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ADJOINT QUASI-DIFFERENTIAL OPERATORS
OF EULER TYPE

JOHN S. BRADLEY

This paper treats linear quasi-differential operators of the
form

n n n X ’ AN
10 = 3y pons = (3 poye = (- = (S ) ) )
7=0 J=0

J=0

based on an integrable (m + 1) X (n + 1) matrix function [p;;],
@=0,:+-,m; 5=0,---,n), about which suitable regularity
assumptions are made. Results obtained by Reid (Trans. Amer.
Math, Soc. Vol. 85 (1957), pp. 446-461) are extended to operators
of the type considered here.

A generalized Green’s function for the system {L[y] =0,
ye &} is defined, where <7 is a linear subspace of the
domain of L. Resolvent and deterministic properties of this
function are presented, together with the relationship of such
a generalized Green’s function to the generalized Green’s funec-
tion for the associated adjoint system,

For a large class of two-point boundary problems in which
the boundary conditions involve the characteristic parameter
linearly it is shown that there exists a simultaneous canonical
representation of the boundary conditions for a given problem
and those of its adjoint; in particular, in the self-adjoint case
this canonical representation has the form of boundary con-
ditions and transversality conditions for a variational problem,
Finally, these results are applied to a two-point boundary
problem involving a differential operator of the type considered
in the paper of Reid above.

Since an important example of an operator of the form of Ly]
is the Euler operator in the calculus of variations, we shall refer to
such operators as quast-differential operators of Euler type.

Section 2 gives a more precise deseription of the operator, and
Section 3 is coneerned with a discussion of its adjoint. In particular
it is shown that if <2, is the class of functions % in the domain of
L with the property that the functions y,y’, + -+, ¥, ¥, = SV Duiy?,
Y= SUoo 0y — iy, @ =m — 1, .-+, 1), vanish at @ and at b, and
if T, is the restriction of L to <7, then the adjoint operator T,* is
given by
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To*[z] = Lﬁ[z] = g I_jioz(i) - <§5 PR — (’ o (é ﬁinz(i))" ° '>,>, .

Section 4 is a study of extensions of the operator T, and their adjoints.
Section 5 is devoted to generalized Green’s functions for Euler type
quasi-differential systems and their adjoints, and extends the results
of Elliott [3] and Reid [5] to the case where the number of linearly
independent boundary conditions may differ from the order of the
differential equation.

Section 6 is concerned with a certain class of two-point boundary
problems in which the boundary conditions involve the characteristic
parameter linearly. It is shown that there exists a simultaneous
canonical representation of the boundary conditions for a given problm
and those of its adjoint; in particular, in the self-adjoint case this
canonical representation has the form of boundary conditions and
transversality conditions for a variational problem.

Finally, § 7 is devoted to an application of the results of §6 to a
two-point boundary problem involving a differential operator of the
type considered by Reid in [7].

The symbol €,, (n =0,1,2, --+), will signify the class of complex-
valued functions defined on the compact interval [a, b] which have =
continuous derivatives. The set of functions y in €,_, for which y"!
is a.c. (absolutely continuous) is denoted by %,, (r =0,1,2,--). In
particular, €, and 2, will signify respectively the classes of continuous
and Lebesgue integrable complex-valued functions defined on [a, b].
If f and ¢ belong to U, and f(z) = g(x) almost everywhere, we will
simply write f=g¢. If f is a complex-valued function on [a, b], then
f denotes the function with domain [a,b] whose value at « is the
complex conjugate of f(x). If w and v are functions on [a,b] and
tu e U, then we define (u, v) as

(u, v) = SZ U .

Matrix notation will be used except where it is impracticable. If
M is a matrix, then the conjugate transpose of M is denoted by M*.
Vectors are treated as matrices with one column. The symbols £, and
0,, are used to represent the » X » identity matrix and the m X n
zero matrix, respectively; the subscripts will be omitted when there
is no danger of confusion.

A matrix function is said to be continuous, integrable, ete. when-
ever each of its elements possesses the specified property. If A is an
a.c. matrix function, then A’(x) signifies the matrix of derivatives at
values for which these derivatives exist and the zero matrix elsewhere.

2. Description of the operator. Suppose that [p;;], (¢ =0, ---,
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m=1l,j=0,---,m=1), is an integrable (m -+ 1) X (n 4+ 1) matrix
function on a compact interval [a, b] and that p,, and p,, are essentially
bounded. For suitable y in 2, define functions %, ---, %, as follows:

() = z Pui(@YO() ;

2.1) @MM@%JMnm@=§mmwwm—m4m,
(i:m—l’...,l).

The class of functions y in %A, for which %, ---, ¥, are a.c. will
be denoted by 9,. For convenience the vector functions (y9-v),
(1=1,+-+,m), and (%), (¢ =1, --+, m), will be denoted by % and 7,
respectively; the (n + m)-vector function (y, ++«, ¥y, ¥, <+, ¥n) will
be represented by 7.

Denote by L the operator with domain ¥, which is defined by

(2.2) Lly] = ngo Doy — YL .

The operator L is a quasi-differential operator in the sense of Bocher
[1]; in particular, it is a generalization of the Euler operator in the
calculus of variations and, as was stated in the introduction, it will
be called a quasi-differential operator of the Euler type.

Let 92 be the collection of functions y in U, for which H(a) =0=
7(d), and denote by T, the restriction of L to . Suppose that &;*
is the class of funections z in 9, which are essentially bounded and
have the property that there exists a function f, in 2, such that
(Llyl, 2) = (y, f.) for all y in A,

A second operator L* will now be defined. For suitable functions
z in U, define functions %, ---, Z, as follows:

Zu(x) = 5:;) Din(2)2 V() ;
2.3) if Zrae W, then %i(z) = 3, Pul@)e(z) — Z(®) ,

G=n—1--1).
The class of functions z in %, for which %, ---,%, are a.c. will be
denoted by %,. Let L* be the operator with domain %, defined by
(2.4) L[zl = 3,5 — 2.
1=0

If ze,, then ¥ and % will signify the veetor functions (241,
(t=1,+--,m), and (%;), (=1, -+, n), respectively. The (m + m)-
vector function (z, «+-, 2™ %, ---, %,) will be denoted by z.
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Except when a statement is made to the contrary, the following
hypothesis will be assumed throughout this paper.

HypoTHESIS (H). The matrix [p;5(x)], ¢ =0, -+, m; 5 =0, +++,n),
18 wntegrable and there exists an € > 0 such that | p,.(x)| = ¢ almost
everywhere on [a, b]. Moreover, p,, and ., are essentially bounded
and D, DmuDni 18 integrable, 1 =1,++-,m —1; =1, ---,n — 1),

It is to be noted that if ye %, and zeﬁm, then L[y] and L*{z]
are integrable.

