SIMPLE n-ASSOCIATIVE RINGS

D. L. Outcalt

This paper is concerned with certain classes of nonassociative rings. These rings are defined by first extending the associator $(a, b, c)=(a b) c-a(b c)$. The n-associator $\left(a_{1}, \cdots, a_{n}\right)$ is defined by

$$
\begin{align*}
& \left(a_{1}, a_{2}\right)=a_{1} a_{2}, \\
& \left(a_{1}, \cdots, a_{n}\right)=\sum_{k=0}^{n-2}(-1)^{k}\left(a_{1}, \cdots, a_{k}, a_{k+1} a_{k+2}, \cdots, a_{n}\right) . \tag{1.1}
\end{align*}
$$

A ring is defined to be n-associative if the n-associator vanishes in the ring. It is shown that simple 4 -associative and simple 5 -associative rings are associative; simple $2 k$-associative rings are ($2 k-1$) associative or have zero center; and simple, commutative n-associative rings, $6 \leqq n \leqq 9$, are associative. The concept of rings which are associative of degree $2 k+1$ is defined, and it is shown that simple, commutative rings which are associative of degree $2 k+1$ are associative. The characteristic of the ring is slightly restricted in all but one of these results.

The concepts of the n-associator and n-associative rings were defined by A. H. Boers [1; Ch. 3 and Ch. 4]. Our results extend Boers’ main result that an n-associative division ring is associative with minor restriction on the characteristic [1; Th. 6]. We do not consider 2associative rings.

To obtain our results, it is necessary to extend the concept of the n-associator. In a ring R, define $S(2 j+1,2 k+1), 1 \leqq j \leqq k$, by defining $S(2 j+1,2 j+1)$ to be the set of all finite sums of $(2 j+1)$ associators with entries in R, and then by defining $S(2 j+1,2 k+1)$, $k>j$, to be the set of all finite sums of $(2 j+1)$-associators $\left(a_{1}, \cdots, a_{2 j+1}\right)$ such that $\left(a_{1}, \cdots, a_{2 j+1}\right) \in S(2 j+1,2 k-1)$ and such that at least one of the $2 k-1$ entries of ($a_{1}, \cdots, a_{2 j+1}$) is in $S(3,3)$. For example, $\left(\left(\left(a_{1}, a_{2}, a_{3}\right), a_{4}, a_{5}\right), a_{6},\left(a_{7}, a_{8}, a_{9}\right)\right) \in S(3,9)$.

Clearly, a ring R is $(2 n+1)$-associative if and only if $S(2 n+1,2 n+1)=0$ in R. This leads us to call a ring $R(2 n+1)$ associative of degree $2 k+1$ if $S(2 n+1,2 k+1)=0$ in R. No mention of degree will be made in case $k=n$.

[^0]Of particular interest are rings which are associative (3-associative) of degree $2 k+1$. In the first place, this in itself is an interesting extension of the concept of associativity. Consider the 4 -dimensional algebra A over an arbitrary field with basis $a_{1}, a_{2}, a_{3}, a_{4}$ such that $a_{1}^{2}=a_{2}, \alpha_{1} \alpha_{2}=a_{3}-\alpha_{4}, a_{2} a_{1}=a_{3}$, and all other products zero. It can be verified that $S(3,5)=0$ in A but that A is not associative. Also, it turns out that a ring which is associative of degree $2 k+1$ is $(2 k+1)$-associative, but not conversely.
2. Preliminaries. We will need the following three identities derived by Boers.

$$
\begin{align*}
& \left(a_{1}, \cdots, a_{n}\right)=\sum_{k=1}^{n-3}\left(a_{1}, \cdots, a_{k},\left(a_{k+1}, a_{k+2}, a_{k+3}\right), a_{k+4}, \cdots, a_{n}\right) \tag{2.1}\\
& \left(a_{1}, \cdots, a_{n}\right)=\sum_{k=0}^{(1 / 2) n-1}\binom{(1 / 2) n-1}{k}\left(a_{1}, \cdots, a_{n-2 k-1}\right)\left(a_{n-2 k}, \cdots, a_{n}\right) \tag{2.2}
\end{align*}
$$

for even n where $\binom{r}{s}$ denotes the binomial coefficient [1; Ch. 3]. In a commutative ring, we have

$$
\begin{equation*}
\left(a_{1}, \cdots, a_{n}\right)=(-1)^{[(1 / 2) n-(1 / 2)]}\left(a_{n}, \cdots, a_{1}\right) \tag{2.3}
\end{equation*}
$$

where $[x]$ denotes the greatest integer $\leqq x[2 ;$ Th. $A]$.
Next, we will need
Lemma 2.1. $S(2 j+1,2 k+1) \subset S(2 m+1,2 n+1), 1 \leqq m \leqq j$, $m \leqq n \leqq k$.

