms MOΪ or MOr in the presence
of axiom P. We will actually prove this only for axiom MOί, but of
course an entirely parallel discussion applies to axiom MOr.

LEMMA 2.2. Let A be a lattice ordered algebra satisfying axiom
MOi. Then if f is a pure element of A it follows that for any
g,heA

2.3 f*(g vh) = (f*g) V (/*&)

and

2.4 /*(0ΛΛ)
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that is, left multiplication by f is a lattice homomorphism.

Proof. If /I + f2 — f where f ^ 0, /2 Ξ> 0 then since / is pure
there is a real number, a, 0 ̂  a S 1, such /i == af and /2 = (1 — a)f.
Then

/*(# v h) = V{α/*£ + (1 - α)/*ft: 0 ̂  α ̂  1}

^ V{α[(/*flr) V (/*Λ)] + (1 - a)[(f*g) V (/*ft)]: 0 ̂  α ̂  1}

= (/*flO V {f*h)Sf*{g V i ) ,

and 2.3 follows. Then 2.4 follows from the relation

g Λh = - [ (-0) V(-λ)] .

We remark that if A satisfies all the hypotheses of the Main
Theorem, in particular both axioms M.OI and MOr, then it can be
shown that property 2.3 characterizes the pure elements of A. In the
absence of either axiom M.OI or MOr we have examples to show that
this is no longer true.

PROPOSITION 2.5. Let A be a FDALO algebra satisfying axioms
MOi and P. Then the product of pure elements is pure.

Proof. Suppose that for two (possibly equal) pure elements / and
/i of A it happens that /*/i is not pure, so that /*/i = g0 + g1 where
#o Λ 0i = 0, g0 > 0 and ̂  > 0. Let the dimension of i be %, and let
fn φ"yfn be pure elements of A such that fu "',fn forms a basis
for A. This can be done according to the remarks following Definition
2.1. Let gk = f*fk for k = 2, •••,%. Then by axiom P each flrfc > 0.
Since 4̂. is of dimension w, g0, , gn can not be linearly independent.
Then g0, °',gn can not be mutually disjoint, for if they were, that
is, if g{ A g, = 0 for i Φ j , then a routine argument would show that
they were linearly independent. Thus (/*/<) Λ (/*/y) ^ 0 for some
i, j , i Φ j . But by Lemma 2.2 (/*/,) Λ (/*/,•) = /* (/, Λ fs) = /* 0 - 0,
and so we have a contradiction.

DEFINITION 2.6. An ordered algebra A will be said to satisfy
axiom Q if the products of pure elements of A are pure.

The next step in our proof of the Main Theorem is to investigate
the FDALO algebras which satisfy axiom Q. Since it is easily seen
that the convolution algebra of any finite semigroup is such an alge-
bra, we can expect this investigation to lead towards characterization
of these convolution algebras.

3* Cocycles* Let A be a FDALO algebra of dimension n, which
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satisfies axiom Q, and let E be the set of pure elements of A. Then
axiom Q says that E is closed with respect to the multiplication in
A and so forms a semigroup. Further, the group R + of positive real
numbers under multiplication acts on E, and the action is compatible
with the multiplication in E so that the quotient, S — EjR+, is again
a semigroup. The elements of S are just the semirays of pure elements
in A, and, from the fact that A is isomorphic as a vector lattice to
Rn, it is clear that there are exactly n such semirays, so that S is
a finite semigroup of order n. We might hope that A would be iso-
morphic to the convolution algebra of S. To show this it would
be sufficient to show that for each element of S, that is, for each
equivalence class of elements of E, we can pick a representative in E
such that this set of representatives is closed under multiplication. It
turns out that this can not always be done, and the investigation of
when it can be done is most conveniently viewed as a problem in
cohomology with coefficients in R+. For completeness we will now
define the concepts from cohomology theory which we will need.