Let o7(x), 9%(x), @%(x), and .7 (x) be m X n, m X m, n X n,
and 7 X m matrices, respectively, defined as follows:

LZ(®) = [0:i(2) — Pin( @) Pmrn(®)Dmi(®)],
(1' :07 cee, M — 1y .7:01 e, — 1) ’

[0 Pon(@)pi() o
S = [—Em_l pin<x)p;;<x)} G b =D,
'%(x):[i_on—u __E"'—l :Iy (jzly"'yn_l)’
D Z) P X)  Dinn(B) D ()
,_9/( ) . On-—lm—l On-—ll j}
A= [Olm—l —p;biz(x) |

If f and g belong to 2, then the equation L[y] = f is equivalent
to the following system in the vector functions ¥ = (4;), (# =1, -+, n),
and ¥ = (¥y), (j =1, -+, m):
Y+ 49+ 47=0,

2.5
@ ¥ — 0 — Y = —fe

and the equation L*[z] = g is equivalent to the following system in
the vector functions 2 = (%;), (j =1,---,m),and Z = (%;), ¢ =1, ---,n):

¥+ 42 T =0,

2.6 .y >
(2.6) 7 — W — A= —ge™

where e, (k=1,2,8, --+), is used to denote the k-dimensional vector
whose first coordinate is one, and whose remaining coordinates are
zero. If _Z is the (m 4+ m) X (m + n) matrix

@.7) S = [E .

and & is the (m + n) X (m + ») matrix function defined by
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() )
Mm_[%(x) M(x)]

then (2.5) and (2.6) may be written as

(2.8) Ll = £V + 75 = femin?,
and

(2.9) FHzl = —F % + ¥ = gemtm Y,
respectively.

Theorems on existence and uniqueness of solutions of L[y] = f
and L*[z] =g follow from corresponding theorems for the respective
first order systems (2.8) and (2.9). It also follows that ye oA, if and
only if there exists an integrable function f such that y is the first
coordinate of a vector function 7 satisfying (2.8), and ze ¥, if and
only if there is an integrable function g such that z is the first
coordinate of a vector function z satisfying (2.9).

The differential system (2.5) is tdentically mormal in the sense
that if y(x) is a solution of &[y] = 0 with §(x) = 0 on a subinterval
X of [a,b], then %(x) = 0 on X, Indeed, if ¥ is such a solution of
(2.5), then ¥ is a solution of %' — .94% — 0 satisfying .45 = 0 on X,
This latter condition implies that #%,(x) = 0 on this subinterval, and
the differential equation %’ — .94% = 0 implies in turn that 7;(z) = 0
on X for j=m —1,---,1, Similarly, system (2.6) is also identically
normal. It follows from the identical normality of (2.5) that functions
¥ in ¥, are linearly independent solutions of L[y] = 0 if and only if
the corresponding vector functions %, are linearly independent solutions
of &[y] = 0. Similarly, it follows from the identical normality of
(2.6) that functions z, in 9, are linearly independent solutions of
L*[z] =0 if and only if the corresponding vector functions z, are
linearly independent solutions of &*[z] = 0.

3. The adjoint operator. If _Z is the (m + n) X (m + n)
matrix defined as in (2.7), then we may establish the following Lagrange

identity by a simple inductive argument which does not use hypothesis
(H).

LeEMMA 3.1. Ifye¥, and ze ¥, then
(3.1) ZLly] — L*zly = (z*_7 %) .

THEOREM 3.1. If fe ¥, tNhen there exists a y in A’ such that
Lly] = f of and only of z in A, and L*[z] = 0 implies that (f,z) = 0.
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Now if yeﬁ‘;, Lyl = f, ze¥,, and L*[z] = 0, then, in view of
Lemma 3.1,

(f,2) = (Llyl, 2) — (y, L*[z]) =227y [: = 0.

On the other hand, suppose that (f,z) =0 whenever z€ %, and
L*[z] =0, and let y be the function in %, such that Lly] = f and
yl@)=0. If z;, (=1, ---,m + n) are linearly independent solutions
of L*z] =0, then the (m + n) X (m + n) matrix Z(x) with column
vectors Zz;(x), (j=1,+++, m + n), is nonsingular on [a,b]. From
Lemma 3.1 we have the vector equation

0 =[(f,2) — (v, L[zl = Z*_FG i = Z*(b)_F5(b)
and consequently %(b) = 0 also.

THEOREM 3.2. If hypothesis (H) holds, then =* = U, and f, =
L*[z] on =5,

That ﬁmc%* follows from Lemma 3.1. Now let 2,¢ . Z,* and
suppose f,, is a corresponding function in U, such that (L[y], 2y) =
(y, f,,) when ye, Choose w, in A, such that L*w,] = f,,, and
suppose that z; €3, are linearly independent solutions of L*[z;] =0,
with (2;,2;) = i3, (4,5 = 1,+--,m +n). If w=w,+ S17(2, — wo, 2;)2;,
then L*[w] = f,, and (3, — w,2) =0 when ze, and L*z] =0. It
follows that if ye 9, then

(3.2) (Llyl, 20) = (y, fo) = (v, L*w]) = (Llyl, w) ,

so that (L[y], 2, — w) =0 when ye e, But it follows from Theorem
3.1 that there is a function y in A’ such that Liyl = 2, — w. Con-
sequently (z, — w, 2, — w) =0 and z, = we A, so that =;* = A, and
f:o = L*[2,]. This result extends Theorem 4.1 of Reid [7].

Now the operator T adjoint to T, is defined to be the operator
on ,* with value f, at z. In view of Theorem 3.2 we have &* =

A, and TF[z] = L*[z].

4. Extensions of the operator T,. Let <7 be a linear subspace
of ¥, containing %, and denote by T the restriction of L to <
Denote by <* the class of functions z in 2, which are essentially
bounded and for which there exists an f, in 2, such that (L|y],z2) =
(y, f,) for all y in <. It follows from Theorem 3.2 that &* 9,
and for each z in &2* there is at most one f,, namely L*[z], such
that (L|y],2) = (y, f,) for all y in . The adjoint 7* of T is the
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operator on Z* defined by the formula 7*[z] = f,. The operator 7T
is said to be self-adjoint if and only if &2 = &2* and T = T*.

The following lemma will be helpful in describing =*. If y;¢ A,
(j=1,+-+,m + n), then Y will denote the matrix function defined

by j;?'(x) = [@](x)], (j = 19 s, M- n)-

LemMA 4.1. If 9 and £ are (m + m)-vectors, then there ewxists
a function ye N, (zeNA,), such that j(a) = 7 and y0b) =, (Z(a) =7
d anz(b) = Q).