Proof. It is immediate from the definition of $S(2 j+1,2 k+1)$ that $S(2 j+1,2 k+1) \subset S(2 j+1,2 n+1), j \leqq n \leqq k$. Hence we need only show that $S(2 j+1,2 n+1) \subset S(2 m+1,2 n+1), 1 \leqq m \leqq j$. The result is obvious if $j=m$. Assume that $S(2 j-1,2 n+1) \subset$ $S(2 m+1,2 n+1), j>m$. Then by (2.1), $\quad S(2 j+1,2 n+1) \subset$ $S(2 j-1,2 n+1) \subset S(2 m+1,2 n+1)$, and we are finished.

Let A and B be subsets of a ring. Define $A B$ to be the set of all finite sums of elements of the form $a b$ such that $a \in A, b \in B$.

Let $I(3,2 k+1)=S(3,2 k+1)+S(3,2 k+1) R$. The next lemma is a generalization of the fact that $I(3,3)$ is an ideal of an arbitrary ring R [4; p. 985].

Lemma 2.2. $I(3,2 k+1)$ is a right ideal of an arbitrary ring R for $k=1,2, \cdots$.

Proof. Let $I=I(3,2 k+1), S=S(3,2 k+1)$. We have

$$
I R \subset S R+S R \cdot R \subset S R+(S, R, R)
$$

However, by Lemma 2.1, $(S, R, R) \subset S$. Hence $I R \subset I$.
The key to our results is
Lemma 2.3. If R is a simple, commutative ring, and if $A=$ $\{a \in R \mid a S(3,2 k+1)=0\}$, then $A=0$ or $S(3,2 k+1)=0$.

Proof. We can assume that $R=I(3,2 k+1)$, for otherwise we are finished by Lemma 2.2. If K is the ideal generated by $A R$, then $K \subset S(3,3)$. Indeed, $A R=A I(3,2 k+1) \subset S(3,3)$. Define $R_{x}: y \rightarrow y x$. Assume that we have shown that $a R_{x_{1}} \cdots R_{x_{n}} \in S(3,3)$ for $a \in A$ and for every choice of n elements $x_{1}, \cdots, x_{n} \in R, n>1$. Then

$$
\begin{aligned}
\left.a R_{x_{1}} \cdots R_{x_{n}} R_{x_{n+1}}=\left(\left(a R_{x_{1}} \cdots R_{x_{n-1}}\right)\right)_{n}\right) x_{n+1} \\
\quad=\left(a R_{x_{1}} \cdots R_{x_{n-1}}, x_{n}, x_{n+1}\right)+a R_{x_{1}} \cdots R_{x_{n-1}} R_{x_{x_{n}} x_{n+1}} \in S(3,3) .
\end{aligned}
$$

If $K=0$, then $A R=0$ which implies $A=0$ and we are finished. Hence assume $K=R$. Thus $R=S(3,3)$ which implies $R=S(3,2 k+1)$ by induction since each element can now be replaced by a sum of associators. Therefore $A R=0$, and hence $A=0$.

To ease the computations of the proofs which follow, we define

$$
T(n, i, j)=\sum_{m=i}^{j}\left(a_{1}, \cdots, a_{m},\left(a_{m+1}, a_{m+2}, a_{m+3}\right), a_{m+4}, \cdots, a_{n}\right)
$$

where $0 \leqq i \leqq j \leqq n-3$. Note that (2.1) becomes $\left(a_{1}, \cdots, a_{n}\right)=$ $T(n, 0, n-3)$. The next lemma, whose proof follows easily from the definition of $T(n, i, j)$ (with the use of (2.3) in the case of part (d)), contains all the additional facts about $T(n, i, j)$ that we will need.

Lemma 2.4.
(a) $T(n, i, j)-T(n, i, k)=T(n, k+1, j), k<j$;
(b) $T(n, i, j)-T(n, k, j)=T(n, i, k-1), i<k$;
(c) $S(2 k+1,2 k+3)$ consists of all finite sums of elements of the form $T(2 k+3, i, i), i=0,1, \cdots, 2 k$; and
(d) if $0=T(n, i, j) a$ is an identity in a commutative ring, then so is $0=T(n, n-3-j, n-3-i) a$.