Let S be a finite semigroup (as always, we do not assume that
it has a unit element). For any positive integer n, by a (positive)
w-eoehain we will mean any function on S* with values in R+. The
w-cochains form a group, Cn(S, R+), under pointwise multiplication. By
a 2-cocycle we mean any element, z, of C2(S,R+) which satisfies the
"cocycle identity"

3.1 z(r8, t)z(r, s) = z(r, st)z(s, t) .

The 2-cocycles form a subgroup, Z2(S,R+), of C2(S,R+). Given any
1-cochain, c, the coboundary, dc, of c is defined to be the 2-cochain

dc(s, t) = c(s)c(t)/c(st) .

It is easily checked that coboundaries are cocycles, and that d is a group
homomorphism of C\S,R+) into Z2(S,R+), so that the coboundaries
form a subgroup, B2(S,R+), of Z2(S,R+). The factor group,

H2(S,R+) = Z2(S, R+)/B2(S, R+) ,

is the second cohomology group of S with coefficients in R+. The
second cohomology group is a functor on the category of finite semi-
groups and their homomorphisms.

If S is a finite semigroup and if ze Z2(S, R+), then, as usual, one
can define an algebra, zT(S), the 2-twisted algebra over S, as follows:
the elements of S will form a basis for zT(S) over R, and the product
in zT(S), s*zt, or if no confusion arises, just s*ί, of two of these
basis elements, s and t, is defined by



CHARACTERIZATION OF THE GROUP ALGEBRAS 353

3.2 s*βt = z(s,t)8t

where st is the product of s and t in S. This product extends by
linearity to a product in all of zT(S). Alternatively we can define
zT(S) to be the vector space of real-valued functions on S with mul-
tiplication defined by the twisted convolution

(/* .£)(«) = Σ Mr, s)f(r)g(s): rs = t ) .

The fact that z satisfies the cocycle identity is exactly what is
needed to ensure that the product in zT(S) is associative. With the
obvious partial ordering it is easily seen that any such twisted algebra
is a FDALO algebra which satisfies axiom Q. The ordinary convolution
algebra of a semigroup is just the ^-twisted algebra for which 3 = 1 .

In view of these remarks it is reasonable to try to show that any
FDALO algebra satisfying axiom Q is isomorphic to a twisted algebra
over some finite semigroup. We now show that this is true.

THEOREM 3.3. Let A be a FDALO algebra satisfying axiom Q.
Then there exists a finite semigroup, S, and a ze Z2(S, R+) such
that A ^ zT(S).

Proof. Let S — E/R + as defined at the beginning of this section.
If / is any element of E, we will denote by / the corresponding ele-
ment of S = E/R+. For each element / of S choose a representative
for / in E. We denote this representative by (/)„ or just /0. For
any two elements / and g of S with representatives /„ and gQi the
element fo*go will be a representative of the element fg of S, and so
is some multiple of (fg)0. We define the cochain z to be this multiple,
that is, z is defined by the relation

3.4 fo*go = z(f,g)(fg)o .

T h e c o c h a i n z d e f i n e d b y 3 . 4 i s a c o c y c l e , f o r g i v e n a n y f , g , h e G

*(f, 3)z(fg, h)[(fg)h]0 = z(f, g)[(fg)0*h0] = (fo*gQ)*ho.

Similarly, associating the other way,

so that z satisfies the cocycle identity.
We must now show that A = zT(S). We define a linear map,

JP, of zT(S) into A as follows. The elements of S form a basis for
zT(S). We define F on this basis by

F(f) = (7)0 for each fe S,



354 MARC A. RIEFFEL

and we extend F to all of zT(S) by linearity. We now show that F
is an order and algebra isomorphism of zT(S) onto A.

Since as / ranges over S the (f)0 are mutually disjoint, they are
linearly independent and so form a basis for A. Thus F is bijective.

That F is an order isomorphism follows by a routine argument
using the fact that the elements of S and the (/)„ form bases of
mutually disjoint positive elements for zT(S) and A respectively.