Since QNI,L is a vector space it is enough to show that there exist
m + n functions y; in 9, such that #;(@)=0, (=1, -, m + n)
while Y(b) is nonsingular, and to show a corresponding result with a
and b interchanged. To establish the existence of functions y; in A,
such that 7a)=0, (j=1,+--,m+n), and Y(b) is nonsingular,
suppose to the contrary that for each collection of m 4+ » functions
y; in U, satisfying 7;(@) =0, (j =1, ---,m + n), we have Y (b) singular.
Let z; be m + n linearly independent solutions of L*[z] =0, and for
j=1,---,m+n let y; be the function in ¥, such that L[y,] = z;
and 7;ia) = 0. Then there is a nonzero (m + m)-vector & = (&;) such
that f'(b)é =0. If yx) =S yi(x)é; and 2(x) = D742, (x)&;, then
Lly] =2, L*[z] =0 and z(x) % 0, moreover, yc A2. Hence it follows
from Lemma 3.1 that

0 = (Llyl, 2) — (y, L*[2]) = (2, 2) ,

which is impossible since z(x) = 0. The numbers o and b may be
interchanged and the preceding argument remains valid. The result
for %, follows by interchanging the roles of %, and %, that is, by
replacing [p;;] with [p;;]*.

Denote by <# the subspace of 2(m + n)-dimensional complex space
consisting of the end values (§(a), ¥(a), 7(b), (b)) for functions y in .
Similarly, <z * will denote the subspace of end values (2(a), Z(a), 2(b), Z(b))
for functions z in &2*. If k < 2m + 2n and the dimension of <7 is
2m + 2n — k, then let P and @ be (m + n) X 2m + 2n — k) matrices
such that the columns of [—P* Q*]* form a basis for < If k>0
also, then let M and N be k X (m + n) matrices such that the
k X 2(m + m) matrix [M N] has rank k¥ and MP — NQ = 0. Then in
view of Lemma 4.1 we have that < is characterized as the class of
functions y in 9%, with the property that

{4.1) s(y) = My(a) + Ny(b) =0.
If k=0, then by Lemma 4.1 we have & = ¥,.
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THEOREM 4.1. Dim <Z + dim <Z* = 2m + 2n; tf dim <& > 0 and
P,Q are (m+ n) X (2m + 2n — k) matrices such that the colummn
vectors of [—P* Q*]* from a basis for <&, then =2* is the class of

functions z in A, for which
“4.2) P*_Z*%(a) + Q*_F *Z(b) =0.

First note that if dim <# = 0, then =* = %, by Theorem 3.2,
and thus by Lemma 4.1 we have dim < * = 2m + 2n. Now suppose
that dim <# > 0, ze ¥, and (4.2) holds. Then for ¥ in < and & a
(2m + 2n — k)-vector chosen so that #%(a) = —P& and %(b) = Q¢ it
follows from Lemma 3.1 that

(Llyl, 2) — (y, L*[z]) = 2*_ZFy . = {P*_£*%(a) + Q*_F*2(b)}*s =0
and hence ze =2 *. On the other hand, if ze & * then it follows from
Theorem 3.2 that ze ?NI,,“ since A 2. Then (4.2) follows from

Lemma 3.1, Lemma 4.1 and the choice of P and Q. Therefore, in
view of Lemma 4.1, it follows that dim <& + dim <&Z* = 2m + 2n.

CoROLLARY I. If dim <& >0, and R and S are 2m + 2n — k) X
(m + n) matrices, then I * is the collection of fumctions z in A,
for which

(4.3) Rz(a) + SzZ(b) =0

iof and only tf the 2m + 2n — k) X 2(m + n) matriz [RS] has rank
2m + 2n — k and M_F*R* — N_£*S* = 0.

COROLLARY II. The adjoint of T* ts T.

The index of compatibility for a system Lly] = 0, y € &7 is defined
to be dim{y: ye & and L[y] = 0}. The next two theorems are con-
sequences of the equivalence of the equations L[y] = f and L*[z] =¢
to the systems (2.8) and (2.9), respectively, and corresponding theorems
on first order systems. Analogous theorems for nth order linear dif-
ferential equations are given in [2, Chapter 11], and those results
may be extended to first order systems.

THEOREM 4.2, If dim &Z* =k and the index of compatibility of
the system Lly] =0, ye & tsr,then p =k + r — m — n is the index
of compatibility for the system L*[z] =0, z€ = *.

THEOREM 4.3. If fe U, then there exists a function y in &
such that Lly] = f if and only iof (f,2) =0 for all z in =Z* satis-
fying L*[z] = 0.
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The next two theorems are analogues of Theorems 6.1 and 6.2 of
Reid [7]. The second of the two gives necessary and sufficient condi-
tions for the operator T to be self-adjoint when [p;;(¢)] is Hermitiafl.
If y;ed, and Y=1[7], (=1, ---,m + n), then the symbols SSY)
and s(Y) are used for the k X (m + m) matrices M Y (a) + NY(b)
and MY(a) — NY(b), respectively. Similarly, if z;€ 3, and Z = [Z],
(J=1,--,m+ n), then #(Z) and t~(Z) denote RZ(a) + Sz(®) and
RZ(a) — SZ(b), respectively.

THEOREM 4.4. Suppose that 2(m + n) > dim <& > 0, y; and z;,
(7=1, -+, m+ n), are linearly independent solutions of Ll[y] =0
and L*[z] =0, respectively, and let 4 = (Z* 4 Y)'. Then 4 is
constant on [a,b] and Z* is the collection of functions z in A,
satisfying (4.3) if and only tf the (2m + 2n — k) X 2(m + n) matrizx
[R S] has rank 2m + 2n — k and

(4.4) s(Y)A{t~(Z)y* + s~ (Y)AHZ)* =0 .

THEOREM 4.5. Suppose that m =mn, [p(x)], (¢,7=0,--, n;
z € [a, b]), ts Hermitian and dim <& =2n. Lety;, (j=1,---,2n), be
linearly independent solutions of L{y] =0, and let 4 = (Y* Sz Y)-.
Then 4 is constant on [a,b], and T s self-adjoint of and only if

the 2n x 2n matriz s—(Y)4{s(Y)}* is Hermitian.

5. Generalized Green’s functions. The subspaces &, <* of
9, and %A, respectively, and the subspaces <&, <Z* of 2(m + n)-
dimensional complex space are as defined in §4. If 0 < dim <& < 2m +
2n, then the matrices M, N, P, and @ are as specified in § 4.

If feA, then we are concerned with solutions of the quasi-
differential system

(5.1) Llyl=f, wyez.
Of prime importance is the homogeneous system
(5.2) Liy]=0, wyez,
and its adjoint system

(5.3) L*z] =0, reD*,

By definition a generalized Green’s fumction for the system (5.2)
18 an essentially bounded and wmeasurable fumction g on [ =
{@,t): a =2 =b, a =t < b} with the property that if f is a function
in U, for which (5.1) has a solution, then a particular solution y
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of (5.1) s given by

(5.4) u(@) = | g, 0. f®)dt .