We will not cite Lemma 2.4 when we use it.
Finally, the nucleus N of a ring R is defined by $N=\{u \in$ $R \mid(u, x, y)=(x, u, y)=(x, y, u)=0$ for all $x, y \in R\}$. The center C of R is defined by $C=\{c \in N \mid c x=x c$ for all $x \in R\}$.
3. n-Associative rings. In what follows, we will use the fact that (1.1) implies that if R is an n-associative ring, then R is k-associative for all $k \geqq n$.

Theorem 3.1. If R is a simple 4-associative or 5-associative ring of characteristic not 2, then R is associative.

Proof. By (2.2) with $n=6$, we have

$$
\begin{equation*}
0=S(3,3)^{2} \tag{3.1}
\end{equation*}
$$

Since $I(3,3)$ is an ideal of R, we can assume that $R=I(3,3)$, for otherwise $S(3,3)=0$. Hence (3.1) yields $S(3,3) R \subset S(3,3)$. Therefore $R=S(3,3)$, but then we have $S(3,3) R=0=R S(3,3)$ by (3.1). Thus $S(3,3)=0$.

Theorem 3.1 extends a result of Boers [3; p. 126] who has also shown it to be false for characteristic 2.

Theorem 3.2. Let R be a simple $2 k$-associative ring for $k \geqq 2$. Then $C=0$ or R is $(2 k-1)$-associative where C is the center of R.

Proof. We first show that if N is the nucleus of R, then any $(2 j+1)$-associator with an entry $u \in N$ vanishes. Indeed, if $j=1$, the result follows by the definition of N. Assume that we have established the result for $j=i$. By (2.1), $\left(a_{1}, \cdots, a_{2 i+3}\right)=T(2 i+3,0,2 i)$. Each n-associator in $T(2 i+3,0,2 i)$ is a $(2 i+1)$-associator. Hence if $u \in N$ is an entry of $\left(a_{1}, \cdots, a_{2 i+3}\right)$, then $\left(a_{1}, \cdots, a_{2 i+3}\right)=0$.

Now, use (2.2) with $n=2 k$. In the resulting identity, let $a_{2 k} \in C$. Then, since $C \subset N$, we have $S(2 k-1,2 k-1) C=0$. Therefore $C=$ 0 or $S(2 k-1,2 k-1)=0$ since R is simple and the annihilators of C may be shown to form an ideal of R.

Theorems 3.1 and 3.2 imply
Corollary 3.1. If R is a simple 6-associative ring of characteristic not 2 , then $C=0$ or R is associative.

We now turn our attention to commutative rings.
THEOREM 3.3. If R is a simple, commutative 6-associative or 7associative ring of characteristic not 2 or 3 , then R is associative.

Proof. By Theorem 3.1, it is sufficient to show that $S(5,5)=0$.

Let $n=8$ and 10 in (2.2) to obtain

$$
\begin{equation*}
0=\left(a_{1}, \cdots, a_{5}\right)\left(a_{6}, a_{7}, a_{8}\right)+\left(a_{1}, a_{2}, a_{3}\right)\left(a_{4}, \cdots, a_{8}\right) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
0=S(5,5)^{2} \tag{3.3}
\end{equation*}
$$

Next, use (2.1) and (3.3) to obtain $T(5,0,2) S(5,5)=0$ which yields $T(7,0,2) S(3,3)=0$ upon application of (3.2). Hence we may assume that $T(7,0,2)=0$, for otherwise $S(3,3)=0$ by Lemma 2.3. Using (2.1), we compute $0=T(7,0,4)-T(7,0,2)=T(7,3,4)$; hence $T(7,0,1)=0$ by (2.3). Thus $T(7,2,2)=0$ since $T(7,2,2)=T(7,0,2)-$ $T(2,0,1)$. Hence we have $T(5,2,2) S(5,5)=0$ using (3.2). Thus $S(3,5) S(5,5)=0$ upon using (2.3), (2.1) with $n=5$, and (3.3), in that order. Application of Lemma 2.3 and then Lemma 2.1 completes the proof.

THEOREM 3.4. If R is a simple, commutative 8-associative or 9associative ring of characteristic not 2,3 , or 5 , then R is associative.