Finally, to show that F is an algebra isomorphism it is sufficient
to show that

W * A) = F(f) * F{g) for all /, g e S.

But

F(f*.g) - F(z(f, g)fg) - z(f, g)(fg)Q = /0*flr0 - F{f)*F(g) .

This concludes the proof of Theorem 3.3.

We now show that the isomorphism classes of twisted algebras
over a fixed semigroup, Sy depend only on the cohomology classes
of the cocycles involved (we will consider the converse question in
Theorem 6.5).

PROPOSITION 3.5. Let S be a finite semigroup, and let w,
ze Z2(S, R+). Suppose also that w and z are homologous, that is,
z = (dc)w for some ce C%S, R+). Then wT(S) = zT(S).

Proof. We define a linear map, F, of zT(S) into wT(S) as
follows. The algebra zT(S) has as a basis the elements of S. We
define F on this basis by

F(S) - 0(8)8

where we view c(s)s as an element of wT(S), and we extend F to all
of zT(S) by linearity. As in the proof of Theorem 3.3 it is evident
that F is bijective and is an order isomorphism. All that remains to
be shown is that F is multiplicative, and it is sufficient to show this
on the basis of zT(S) consisting of the elements of S. Given s,teS,

F(s*zt) = z(s, t)F(st) = [(dc)w](s, t)c(st)st

= [c(s)c(t)/c(st)]w(sy t)c(st)st

= w(s, t)c(s)c(t)st = F(s)*wF(t) .

4* Cancellation laws* Continuing the proof of the Main
Theorem, we show that if the algebra A satisfies axiom MOΪ (resp.
MOr) then the semigroup £ found in Theorem 3.3 must satisfy the
left (resp. right) cancellation law.
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PROPOSITION 4.1. Let S be a finite semigroup, and let
zeZ\S, R+). Then zT{S) satisfies axiom MOΪ (resp. MOr) if and
only if S satisfies the left (resp. right) cancellation law.

Proof. Even if S does not satisfy a cancellation law, Lemma 1.2
applies so that zT{S) satisfies inequality 1.3.

Suppose that S satisfies the left cancellation law. As indicated in
§ 1 we need only show that if f,gezT(S) and if / ^ 0, then

4.2 /*,</+ ^ V{Λ*.g: 0 ^ / ^ / } .

Now the left cancellation law implies that for any two elements, s, t,
of S there is at most one reS such that sr — t (and, of course, the
finiteness of S then implies that such an r exists). Thus the following
definition makes sense: for each te S define an element, ft, of zT(S) by

j f(s) if g(r) ̂  0 where sr = t
ft(s) - j Q . f ^ < Q w h e r e s r = t ̂

Then it is clear that 0 ̂  ft g / and it is trivial to check that
(ft*g)(t) = (f*g+)(t). Inequally 4.2 follows immediately.

Conversely, suppose that the left cancellation law does not hold
in S, so that we can find ru r2, se S such that srx ~ sr2 but rλ Φ r2.
Assume that rx and r2 are ordered so that z{s,r^) ̂  z(s,r2). Let f=s
and g = rx — r2. Then g+ = r1 so that f*g+ — z($, r^sr^ whereas it
is easily checked that

V{/i*flr: 0 ̂  Λ g /} - [ φ , n) - «(β, r 2)>n

so that inequality 4.2 fails.
A parallel argument applies to axiom MOr.

It is then clear that if we apply Theorem 3.3 to the algebra A
of the Main Theorem, the finite semigroup, S, found in Theorem 3.3
satisfies both the left and right cancellation laws and so is a group.

The remaining step in the proof of the Main Theorem is to show
that the cocycle, z, found in Theorem 3.3 is a coboundary if A satisfies
either axiom MO? or MOr. We do this by showing that if S is a
finite semigroup satisfying either the left or right cancellation law
then every positive 2-cocycle on S is a coboundary.

PROPOSITION 4.3. If S is a finite semigroup satisfying the left
or right cancellation law then H2(S,R+) = {1}.