Reid [5] has shown the existence of a generalized Green’s
matrix for a compatible first order system with two-point boundary
conditions, where the number of independent boundary conditions is
equal to the number of differential equations. If dim <& = m + n,
then Reid’s results could be used to obtain a generalized Green’s
function for (5.2). In this section the existence and some properties
of a generalized Green’s function will be shown when dim < is not
necessarily equal to m + n. The technique used here may be modified
to extend Reid’s results to the case where the number of independent
boundary conditions is different from the number of differential
equations.

For a wvth order linear differential operator >}, q;(x)y” with
9;,€C;, (7=0,1, -+« v), and q,(x) # 0, the generalized Green’s function
has been treated by Greub and Rheinboldt [4] and Wyler [10]; a
more comprehensive treatment of an algebraic theory of operator
solutions of boundary problems, which includes this case as a special
instance, is given in Wyler [11].

LemMa 5.1, If y;, (7=1, -+, m+ n), are linearly independent
solutions of Lly]l =0, then there exist m + n linearly independent
solutions z; of L*[z] = 0 such that

(5.5) Z* ZY = E,., .

This result follows from Lemma 3.1 and the existence and uniqueness
theorems for the equations .&#[y] = 0 and ¥ *[z] = 0.

If y,e 9%, and 2; € Ny (F=1,-0-,m+ n), then define matrix
functions ¥, ¥, Z, and Z as follows: Y(x) = [7:®)], Y(x) = [#,)],
Z(w) = [34()], and Z(@) = [Z@)], (j =1, -+, m + n),

COROLLARY. If y; and z;, (j =1, -+, m + n), are as wn Lemma
5.1, then

6.5 Y@)Z*@) = 0,n, Y@)Z*@2)=E,,
‘ V@)Z*@) = —E,, Y@)Z*@) =0,,.

THEOREM 5.1. Ifrela,bd], & is a constant, y, and 2;, (§ =1, «--,

m + n), are as in Lemma 5.1, then the solution y of Lly] = f satis-

Sying 9(t) = S\ y(t)é; is givem by the first component of the

vector
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6.7) i) = 25,5+ | S u @ .

Indeed, if ¢ = (&), (=1, --+, m + n), and we set y(x) = Y (2)u(x),
for w an (m + n)-vector function, then % is a solution of &[y] = fem =",
Y(r) = Y(c)¢ if and only if

S Y @yl (@) = e i fz),  u(e) = €.

Hence w'(x) = Z*(x)e™ ™" f(x) and
w@) = & + | 2@ f (5)ds

from which the theorem follows.

Now suppose that y,, (j =1, -+, m + n), are linearly independent
solutions of L[y] = 0 and that z;, (j =1, ---, m + n), are chosen as
in Lemma 5.1. If dim &Z =2m + 2n — k, k > 0, then s(Y) and s—( Y)
are k x (m + n) matrices defined as s(Y)= MY(a) + NY(b) and
s7(Y) = MY(a) — NY(b). If » is the index of compatibility for (5.2),
then s(Y) has rank m + n — r. If » > 0, then let S be an (m + n) x »
matrix with the property that S*S=E, and s(Y)S=0. If r>m+n—Fk,
then T will represent a k X (k — m — »n + r) matrix such that T#*T =
By nwir and T*s(Y)=0. It follows that the (& + r) x (k+ )
matrix

s(Y) T

5.8

5.9 e o]

is nonsingular, and its inverse is of the form
D S

5.9 .

5.9) > o)

The (m + n) X k matrix D is the generalized reciprocal of s(Y) in the
sense of E. H. Moore, (see [9, Section 14]). If » =0, then the matrix
S does not appear, if » = m + n — k, then T does not appear.

Now if dim &Z < 2(m + n), let G(z,t) be the (m + n) X (m + »n)
matrix defined by

G, t) = %ff(x)[%ﬁ]m + Ds~( ?)]Z "t), @t
Gz, ¥) = %Y(x)Ds*(?)Z*(x) . wela,b].

If dim & = 2(m + n), let G(z, t) be defined by
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___l_lx—t| Vi) 7 * .
G(x, t) = - Y(2)Z*(t) , x#EL;
G(x,z) =0, z € |a, b].

Let g, be the function with domain [ whose value at (x,t) is
the element in the first row and first eolumn of G(z, ¢), that is

95, ) = go,.(x, t) + goo(x,t)  of dim F < 2(m + n),
942, t) = go,.(2, £) if dim & = 2(m 4+ n) ,

where

gou(x, 1) = —21— sgn (v — t) 2 Y:(®)Zi(t),

m-+n

fosle, 1) = 1 30 vi(@) A0

provided [.%;] is the matrix Ds~(Y) and sgnu = |u|/u for u +# 0,
sgn0 =0,

THEOREM 5.2. The function g, defined above ts a generalized
Green’s function for (5.2).

If dim <# = 2(m + n), then this result follows directly from
Theorem 5.1. Now suppose that dim & < 2(m + n»), and f is an
integrable function for which (5.1) has a solution. If y is a solution
of L[y] = f, then for a suitable vector & one has

¥(x) = _'-;_[ V)2 + S P() Z (et f(t)dt — S" V(@) Z*(t)etm o f(t)dt] .

Thus, since (5.9) is the inverse of (5.8), it follows that y is a solution
of (5.1) if and only if

Trs~(7) Sb ZH(t)e 0 f (bt = 0,
and for some r-vector 7 we have
£ = Ds~(7) Sb ZH()em w0 (6)dt + Sp .
Therefore,
1 —~ —~ —~ b
Ylx) = ~2—[Y(w)S77 + Y(x)Ds(Y) S Z*(t)e'm 1 f(t)dt

b 5 ‘x"‘” 7 % (mtm,1
+ g F@1 2=t Z(pe Foi],

a



ADJOINT QUASI-DIFFERENTIAL OPERATORS OF EULER TYPE 225

from which the theorem follows since » may be chosen to be zero.

The symbol g{*” will be used to signify the partial derivative
0'tig,Jot’dx’. Generalized partial derivatives g¢i*® will now be defined
for g,. If @« <mn and B < m, then ¢*P(x,t) = giP(x,t). If a<mn,
_then g{*™+?, (5 =0,---,m — 1), is defined as follows:

géa,m>(x, t) = Zs f)m(t)gl()ﬂ'”(x5 t) 5
if g¢»m™='*» is a.c. in its second argument, then

gy (@, 1) = 2 Paws()90" (2, £) — 0/0 g§m T (a, t)
(.7 = 1y e, — 1) .

If B < m, then ¢gi"+»®, (4 =0, .-+, m — 1), is defined as follows:
g5 P(x, t) = > Pni(X)95P (2, ) ;
=
if .g»—+48 ig a.c. in its first argument, then

G, 1) = 3 Do (08P, 1) — 0J00 gz, )
7=
(G =1,0,m—1).

THEOREM 5.3. If a+B<m-+n—2, and g, s the function
of Theorem 5.2, then ¢gi*® exists and is continuous on .

