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GAUSSIAN MEASURES IN FUNCTION SPACE

L. A. SHEPP

Two Gaussian measures are either mutually singular or
equivalent. This dichotomy was first discovered by Feldman
and Hajek (independently). We give a simple, almost formal,
proof of this result, based on the study of a certain pair of
functionals of the two measures. In addition we show that
two Gaussian measures with zero means and smooth Polya-type
covariances (on an interval) are equivalent if and only if the
right-hand slopes of the covariances at zero are equal.

The H and J functionals* Two probability measures μ0 and
μx on a space (Ω, &) are called mutually singular (μ0 _L μd if there
is a set ΰ e & for which μo(B) — 0 and μλ{Ω — B) = 0. The measures
are called mutually equivalent (μ0 ~ μ±) if they have the same zero
sets, i.e., μo(B) = 0 if and only if μ^B) = 0.

Setting μ = μ0 + μx we may define the Radon-Nikodym derivatives,

(1.1) XQ = dμo/dμ , X, = dμjdμ .

LEMMA 1. ( i ) μ0 J_ μ1 if and only if XQ'X1 = 0 a.e. (μ).
(ii) μQ — μ1 if and only if XQ-XX > 0 a.e. (μ).

In (ii) suppose μ0 ~ μl9 If E = {Xo = 0} then μo(E) = l Xodμ =[0.

Thus μx(E) = 0 and also μ{E) = μo(E) + μ1(E) = 0. Similarly JE£J{X1=0} = 0
and so XQ ^L > 0 a.e. (μ). The proofs of the remaining assertions are
as easy.

We now define the functionals H (Hellinger [6], see also [9] and
[10] and J (Jeffreys [8], see also [5]).

(1.2) H=

(1.3) J - J(X0 -

The integrand of J is of course to be taken as + oo if either XQ

or Xλ is zero but not both. As such it is well defined and nonnegative
a.e. (μ) and so 0 ^ J ^ oo. By Schwarz's inequality, 0 £ H ^ 1. We
remark that μ could have been chosen in (1.2) and (1.3) as any measure
dominating both μ0 and μl9
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LEMMA 2. ( i ) μQ J_ μ1 if and only if H = 0.
(ii) μ0 ~ μ1 if J < co.

Clearly H = 0 if and only if X, Xλ = 0 a.e. (μ). Similarly if J< ^
then XQ X1 > 0 a.e. (μ) since the integrand of J must be finite a.e.
(μ). An appeal to Lemma 1 completes the proof.

It follows from the lemma that if J < co then H > 0. The
converse of this assertion is not true in general but is true if the
measures μQ and μt are Gaussian. This is all that remains to prove
the dichotomy theorem.

We shall now construct the general Gaussian measure. This
paragraph is included in order to introduce notation and follows [2, p. 72],
If I is any set we take Ω to be the set of all real functions, X, on
I and & to be the smallest σ-field on which each coordinate X(t),
t e I is measurable. If p is any real function on I x / for which the
matrix p* = p*i5 = p(ti\ t3), i — 1, , n, j = 1, , n, has determinant
I p* I ̂  0 for each finite set π = {t19 , tJ c I, n = 1,2, , then p
is called nonnegative definite. Given such a function p and a real
function m on J we may define a Gaussian measure μ = /̂ (̂ o, m) as
follows. If &(π) is the σ-field generated by X(t),teπ, then we
define μ on generating sets of &(π) by

alf , X(ίn) ^ an} = [' . . . f"* p*(xl9 . . . , . τ j i^ . .
J —oo J - c o

where p~ is the Gaussian density,

(1.4) p*(x) = (2π)-w/21 p* |-1/2 exp ( - — ((/t)*)"1^ - w s), a? -

and m* = (m^) , «, m(ίw)), a? — (^, , xn). This defines ^ in a
consistent way on each &(π). There is a unique extension of μ to
a measure on & which is called the Gaussian measure with covariance
p and mean m.

Suppose now that μi9 i — 0, 1, are two Gaussian measures on
(Ω, &). We define μπ

{ to be the restriction of μ{ to ^ ( T Γ ) , i = 0, 1,
and Xf = dμϊ/dμ, i = 0, 1. It is easily checked that X>, π c Jo is a
martingale net and by a theorem of Helms [7], Xf —> Xi, i = 0, 1, in
L'(μ). We denote for each π c l , π finite,

(1.5) fΓ(τr)

(1.6) J(π) = J(XcΓ - -Xis) log (Xo

π/Xΐ)dμ .