Proof. We show that the usual averaging argument for groups
(we are indebted to C. C. Moore for bringing this argument to our
attention) works even in this case.
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Suppose that S satisfies the left cancellation law, and that
z e Z\S, R+). Define c e C\S, R+) by

φ ) = Π{z(8,r):reS} .

Then

dc(s, t) = [Πrz(s, r)Πrz(t, r)]/Πrz(st, r)

= Πr{[z(s, r)z(t, r)z(s, t)]/φί, r)z(s, t)}

= Πr{[z(s, r)z(t, r)z(s, t)]/z(s, tr)z(t, r)}

= [z(8, t)]*ΠM*, r)/z(8, tr)} ,

where n is the order of S. Now the left cancellation law and the
finiteness of S imply that as r ranges over S so does tr for fixed t.
Thus

Πrz(s, tr) = Πrz(s, r)

so that dc(s, t) = [z(s, t)]n. Then if we define a new 1-cochain, c', by
c'(t) — [c(t)]lln, since d is a homomorphism it is clear that dc'(s, t) —
z(s, t) as desired.

A parallel argument applies for the right cancellation law except
that c must be defined by

φ ) = Πrz{r, s) .

We now obtain.

THEOREM 4.4. Let A be a FDALO algebra satisfying axiom
M.OI (resp. MOr) and axiom P. Then there exists a finite semi-
group, S, satisfying the left (resp. right) cancellation law such that
A s L(S).

Proof. By Theorem 3.3 there exists a finite semigroup S and a
ze Z2(S, R+) such that A = zT(S). By Proposition 4.1 the semigroup
S satisfies the left (resp. right) cancellation law. By Proposition 4.3
z is homologous to 1, and so by Proposition 3.5 zT(S) ~ L(S). Thus
A s L(S).

The Main Theorem is an immediate corollary of Theorem 4.4
and Proposition 4.1.

5* Semigroups* One way of viewing the Main Theorem is as
follows. It says that if a FDALO algebra satisfying axiom Q also
satisfies axiom MO then it is possible to choose a (necessarily unique)
basis consisting of pure elements which is closed under multiplication
(and in fact forms a group under multiplication). We will now show
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that for an arbitrary FDALO algebra satisfying axiom Q there is a
canonical way of choosing a basis consisting of pure elements which
enjoys quite special properties. In particular, if the algebra is com-
mutative this basis will be closed under multiplication, though this
need not be true otherwise. If we use this canonical basis as the
basis used in the proof of Theorem 3.3 then the cocycle, z, of the
theorem will also enjoy quite special properties, and we thus obtain
the following strengthened form of Theorem 3.3.

THEOREM 5.1. Let A be a FDALO algebra satisfying axiom Q.
Then there exists a finite semigroup, S, and a ze Z2(S, R+) satisfying

( a) z(s, t) — z(t, s) for all s,te S,

( b) if s,te S and if st = ts then z(s, t) — 1,

such that A ^ zT(S).

Proof. Let £ = E/R+ as in the proof of Theorem 3.3. We will
need two results concerning finite semigroups which we now present.

LEMMA 5.2. Let S be a finite semigroup, and let se S. Then
there exist (strictly) positive integers j and p such that sj+p — sj. If
j and p are the smallest positive integers with this property, then
for any positive integers k and I with k > I we will have sk = sι if
and only if I ̂  j and k — I + np for some positive integer n.

This is just Remark 2.6.1 of [3].

LEMMA 5.3. Let S be a finite semigroup, let s,teS, and let

j , k, p, q be the smallest positive integers such that (st)j+p — (st)j and

(ts)k+q = (ts)\ Then p = q and k + l ^ j ^ k - 1 .

Proof. (st)k+g+1 = s(ts)k+qt = s(ts)kt = (st)k+1 so t h a t by Lemma 5.2

k + 1 Ξ> j and k+q+l=k+l+ mp for some positive integer m.
Similarly (ts)j+p+1 = (tsY+1 so that j + 1 ̂  k and j + p + 1 = j + 1 + nq
for some positive integer n. Thus q — mp — nmq, so q — p.