This result clearly holds for g,., hence one need only consider
specifically ¢,,,. Let a + 8 < m + n — 2, and suppose first that o < n.
If 8 < m, then the theorem follows from the fact that ?(x)Z *(x) = 0.
If S=m—-1+3, (j=1,+--,n —a—1), then use the identity
Y(x)Z*(x) = E,. On the other hand, if 8<m and @ =n — 1 + 4,
(i=1,+--,m— B —1), then use the identity Y(2)Z*(x) = —E,.

THEOREM 5.4. The generalized Green’s function for the system
(5.2) is not unique. If u,, ---,u, form a basis for the solutions of
(5.2), vy, ++-, v, form a basis for the solutions of (5.3), and g, is one
generalized Green’s function for (5.2) then a function g on [ ts also
a generalized Green’s function for (5.2) tf and only if there exist
essentially bounded and measurable functions v, +««, V,, @i, ***, P,
such that if (x,t)e O, then

(5.10) gl 1) = ale, ) + S uEin(t) + 3@ @T0) .

If ¢ is a function on [ satisfying (5.10), then in view of Theorem
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4.3 it follows that g is a generalized Green’s function for (5.2).

To establish the converse we may assume without loss of generality
that (u;, ;) = 0ij, (1,5 =1, +--,7), and (v, ’Ug) = 3045’ (@,8=1,---, 0).
If we, and f(x) = w(x) — 3% (w, v;)vi(x), then (f,v.) =0, (@ =
1, ---,0). Thus for this choice of f it follows from Theorem 4.3
that (5.1) has a solution. Suppose that g is a second generalized
Green’s function for (5.2) and let d(x, t) = g(x, t) — go(x, t). Then there
are constants &, ---, &, such that

S (e, 1) f ()8 = 3 w@)
and if Oz, t) = d(z, t) — S¥_. () S"d@, s)v,(s)ds, then

(5.11) S" 9w, ) Bt = 3 u (o) .
Multiplying (5.11) by #,(x), and integrating with respect to x, we have

S" S” (@) 0(x, ) f(t)dide = &, , (G=1,,7),
and consequently

Sb [a)(x, ) — 3 (o) S" T(s)D(s, t)ds]w(t)dt —0.
But w is an arbitrary integrable funection, and hence
Oz, t) — g u () Si%(s)@(s, )ds =0 on O,

and

Az, ) = g () S" B(s)D(s, t)ds + ,2 TAt) S" d(x, s)v,(s)ds .

Hence (5.10) holds with v, and p; defined by v.(¢) =§" u(s)®(s, t) ds.
and @(x) = S d(x, s)vi(s)ds, (1=1,+--,7;5=1,--+,0), and clearly
these functions are essentially bounded and measurable.

We now show that a generalized Green’s function g for (5.2) has
the property that the function A defined by h(xz,t) = g(t, x) is a
generalized Green’s function for the adjoint system (5.3). Preliminary
to this result we shall prove the following theorem.

THEOREM 5.5. Suppose that u,, ---,u, form a basis for the
solutions of (5.2), vy, ---, v, from a basis for the solutions of (5.3),
and 6 ={0,, ++-,0,}, 2 ={w,, ---, ®,} are sets of integrable functions
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with the property that the matrices [(u;, 0;)], (¢, 7=1,---,7), and
[(va, )], (@, B=1, -+, p0), are nonsingular. Then there exists a
unique generalized Green’s function g.(,; @, Q) for (5.2) satisfying
the conditions

§"gl<x, 10, Dw,(tydt = 0, @=1,-+-,0),
(5.12) :
S gz(x)gl(x7 t; @’ Q)dx =0 ) (7’ - 17 ety 7”) .

Without any loss of generality we can assume that [(u,, 0,)] = E.
and [(v., wp)] = E,. Let g, be the generalized Green’s function for
(5.2) described in Theorem 5.2. We now determine functions +, + -+, v,
and functions ¢, -+, », such that the generalized Green’s funection
given by (5.10) satisfies conditions (5.12). Such a generalized Green’s
function g will satisfy the conditions (5.12) if and only if the functions
vy (0=1,+-+,7), and @,, (@ =1, -+, 0), satisfy the equations

@) + | 5 0©ps s + || Ss)als, w)ds =0,

(5.13) (E=1,+0,7),

b or

@) + g (), (s)w.(s)ds + S: go(x, )w,(s)ds = 0,

a j=1

.

(a:l, “',(0).

A particular set of solutions for equations (5.13) is

pola) = — | 0w, .(s)ds @=1,-,0),
(5.14) i) = [ || 5000, soxs)medss
—| 0., ot , (=1, 0007).

Moreover, if +; and ¢,, (t =1, -+, 7; &« =1, -+, 0), is any collection
of solutions of (5.13), then after substituting the value of +r;(x) given
by the first equation into the second equation of (5.13) it can be
shown by straightforward computation that the value of

3 us(@)yilt) + 3 ul@)5a0)
is independent of the particular +; and ¢,. Hence there is a unique
generalized Green’s function for (5.2) satisfying (5.12).
The conditions of Theorem 5.5 are clearly satisfied by the sets
0; =u;,y (t=1,---,7), and w, = v,, (¢ =1, ---, p); in particular, for
linear homogeneous differential operators whose coefficients satisfy
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suitable differentiability conditions, the treatment of Greub and
Rheinboldt [4] is limited to this specification.

It is to be remarked that, in view of the definition of g, if
and @, (t=1,+-+,7;, a=1,---,0), is any collection of solutions of
(5.13), then @, e%,, (@ =1,+-,0), and §,€A,, (G =1, -+, 7).

Correspondingly, there exists a unique generalized Green’s function
gix(, ; 2,0) for the system (5.3) which satisfies the conditions

[, Gu@)gz(o, ; 2, 0)dz =0, @=1,--,0,

(5.15) b
[ 9@, t; 2, 00000t = 0, (=1,0e,7).

For brevity, denote by b, and b, the functions defined on [J by
the formulas

bol@, ) = 3 0,@)T) ,  belw, 8) = 3 L@T) .

THEOREM 5.6. If g.(,;:0,0) is the unique generalized Green's

function satisfying (5.12), then the following conditions (5.16)—(5.20)
are satisfied:

(5.16) g&v(,;0,9), (1 =0, -+, m + n — 2), exists and is continuous
on [0 while gimt»x, t; 0, 2) and o0/ox g™ x,t;0,2) exist on
the individual domains a St < x,a < x <band a =2 <b, x <t =0

(6.17) 4f tela,b], then the function whose wvalue at x+1t 1s
gm0, t; 0, 2) has a right and a left limit at t, denoted by
gimtrLO@t £ 0, Q) and gimthO(t, ¢ 0, 2), respectively, and

gEm IO, 66, ) — g 1.0, 9) = 1

(56.18) if tela,bl, then Ligi,t;0,2)] =b2(,t) on [a,t) and (¢, b];
(5.19) ¢f te(a,b), then the function whose value at x is g.(x, t; 0, 2)
satisfies the boundary conditions which characterize the set =;

(5.20) Sb F.@)gulz, £ 6, Qdz = 0 , (G=1,-- 7 tela,b]).