Proof. By Theorem 3.3, it is sufficient to show that $S(7,7)=0$.
If we let $n=10,12$, and 14 in (2.2), we get

$$
\begin{align*}
0= & 2\left(a_{1}, \cdots, a_{7}\right)\left(a_{8}, a_{9}, a_{10}\right)+3\left(a_{1}, \cdots, a_{5}\right)\left(a_{6}, \cdots a_{10}\right) \tag{3.4}\\
& +2\left(a_{1}, a_{2}, a_{3}\right)\left(a_{4}, \cdots, a_{10}\right) \\
0= & \left(a_{1}, \cdots, a_{7}\right)\left(a_{8}, \cdots, a_{12}\right)+\left(a_{1}, \cdots, a_{5}\right)\left(a_{6}, \cdots, a_{12}\right), \tag{3.5}
\end{align*}
$$

and

$$
\begin{equation*}
0=S(7,7)^{2} \tag{3.6}
\end{equation*}
$$

Our first goal is to establish

$$
\begin{equation*}
S(7,9) S(5,5)=0=S(7,7) S(5,7) \tag{3.7}
\end{equation*}
$$

Applying (2.1) to (3.6) yields $T(7,0,4) S(7,7)=0$, to which we apply (3.5) to obtain $T(9,0,4) S(5,5)=0$. Using (2.1), we compute $0=(T(9,0,6)-T(9,0,4)) S(5,5)=T(9,5,6) S(5,5) \quad$ which implies $T(9,0,1) S(5,5)=0$. Then $\quad 0=(T(9,0,4)-T(9,0,1)) S(5,5)=$ $T(9,2,4) S(5,5)$, to which we apply (3.5) to obtain $T(7,2,4) S(7,7)=0$. Hence we have $T(7,0,2) S(7,7)=0$. Using (3.5) again yields $T(9,0,2) S(5,5)=0$. Thus we can compute $0=(T(9,0,2)-T(9,0,1)) S(5,5)$ to obtain

$$
\begin{equation*}
T(9,2,2) S(5,5)=0=T(9,4,4) S(5,5) \tag{3.8}
\end{equation*}
$$

Computing $0=(T(9,2,4)-T(9,2,2)-T(9,4,4)) S(5,5)$ yields

$$
\begin{equation*}
0=T(9,3,3) S(5,5) \tag{3.9}
\end{equation*}
$$

Applying (3.5) to (3.9), we have $T(7,3,3) S(7,7)=0$, from which we obtain $T(7,1,1) S(7,7)=0$, and hence (3.5) implies

$$
\begin{equation*}
0=T(9,1,1) S(5,5)=0 \tag{3.10}
\end{equation*}
$$

Computing $0=(T(9,0,1)-T(9,1,1)) S(5,5)$ yields $T(9,0,0) S(5,5)=$ 0 which, along with (3.8), (3.9), and (3.10), implies (3.7) after using (3.5).

Our next goal is to establish

$$
\begin{equation*}
0=S(5,7)^{2} \tag{3.11}
\end{equation*}
$$

Let $a_{1}=\left(x_{1}, x_{2}, x_{3}\right), a_{i}=x_{i+2}, i>1$ in (3.4); then let $a_{1}=x_{1}, a_{2}=$ $\left(x_{2}, x_{3}, x_{4}\right), a_{i}=x_{i+2}, i>2$ in (3.4); and then let $a_{1}=x_{1}, a_{2}=x_{2}, a_{3}=$ $\left(x_{3}, x_{4}, x_{5}\right), a_{i}=x_{i+2}, i>3$ in (3.4). Add the resulting identities and apply (2.1) to obtain

$$
\begin{align*}
0= & 2 T(9,0,2)\left(x_{10}, x_{11}, x_{19}\right)+3 T(7,0,2)\left(x_{8}, \cdots, x_{12}\right) \tag{3.12}\\
& +2\left(x_{1}, \cdots, x_{5}\right)\left(x_{6}, \cdots, x_{12}\right)
\end{align*}
$$

where the $T^{\prime} s$ are now written in terms of the $x_{i}^{\prime} s$. Substitute (x_{10}, x_{11}, x_{12}) for x_{10}, x_{13}, for x_{11}, and x_{14} for x_{12} in (3.12); then substitute $\left(x_{11}, x_{12}, x_{13}\right)$ for x_{11} and x_{14} for x_{12} in (3.12); and then substitute (x_{12}, x_{13}, x_{14}) for x_{12} in (3.12). Add the resulting identities, and use (2.1) and (3.7) to obtain

$$
\begin{equation*}
0=T(7,0,2) \sum_{i=9}^{11}\left(x_{8}, \cdots,\left(x_{i+1}, x_{i+2}, x_{i+3}\right), \cdots, x_{14}\right) . \tag{3.13}
\end{equation*}
$$