We remark that the relation between j and k cannot be improved
as can be seen by considering semigroup 3 of order 3 in [3, p. 114].

We now continue with the proof of Theorem 5.2. Given any
element / of S, by Lemma 5.2 there exist positive integers, j and p,
such that (fY+p — (/)\ We will now show that there exists a unique
element, /0, in / such that (fo)

j+p = (fo)
j. This will give us a canoni-

cal way of choosing representatives for the elements of S.
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DEFINITION 5.4. An element, /, of A will be called basic if it
is pure and if there exist positive integers j , p such that fj+p = f3.

LEMMA 5.5. // / is basic and if (f)k+q = (f)k for some posi-
tive integers k and q, then fk+q — fk.

Proof. Since / is basic, fJ+p = fj for some positive integers j
and p. By hypothesis fk+q = afk for some aeR+. Then

(fk+y+p = (μfky+p = aj+pfkj

and

Thus aj+p = aj so that a = 1.

LEMMA 5.6. 7w eαc/& element, /, o/ S έfcerβ is α unique basic
element. If f is any representative of /, and if fj+p — afj for any
positive integers j , p and for a e R+, then this basic element is a~1Jpf.

Proof. Let fe S with representative /. Then by Lemma 5.2
there exist integers j , p such that (f)j+p = (/)'", that is, fJ+p = af*
for some aeR+.

Now suppose that j , p are any positive integers such that fj+p =
α/ j for some aeR+. Let 6 = a~llP and let g = bf, so fire/. Then

so that gr is basic. Thus each element of S contains at least one
basic element.

To show that this element is unique, suppose that there is another
element, h, in / which is basic, so that hk+q = hk for positive integers
k and q. Then clearly {f)k+q = (/)9, that is, (g)k+q = (g)k so that by
Lemma 5.5 gk+q = gk. Furthermore h^cg for some ceR+. Then

cfc+V = c*+Vfc+β = hk+q = hk = ckgk

so that c — 1 and h — g.

This unique basic element in / is the one we will now denote by
(/)0 or just /0.

LEMMA 5.7. // / and g are basic, and if f*g = g*f then f*g
is basic.

Proof. If fj+p — fj and gk+q = gk then a routine calculation shows
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that (f*g)jk+P9 = (f*g)jk.

This last lemma shows that if the algebra A is commutative, then
the basis consisting of basic elements is closed under multiplication.

Now that we have shown how to choose a unique basic repre-
sentative for each element of S we use these representatives to define
a cocycle on S, just as we did in Theorem 3.3, by the relation

5.8 /o*#o = z(f, 3)(f3)o .

It then follows exactly as in the proof of Theorem 3.3 that A = zT(S).
To conclude the proof of Theorem 5.1 we need only show that z
satisfies properties (a) and (b).

LEMMA 5.9. The z defined by 5.8 satisfies property (a) of
Theorem 5.1, that is,

z(f, g) = z(g, f) for all f,geS.

Proof. Given f,geS, let j , k, p, q be the least positive integers
such that

(Jg)j+P = (fSY and (gf)*+< = (gff .

Then by Lemma 5.3 p = q and k + l^j^k — 1. F u r t h e r fo*go is
a representative of fg and go*fo is a representative of gf, so there
exist a,be R+ such t h a t

(fo*go)j+p = a(fo*gQy, and (gϋ*f0)
k+q = 6(flro*/o)* .

Then by Lemma 5.6

/ = α-^(/o*ffo), and

so that z(f, g) — a1JP and z(g, f) — bllq. Since p = #, it is sufficient
for us to show that a — b.