Conditions (5.16)—(5.18) may be verified directly using the properties
of g, and the remark following the proof of Theorem 5.5. Condition
(5.20) is merely one of the conditions in (5.12). If < =%,, then
(5.19) is trivially satisfied. Otherwise, let w be any integrable func-
tion, and define f by

flz) = w(z) — 33 0 @)w, v2) = wix) — | b, s .

Ja
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In view of the assumption that [(v,,wg)] = E,, it follows that (f, v,) =0,
(a =1, -.-,p), and therefore the function w defined by

w@) = | gu(w,t; 6, ) (e)dt
is a solution of (5.1). But it follows from (5.12) that
[, i@, 8,6, 95Ot = | gula, & 6, ity .
Therefore,
0 = Mu(a) + Ni(b)
= ' (a0, 6,9 + N9.0, 6; 6, Dywitya,
from which (5.19) follows in view of the arbitrariness of the function w.
COROLLARY. If we U, and y 4s defined by
v(@) = | gula, t; 0, Quit)dt
then
Liy) = w — || b, @)t ,
ye 7, (y,0,) =0, (t=1,¢-4,7).
It should be noted that the unique generalized Green’s funection

gx(,;2,0) for (5.3) which satisfies (5.15) also satisfies conditions
analogous to (5.16)—(5.20).

THEOREM 5.7. If z,t€]a,bd], then gx(x,t; 2,0) = §.(t, x; 0, Q).

Let w and & be arbitrary integrable functions and define y and
z by

y(@) = | e, t; 6, Quityat ,
2@ = || gur(a, 1; 9, O)h(e)dt ,

respectively. Then it follows from the corollary to Theorem 5.6 and
its analogue that ye &7, ze &*, and therefore

(Llyl, 2) — (y, L*[z]) = 0.
But it also follows from the corollary to Theorem 5.6 that L[y] =
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w — Sb bo( , B)w(t)dt, L*[z] = h — Sb be (, t)h(t)dt, and therefore in view
of (5.12), (5.15), and the definition of b, and b,, we have

[ ], B@lgist, 2 2, 6) — gute, : 6, Qhue)dsds = 0,
from which the theorem follows since w and & are arbitrary integrable
functions.

COROLLARY I. The function g.(, ; 0, 2) is characterized by con-
ditions (5.16)—(5.20), and the function gx(,; 0, 2) is characterized by
analogous conditions.

As a consequence of Theorems 5.4 and 5.7 one has the following
result:

CorOLLARY II. If g is a generalized Green’s function for (5.2),
then the function h defined by h(x,t) =g, x) is a generalized
Green’s function for (5.3).

6. A canonical form for boundary conditions. Let [f;;] and
l9:5], ¢=0,++e,m=1;7=0,--,m=1), be (m+ 1) X (n + 1) inte-
grable matrix functions. Suppose that the matrix function [f;;],
t=0,++-,m; 5=0,---,n), satisfies hypothesis (H), and g¢g,;(x) =
gin(®) =0, ¢ =0,--,m; 5 =0, ---,m).

For a complex number ) let p;;( ; A) be the function defined on
[a, b] by

pu(x; k') :fw(x) + ng(x) ’ (7’ - Oy v, M; .7 = Oy cty ’ﬂ) .
It follows that for each number A hypothesis (H) holds for the matrix
funetion [p;;(;N)]. For suitable y in A, let #F(;N), -, F.(;\) be
defined on [a, b] as follows:

Yulwi M) = 2 Puf; My (@) = %fmj(@y‘”(x) ;

G 57 G V) e A, then Fiw; \) = 3 Pus MY E) — T V)

G=m—1,---,1).

The class of functions y in 2, for which %,(, ), <+, ¥.(; \) are a.c.
will be denoted by %,(\), and L[ ;] will be the operator with domain
%,(\), and defined by

(6.2) Liy; M = z Poi; MY — TN
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The vector function (#;(;\)), (¢ =1, -+, m), will be represented by
J(;N), and y(;N) will signify the (n + m)-vector function (y, ---,
Yy G (3 N), oo+, Tu( 3 N)). For a complex number v let pX( ; v) be the
function on [a, b] defined by

PE(@; ) = fii(®) + vGi(2) , (t=0,c00,m;g=0,:2+,m).

For suitable z in 2, define Z,(;v), +++, Z.(;v) by

2@ ¥) = 3 ph(; ve0@) = 3 Ful@)@) ;

6.3) if Z(sv) e, then Zi(w;v) = 3 ph(w; Me(@) — Faulw; v) ;
=1

(j:n_ly "',1)-
The class of funetions z in %, for which Z.(;v), ---, Z,(;v) are a.c.

will be denoted by ,.(v) and L*[;v] will be operator with domain
A,.(v), and defined by

(6.4) L¥fz; o] = 33 p8( 5 v — (3 9) .

The vector funetion (%Z;(;v)), (4 =1, +-+,n), will be represented by
Z( ;v), and z( ;v) will denote the vector function (2, -+ -,2™ ", Z,(,v),+--,
Z.(;v). Let Ay, Ay, Ay, and A, be k X n matrices, and let B, and
B, be k X m matrices, 1 =k =2m + 2n — 1), such that for each number
N the k& X 2(m + ») matrix

[Al()") ""Bl Az()") Bz]

has rank &, where A,(\) = A, + My, and A,(\) = 4, + NA,. Let Z7(\)
be the collection of functions y in 9,(\) for which

(6.5) A,(Mi(@) — Big(a; M) + A:(MF(0) + Bsgb; n) =0,

This section is concerned with the particular Euler type quasi-differen-
tial system

(6.6) Lly;N\] =0, yez(\).

It follows from Theorem 3.2 that the system adjoint to (6.6) is

(6.7) LNe;X] =0, ze*X),
where 2*(X) € ,.(X). The following assumption is made about <7*(X):

HypotHESIS (H,). There exist (2m + 2n — k) X m matrices Ay(v) =
Ay + VA, AY) = Ay + YA, and 2m + 2n — k) X n matrices B,, B,
such that for arbitrary ) the set *(\) is the collection of function
z in A.(X) for which
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(6.8) A(N)Z(a) — BeZ(a; X) + A,(N)Z(b) + BZ(b; X)) = 0.

It shoud be noted that the assumption used by Zimmerberg to
obtain Theorem 2.1 of [13] does not imply that hypothesis (H,) holds.
For if m =n =1 and k = 2n, then let the matrices A,, A, B, A,
A, B, be defined as

Af=[11], Af=[01], Br=][21],
Ay =1[10], A5=101], Bf=[01].