Using Jensen's inequality for conditional expectations, see [13], it is



GAUSSIAN MEASURES IN FUNCTION SPACE 169

not difficult to prove that for π1 S π2, H{πλ) ^ H(π2) ^ if; J(πx) g
J(π2) g J. Using the martingale convergence theorem we easily obtain
with 7Γ running through all (finite) subsets of /,

(1.7) H = inf H(π) , J - sup J(π) .
jrcί -CI

Assuming for a moment that p0 and pλ are strictly positive-definite,
i.e., I pi I > 0, I pi I > 0, for all i r c J , we may evaluate -ff(π) and J(π).
Let m~ = mj — m? and p = (po + ρλ)j2, p" = (jθj + (0Γ)/2. Then

(1.8) (H(π)Y = {| tf I1'21 ̂  |"V| (f |} exp ( - i - ^ ) - 1 ™ " ,

J(τr) = i-
(1.9)

4 ' 1 + (^)-1)m*, m") .

Using (1.7) we shall show that if H > 0 then / < co / As remarked
before this will complete the proof of the dichotomy theorem.

Define the quantities

(1.10) D(π)=\ p* |7I Po\\pΐ\, E{π) = ((p*)-1™*, m") .

Then (iϊ(π ))-4 = D(π) expEr(τr), and looking for a moment at the case
m = 0 we obtain D(ττ) ^ 1, since £?(7r) then vanishes and H(π) ^ 1.
Since D(π) does not depend on m we must have D(π) ^ 1 in general.
Since ^o77)"1 is positive-definite, expE(π) ^ 1 also, i.e.,

(1.11) D(π) ^ 1 , exp£;(7r) ^ 1 .

Using (1.6) this shows that if H > 0 there is a number M inde-
pendent of π such that

(1.12) D(π) ^ Λf, ^(TΓ) ^ ilf.

Now define the quantities

(1.13) T(π) = tr{(pl - p

(1.14) Q(π) = ({(pZ)-1 +

and not that 2J(π) = Γ(π) +
If λj > 0, , λβ > 0, are the eigenvalues of plipl)'1 then

(1.15) T(π) = ^(λy + λ j 1 - 2) = J (

1 The author benefitted here from reading an unpublished manuscript of T. Kadota.
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(1.16) D(π) =

and so

(1.17) T(π) ^ 4 Π (1 4- (λ, - l)2/4λy) = W(π) ^ AM.
3

Thus T(π) is uniformly bounded. To show that Q(π) is also we
simultaneously diagonalize the quadratic forms E(π) and Q(π). Let
j"i> " > i"» be the eigenvalues of pπ((Po)"1 + (pi)"1) a n ( i χu , #* corre-
sponding eigenvectors (which can be properly chosen in the following
even if the eigenvalues are not distinct). We normalize xly ••-,&%, so
that ((p^Xk, xk) = 1, k = i , , w. Then

(1.18) £?(7r) = 2^1 , Q(π) = Σμkh\

where mπ = Σhkxk defines hk, k = 1, , n. The eigenvalues /.< can be
written in terms of the eigenvalues λ. In fact since

(1.19) Pπ((Po)"1 + (i^ί)"1) — I + —Po(pΐ)"1 + —(poipΐ)"1)"1

we have

μ = 1 + i-λ + i - λ - - 2(1 + (λ - l)2/4λ)
Δ Δ

generically. Thus for each k = 1, 2, , ny

(1.20) —μk ^ Π (1 + ( ^ - l)2/4λ, ) - Z>(τr) ^ M

2 i

and so by (1.12) and (1.18),

(1.21) Q(π) - Σμkhl ^ 2ME(π) ^ 2M2 .

Thus J(π) = (1/2) T(π) + (l/2)Q(π) ^ 2M + M2 is uniformly bounded
and so J < ©o if fl" > 0. This completes the proof in case | /Oj | | |θf | > 0
for all 7Γ.