If j = fc + 1 then

= b(fo*gQy ,

so that α = 6. A parallel argument works if A; = i + 1.
If fc = j" then

so that α = δ.
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LEMMA 5.10. The z defined by 5.8 satisfies property (b) of
Theorem 5.1, that is, if f, ge S and if fg = g f then z(f, g) = 1.

Proof. From the hypotheses it follows that (fg)Q = (gf)Qf and
from Lemma 5.9 z(f, g) = z{g, f). Thus

= £(/, g){fg\ = 2(

so that /o and g0 commute. Then by Lemma 5.7 fo*go is basic, that is,

(fg)o =fo*go = z(f, g)(fg)o,

so that z(f, g) = 1.
This concludes the proof of Theorem 5.1.

We can now give our characterization of the convolution algebras
of finite commutative semigroups.

COROLLARY 5.11. Let A be a commutative FDALO algebra which
satisfies axiom Q. Then there exists a finite commutative semigroup,
S, such that A ~ L(S).

Proof. Applying Theorem 5.1 to A, we obtain the semigroup
S—EjR+ and a cocycle 2 on S which satisfies properties (a) and (b)
such that A=zT(S). Since A is commutative so is E and thus so is
S. Thus by property (b) z = 1. Thus zT(S) = L(S).

DEFINITION 5.12. For reasons which will be apparent in Theorem
6.2 we will call a cocycle which satisfies properties (a) and (b) a funda-
mental cocycle.

6* Applications. As an application of some of the above results
we will show how the use of the fundamental cocycles defined above
gives a convenient method for computing ίP(S, R+). As a corollary
we will obtain the fact that if S is commutative then H2(S, R+) — {1}.

To do this we need to extend Hewitt and Zuckerman's theorem
which states that semigroups with isomorphic convolution algebras are
isomorphic [3, Theorem 4.2.4], to the case of twisted algebras. To do
this we will need to recall a few facts about the functorial behavior
of cohomology groups. Let S and S' be two finite semigroups and
let i be a homomorphism of S into S'. Then i induces a map, i, of
Cn(S\ R+) into O(S, R+) for any integer n by assigning to any
c 6 O(S', R+) the cochain ΐ(c) defined by

ι(c)(su , sn) = c(i(sx), , i(sn))

for slf , sn e S. It is easily checked that i is a homomorphism
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which carries Z2(S', R+) into Z2(S, R+), commutes with the boundary
operator, d, and so carries B2(S', R+) into B\S, R+). Thus i induces
a homomorphism, which we will also denote by i, of H2(S',R+) into
H2(S, R+). If for any z e Z2(S', R+) we denote its cohomology class
by z, then we have

THEOREM 6.1. Let S and S' be finite semigroups, and let ze
Z2(S,R+) and weZ2(S',R+). Suppose that zT(S) ~ wT(S'). Then
there exists an isomorphism, i, of S onto £' such that i(w) — z.

Proof. Let F be an isomorphism of zT(S) onto wT(Sr). We
define i and a 1-cochain, c, as follows: For s e S, if s is viewed as
an element of zT(S), it is pure, and so F(s) is pure, and so is of the
form c(s)i(s) for c(s)eR+, i(s)eS'. Then for any s,teS

z(s, t)c(st)i(st) = F(z(s, t)st = F(s*zt)

= F(s)*wF(t) = c(s)c(t)w(i(s), i

Thus i(st) — i(s)i(t), so that i is a homomorphism, and

z(8, t) =

so that z = i(w). Furthermore, i is injective, for if s, t e S and s Φ t,
then, viewed as elements of zT(S), s A t = 0, so F(s) A F(t) = 0, so
i(s) ^ i(ί). Finally, since zT(S) and wT(S') are isomorphic they have
the same dimension, and so S and S' have the same number of
elements. Thus i must be subjective, and so is an isomorphism.

THEOREM 6.2. Let S be a finite semigroup. Then in each
cohomology class of H2(S, R+) there is exactly one fundamental
cocycle. Further, the fundamental cocycles form a subgroup of
Z2(S, R+) which is isomorphic to H2(S, R+). This shows that the
exact sequence

1 — B2(S, R+) — Z\S, R+) — H2(S, R+) — 1

splits.