Then the hypothesis of Theorem 2.1 of [13] is satisfied, but hypothesis
(H,) does not hold.

If hypothesis (H,) holds then for each complex number v the
@m + 2n — k) X 2(m + n) matrix

(6.9) [4s() B; A,(») B

has rank 2m + 2n — k. Moreover, by a proof quite analogous to that
used by Reid to obtain (11.11’) of [6] one may establish the following
result.

LEmMMA 6.1. If hypothests (H,) holds, then <Z(\) is the collection
of fumctions y in A,(\) for which there is a (2m + 2n — k)-vector e,
such that

§(a) = Bfe,,  Fla;N) = AF(Veo

(6.10) " ~ -
9J(b) = Bfe, F(b; N) = —AF(Ve

and *(N) is the collection of fumctions z in A,.(N) for which there
is a k-vector e, such that

é(a) = B{kel ’ E(a’; X‘) = Aik(x’)el 1

6.11 -
( ) é(b) = B;el y E(b; )“) = '—A;‘()\’)el ’

where A¥(v) = (4;,(»)*, (1=1,2,3,4).

Now let K, = ABy + AuBf, K, = A,Bf + A,Bf, K\(\) = K, +
7\'K11y Kzo = A30B{k + A4oB§k; K21 = A31B1* + A41B;y and K2(7\') = K20+ 7\4K21-
Then the next result follows from Lemma 6.1 and Lemma 3.1.

LEMMA 6.2. If hypothesis (H,) holds, then Ki(}\) = K,(\).

LEMMA 6.3. Suppose that hypothesis (H,) holds, the kX 2m matrix
[B, B,] has rank k — p, and the (2m + 2n — k) X 2n matrixz [B; B,]
has rank 2m + 2n — k — q. Then there exist p X m matrices +;, .
and q X m matrices s, 4, such that the p X 2n matric [y, ] has
rank p, the q X 2m matrix [y; ] has rank q, and
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(6.12) ¥if@) + ¥4 =0,  for yez(N),
(6.13) yE(@) + pEO®) =0,  for ze 2*(N) .

Suppose that R is a p X k matrix of rank p such that R[B, B,] = 0,
and define +, and +r, as y, = RA,, v, = RA,. In view of Lemma 6.2
and the fact that for arbitrary complex )\ the & X 2(m + =) matrix
[A,(\) B, Ay(\) B,] has rank k it follows that there exists a p X p
matrix V such that

[RA,(N) RA,(N)] = (B, + MNV)R[A, As] .
Hence E, + AV is nonsingular and the equation (6.12) is equivalent to
RA,(N)j(a) + RAMH(b) =0 .

If R, is a q X (2m + 2n — k) matrix of rank ¢ such that R|[B; B, = 0,
and v, 4, are defined as ; = R,4;, ., = K,A,, then equation (6.13)
may be verified in a similar fashion. The conclusion concerning the
ranks of [+, ¥,] and [y 4] is clear.

From Lemma 6.2 it then follows that [B,B,]|[vs.]* =0 and
[B; B[4, v.]* = 0, sothat ¢ = 2m — (k — p) and p < 2n — [2m + 2n —
k—ql=Fk+ q— 2m, from which one has the following result.

LEMMA 6.4. If hypothesis (H,) holds, then the columns of [yrs 4ri]*
form a basis for the nmull space of [B,B,] and the columns of
[4r1 ¥o]* form a basis for the null space of [B; B,].

The following theorem gives a simultaneous ecanonical representation
of the boundary conditions for (6.6) and (6.7) in terms of parameter
matrices +;, Q;, G;, (¢ =1,2,3,4), and is the central result of this
section.

THEOREM 6.1. Suppose that hypothesis (H,) holds. Then there
exist m X n matrices Q; and G;, (1 =1,2,3,4), such that ye Z(\)
if and only if there ewists a q-vector 1), such that

v.g(a) + ¥.8(b) = 0,
(6.14)  (Q — MG)FY(a) + (Q: — MG)H(d) + vy, — Fla; 1) =0,

Qs — ANGYY(a) + (Qs — NGYY(D) + iy, + F(b;N) = 0.
Moreover, ze Z*(\) if and only if there exists a p-vector 7), such
that

V&) + 4&(b) = 0,
(6.15) (QF — XGHi(a) + (QF — XNGHE(D) + ¥in, — Za;N) =0,
(QF — XGHE(a) + (QF — NGHED) + vin, + Z(; %) = 0.
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Suppose that the matrices K, and K,, have ranks ¢, and gq,,
respectively. Let D,, and D, be 2m + 2n — k) X @Cm + 2n — k — q,)
and (2m + 2n — k) X (2m + 2n — k — q,) matrices, respectively, whose
individual column vectors form orthonormal bases for the null spaces
of K, and K, that is, K,D,, =0 and K,,D,, = 0. As K, = K;} and
K,, = K by Lemma 6.2, there exist matrices D,, and D,, of respective
orders k X (k — q,) and k X (k — ¢,) whose individual column vectors
form orthonormal bases for the null spaces of K,, and K,. Then

(6 16) KIO D2O —Kll D21— FK20 DlO— —K21 Dll-
’ Dy 0| |Dx 0] Dy 0]  |Di O]
are nonsingular and have inverses of the form
(6.17) H]O DIOJ , _H].l Dll— , .'Hl’ll)( D20_ , _HXT D21— ,
Dy 0 Dy 0 | Dy, 0 | Dy 0 |

respectively. The matrices H,, H,, H;i, and H;f are generalized re-
ciprocals of the respective matrices K, K,;, K,, = Ki{, and K, = Kf.
Let Q; and G;,, (1 =1,2,3,4), be defined as Q, = A§H A, Q.=
ALH Ay, Q= ASH Ay, Q.= AjH Ay, G,=—A}H A, G, = —AjH Ay,
Gs = "AleuAuy and G4 = "‘AﬁHnAn-

Now if ye =27(\) then in view of Lemma 6.3 we need only verify
the last two equations of (6.14). Suppose that e, is determined by
(6.10). Then it follows from (6.10) and the fact that the matrices
(6.17) are the inverses of the matrices (6.16) that

e, = H Aj(a) + H, Ay (b) + D, Die, ,

(6.18) " "
e, = H, A j(a) + H, A, §(b) + D, Die, .

Now it follows from (6.10) and (6.18) that
(Q1 - >\'G1)g(a) + (Qz - NGz)g(b) + (A;(O-DND?(() + )\fA:;leuDﬁ)eo

(6.19) —¥a;N) =0,
T (@ — MG)I(@) + (Q, — NGYFD) + (AsD, D + NALD,Di)e,
+ Fb; M) =0.

But B(A%D,Di + NAED,D3) + BJ(A&D,Df, + MAED, D) = KiD,Dj +
MKED, DY = 0, and consequently the two equations of (6.19) may be
written in the form of the last two equations of (6.14) involving the
parameter vector 72,.