Returning now to the case when pQ and px are not both strictly
positive-definite we may argue as follows. If there is a finite set π
for which exactly one of \ p%\ and | pi \ vanishes then μ0 1 μx in a
trivial way. In the opposite case we can choose a maximal set Iocz I
with the property that pQ and px are strictly positive-definite on IQ x Jo.
The proof above shows that either μ0 _L μ1 or /i0 ^ μ1 relative to
^ ( I o ) . It is easy to show, however, that singularity or equivalence
relative to ^ ( I o ) is the same as that relative to & — &(I). We
have therefore proved the following theorem.
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THEOREM. If p0 and ρx are real-valued and nonnegative definite
on I x I and mQ and mx are real-valued functions on I then the
Gaussian measures μ0 — μQ(p0, m0) and μ± — μx{pu mx) are either
mutually equivalent or mutually singular. They are mutually
equivalent or mutually singular according as

(1.22) H > 0 or H = 0

or equivalently according as

(1.23) J < GO or J = co ,

tvhere H and J are given by (1.5)-(1.7).

The criterion (1.23) was obtained by Hajek and (1.22) by Rao
and Varadarajan and independently by the author. There are two
special cases of (1.22) which deserve mention. If the mean m0 and
mι are zero then H(π) does not involve inverting matrices. If ô = Pi
then the problem has been studied and solved by Grenander [4]. It
is a corollary of (1 22) that these special cases include the general
case as the following theorem of Rao and Varadarajan shows.

THEOREM. Denoting p = (pQ + ρ^/2, then

(1.24) μ(p0, m0) - μ(pu m,)

if and only if

(1.25) μ(pQ, 0) - μ{ρu 0) and μ(p, m0) - μ(p, mx) .

To prove this we write H = inf H(π) where

(1.26) H(π) - (D (π))-1/4(exp E{π)Ylli .

Now D(π) ^ 1 and exp£7(τr) ^ 1 by (1.11) and so H > 0 if and only if

(1.27) inf CD(π))-1/4 > 0 and inf (exp £;(7r))-1/4 > 0.

But inf D(π)~1/4 > 0 if and only if μ(p0, 0) ~ μ{pu 0) since in the case
m — 0, H(π) is precisely (D(π))"1/4 (since D(π) does not depend on m
in (1.8)). Similarly, inf (expS(π))-1 / 4 > 0 if and only if μ(p,mo)~
μ(p,mj) since in the case p0 = px — p, H(π) becomes (expϋ^Tr))-1'4.
Using the theorem and (1.22) in these two special cases we obtain
(1.24).

The referee observed that we may take p~p0 in the theorem.
This simplifying observation follows easily from the fact that — is an
equivalence relation.
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2. Some examples. We recall the Polya class, P, of positive-
definite functions on I x I, where I is the unit interval. A continuous
function p is in P if p(t; s) is a function only of | ί — s | (also denoted
by p) and

(1) <o = p(t) is convex, 0 ^ t ^ 1.
(2) 0 ^ /0(8) ^ |θ(t), 0 ^ t ^ 8 ^ 1.
If Pi e P, i — 0,1, we may ask whether μQ — μ(p0, 0) and μt — μ(pu 0)

are singular or equivalent. This question is partially answered by the
following theorem.

THEOREM. If μ{ = μ(pi9 0) where pi e P, i — 0,1, and if in addition
pi has a bounded second derivative and is positive, then

(2.1) μ0 - μx if and only if $(0+) = ρ[(0+) .

REMARK. The theorem becomes false if one drops the assumption
of bounded second derivatives as the case

pQ(u) =

1 — u 0 <u < —
~ ~ 2

(2 - M)/3 — S u ^ 1 '

shows. Here one can detect the presence of the jump in the derivative
of ô by techniques similar to those used by Baxter [1] for jumps at
zero. Here μ0 1 μx although ^0(0+) = p[(Q+) and pt e P, i — 0, 1. It
should be possible to eliminate the positivity condition, however.

Using the continuity of p{ it can be shown that it is enough to
consider equi-spaced partitions π in evaluating H(π). The determinants
involved are then estimated by using the following theorem of H. O. Pollak
and the author [11].

THEOREM. If pe P has a uniformly bounded second derivative
and is positive then

Here πn — {0, 1/n, 2/n, , 1} is the regular partition of / into n
intervals. As usual an bn if an — 0(6%) and bn — 0(α%).

One can prove more general theorems using these techniques but
for simplicity of statement we have presented the results in this way.
It is hoped that further techniques will be developed for estimating
the determinants | p*n | which will settle the dichotomy question in
more general cases.
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