Proof. Let zeZ2(S,R+). Then zT(S) satisfies the hypotheses of
Theorem 5.1 and so there exists a finite semigroup S' and a funda-
mental cocycle, w, such that zT(S) = wT(S'). By Theorem 6.1 there
is an isomorphism, i, of S onto S' such that z = i(w). But it is easy
to check that if w is fundamental, then so is i(w). This shows that
there exists at least one fundamental cocycle in each cohomology class.
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Next, the fact that the fundamental cocycles form a subgroup of
Z2(S, R+) is easily checked. Finally, if w and z are two fundamental
cocycles such that w — z, then w/z is a coboundary and is a funda-
mental cocycle, so that w/z = do for some c e C\S, R+). Let s e S.
Then for any positive integers m and n the elements sm and sn commute,
so by property (b) of fundamental cocycles

1 = w/z(sm, sn) = c(sm)c(sn)/c(sm+n) .

This says that c is a homomorphism of the finite commutative subsemi-
group of S generated by s into R+. Since no element of R+ is of
bounded order except 1, and since s is of bounded order this means
that c(s) = 1. Since this is true for all s, c = 1 and hence w/z = 1,
so w = z.

Thus, to determine H2(S, R+) for a given finite semigroup S, we
need only determine the group of fundamental cocycles of S. In
particular, we obtain.

COROLLARY 6.3. Let S be a finite commutative semigroup. Then
H>(SR+) {1}

Proof. If z is a fundamental cocycle, then, from property (b) of
fundamental cocycles and from the fact that S is commutative, it
follows that z = 1. Thus the group of fundamental cocycles is {1}.

We now give an example to show that if S is not commutative
then H2(S, R+) need not be trivial.

EXAMPLE 6.4. Let S be the "box" semigroup consisting of the
four points of the plane (0, 0), (0, 1), (1, 0), (1, 1), with product defined
by (x19 2/i)($2> Vz) — (χi> 2/2)- For each real number, δ, we can define an
element, zh, of C2(S, R+) by

S&(0BI, Vi), (»2,2/2)) = exp [b{xx - %2){y1 - y2)] .

It is easily verified that for each b the cochain zb is in fact a funda-
mental cocycle, and that every fundamental cocycle of S is of this
form. It is also clear that this group of fundamental cocycles is
isomorphic to R. Thus

H2(S, R+)=R.

From Theorem 6.1 it is clear that if b Φ 0 then zbT(S) is not
isomorphic to the convolution algebra of any finite semigroup. If we
wish to characterize the convolution algebras of arbitrary finite semi-
groups, we must find an axiom which will distinguish between these
convolution algebras and those twisted algebras which are essentially
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different, such as those exhibited directly above. We have not found
a suitable such axiom.

Finally, we return to the question of what can be said about
two cohomology classes on a finite semigroup, S, if the corresponding
twisted algebras are isomorphic. Let / be the group of automorphisms
of S. Then, since cohomology is a contravariant functor, the opposite
group, /*, acts as a group of automorphisms of H2(S, R+). It is not
difficult to prove that the answer to our question is

THEOREM 6.5. Let S be a finite semigroup, and let ϊv and
ze H2(S, R+). Then wT(S) = zT(S) if and only if id and z are in
the same orbit of H2(S, R+) under the action of I*.

COROLLARY 6.6. Let S be a finite semigroup with automorphism
group I. Then there is a natural bisection between the isomorphism
classes of twisted algebras over S and the orbits of H2(S, R+) under
the action of I*.

The author is indebted to the referee for suggesting a rearrangement
of the material of this paper which permitted a considerably clearer
and swifter proof of the main theorem.

Added in proof. W. W. Adams has pointed out to us that the
proof of uniqueness for Theorem 6.2 shows that property (a) for
fundamental cocycles follows from property (b).
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