On the other hand, suppose that y e 3,(\) and (6.14) holds. Now
the first equation of (6.14) implies that there is a (2m + 2n — k)-vector
e, such that %(a) = B¥e, and §(b) = Bfe,. Hence it follows from (6.16)
and (6.17) that (6.18) holds for this value of ¢,, Solving the equations
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(6.18) for H,,Ayfi(a) + H,A§(b) and H, Ayf(a) + HiAw9(b), multiplying
the first equation on the left by A% and Af, and the second equation
on the left by AA% and MAJ, respectively, and adding it can be shown
that the last two equations of (6.14) may be written as

Aj(e; — DyDie,) + NAf(e, — D, Dfe,) + YN — Jla;n) =0,

6.20
( ) Af(e, — DyDie,) + NAf(e, — D,.Die,) + “/ffvl + H(b;\) = 0.

In view of Lemma 6.2, the definition of the matrices D,,, D,,, and the
choice of the vector ¢, one sees after multiplying the first equation
of (6.20) by B,, the second equation by B,, and adding the two equa-
tions, that y satisfies the boundary conditions of (6.6). The conclusion
concerning D*(X) may be established in a similar manner.

The next theorem is an application of Theorem 6.1, where it is to
be noticed that if m =n and [f;;(®)], [9:;(x)] are Hermitian, then
9,0 = A, (\); in particular, if ze ,(\), then Z(;\) = Z(; \).

THEOREM 6.2. Suppose that m =n, [f;;(x)] and [g;;(x)] are
Hermitian on [a,b], k = 2n, and 2*(X) = 2 (\). Then the system
(6.6) is equivalent to the Euler-Lagrange equations and transversality
conditions for minimizing the functional

b

7 (@)@ (@) + QI®)] + 7*(D)[QF(@) + Qy(Db)] + S YO asy®

a & B=0
subject to the restraints
"1[’1?2(“) + “ﬁz?//\(b) =0 y
b n—1
7*@IG0(@) + GO + T OIET@ + GO + || S 7.

= const .

If m = n, the problem is restricted to the field of real numbers,
9:5(%) = fis(x) =0 for ¢ j, and if fi;, 9,€6C;, (5,5 =0, ---, m), then
the results of this section are the same as obtained by Zimmerberg
[12], provided that the formula (2.4) of that paper is corrected by
replacing f;, fisy, =+ fact BY fi — Niy, fivs — My, 200y fues — My,
respectively. If, moreover, g, (x) =0 for 72 = 1, then these are the
same results as obtained by Reid [6, Section 11].

7. An application. In this section the results of Section 6 and
a theorem of Reid [7] will be used to show that the boundary condi-
tions for'a rather large class of linear vth order differential operators
may be written in the form given by Theorem 6.1.

Reid [7] has considered vth order linear differential operators L of
the form



236 JOHN S. BRADLEY

.1 Lyl = 3, 6,@y” vz1,

with integrable coefficients. Functions 4;(y;p), (¢ =10,1,2, --+), were
defined as

Ay; p) = p(x)y , A:,(y; p) = (p(@)Y")*"
Ay (3 D) = %[(p(x)y”—“)m + (@), r=1,2---),

with the understanding that pe U, in the definition of 4, and 4,,_,.
The primary result of that paper, and the one of most interest here,
is Theorem 3.2, to the effect that if the polynomials 1, x, ---, 2"/nl,
where n = v/2 or n» = (v + 1)/2 according as v is even or odd, belong
to the domain of the adjoint operator T3, then there exist functions
7w, (7=0,.+,v), with m,e Uy, Ty_€W,, €U, such that L[y] is
given by

(1.2) Lly] = % Ai(y; 5)
while U, is contained in the domain of the adjoint operator 7y and

(1.3) Ti() = LAz = 5 Az (—1/F)  for zed,.

In view of the differentiability properties of #;, (=1, ---,v), it
follows that (7.2) and (7.3) are of the form (6.2) and (6.4), respectively,
which in turn reduce to (2.2) and (2.4), respectively, provided that
m=mn, ¢;;() =0 when =1 or =1, and for ¢,75=0, -+, 7 one
defines f;;(z) as follows: fi(%) = (—1)'m.u(®); fiui(®) = (—1)(1/2)7x;_,(2),
(=1, -+, 0); fiir(®) = (=D (1/2)71,(2), (¢ = 0, -+, n — 1); fi;(x) = 0,
(j<i—1and >4+ 1).

In particular, if v = 2n and 7,,(x) = 0, then the vector #(x) con-
sists of y(x) and its first » — 1 derivatives. Similarly, Z(x) consists
of z(x) and its first n — 1 derivatives. The coordinates %;(z) of the
n-vector %(x) are defined by (2.1), and may be expressed in terms of
y(x) and its first 2n — j derivatives, (j =1, ---, » — 1), and similarly
for the coordinates of Z(x), defined by (2.3). Consequently, L[y] and
L*[z] are defined for y,ze,.

If v=2n —1, and 7,(x) = 0, then L is an operator of odd order
and we modify the above defined matrix [f;;(x)] in the following way:
delete the last row, replace f,_,.(*) with (—1)""'m,,_,(x), and replace
Sucinoi(®) with (—1)"%(7,,_s(x) + (1/2)7},_(x)). This change from an
(n + 1) X (n + 1) matrix [f;;(x)] to the n X (» + 1) matrix [ 7] changes
neither the value of L[y] nor the value of L*[z]. Now if =, ,e%,,
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then 7, ,e,, so that #%,(x) may still be differentiated out and
written in terms of ¥ and its first 2n — j derivatives, (j =1, :+-, n — 2),
and similarly Z;(z), (=1, ---,n — 1), may be written in terms of z(x)
and its first 2n — ¢ derivatives. Consequently we still have that L
and L* have the common domain 2,.

If now it is assumed that there is an ¢ > 0 such that |g.(z)| = ¢
almost everywhere, then it follows from Theorem 3.2, or Theorem 4.1
of [7], that the domain of the adjoint operator T is 2,. Moreover,
in view of the formulas which give the canonical variables #;(x) and
Z.(x) in terms of y(x), «--, ¥y I(x) and z(x), -+, 2"V (x), respectively,
we see that there exist nonsingular linear transformations 7' and T,
which transform the vector functions (y, ', -+, y¥*™ ) and (2,2, ---,
2*7") into the vector functions (y, ¥, «++, ¥y, ¥, +++, ¥.) and (z,2’, - -,
2mY Z, +--, Z,), respectively. Therefore, in view of Theorem 3.2 of
Reid [7] and Theorem 6.1, it follows that boundary conditions for a
vth order differential operator of the type deseribed above which involve
linearly v and its first v — 1 derivatives at two points may be written
as (6.14), and the adjoint boundary conditions may be written as (6.15).
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