Applying (2.1) and (3.7) to (3.13) and then using (2.3), we get, after subtracting the resulting identity from (3.13) with subscripts relabeled,

$$
\begin{equation*}
0=T(7,0,2)\left(x_{8}, x_{9},\left(x_{10}, x_{11}, x_{12}\right), x_{13}, x_{14}\right) \tag{3.14}
\end{equation*}
$$

If we apply (3.4) to (3.14), then (2.1) with $n=5$ and (3.7), we obtain $0=T(9,0,2)\left(\left(x_{10}, x_{11}, x_{12}\right), x_{13}, x_{14}\right)$ which yields

$$
\begin{equation*}
0=T(9,0,2) S(3,5) \tag{3.15}
\end{equation*}
$$

upon using (2.3) and then (2.1) and (3.7).
Application of (3.4) to (3.15); then use of (2.1) and (3.7) followed by (2.3) yields $T(7,0,2) S(5,7)=0$. Hence using (2.1) and (3.7) we compute $0=(T(7,0,4)-T(7,0,2)) S(5,7)=T(7,3,4) S(5,7)$ which yields

$$
\begin{equation*}
0=T(7,0,1) S(5,7) \tag{3.16}
\end{equation*}
$$

Computing $0=(T(7,0,2)-T(7,0,1)) S(5,7)$, we obtain

$$
\begin{equation*}
0=T(7,2,2) S(5,7) \tag{3.17}
\end{equation*}
$$

Returning to (3.15), we can assume that $T(9,0,2)=0$, for otherwise $S(7,7)=0$ by Lemma 2.3 and Lemma 2.1. Hence we have $T(9,4,6)=0$. Computing $0=T(9,0,6)-T(9,0,2)-T(9,4,6)$, we obtain $T(9,3,3)=0$ which we apply to (3.4) to get

$$
\begin{equation*}
0=2\left(x_{1}, x_{2}, x_{3}\right) c+3 T(7,3,3)\left(s_{1}, \cdots, s_{5}\right) \tag{3.18}
\end{equation*}
$$

where $c=\left(\left(x_{4}, x_{5}, x_{6}\right), x_{7}, s_{1}, \cdots, s_{5}\right)$ and where at least one of s_{1}, s_{2}, s_{3}, s_{4}, or $s_{5} \in S(3,3)$. Let $x_{3}=z \in S(3,3)$ in (3.18) and use (3.17) to obtain $0=\left(x_{1}, x_{2}, z\right) c$, to which we apply (2.3) and then (2.1) and (3.7) to get $S(3,5) c=0$. Since $c \in S(3,5)$ by Lemma 2.1, Lemma 2.3 implies that $c=0$. Hence (3.18) yields $T(7,3,3) S(5,7)=0$, and therefore $T(7,1,1) S(5,7)=0$. Now, recalling (3.16), we compute $0=$ $(T(7,0,1)-T(7,1,1)) S(5,7)$ to obtain $T(7,0,0) S(5,7)=0$, but then $T(7,4,4) S(5,7)=0$, and we have established (3.11).

Equations (3.4) and (3.11) yield

$$
0=\left(\left(x_{4}, x_{5}, x_{6}\right), x_{7}, x_{8}\right)\left(x_{9}, x_{10}, s_{1}, s_{2}, x_{1}, x_{2}, x_{3}\right)
$$

where s_{1} or $s_{2} \in S(3,3)$ since $c=0$, to which we apply (2.3) and then (2.1) and (3.7) to obtain $0=\left(x_{9}, x_{10}, s_{1}, s_{2}, x_{1}, x_{2}, x_{3}\right) S(3,5)$ which in turn, using (3.4) and (3.11), yields $0=\left(x_{9}, x_{10}, s\right) T(9, i, i)$ for $i=4,5$, and 6 and where $s \in S(3,3)$. Thus, by (2.3) and then (2.1) and (3.7), we have $S(3,5) T(9, i, i)=0$ for $i=4,5$, and 6 . Therefore, we have $S(3,5) S(7,9)=0$ since $T(9,3,3)=0$. Lemmas 2.3 and 2.1 then imply that

$$
\begin{equation*}
0=S(7,9) \tag{3.19}
\end{equation*}
$$

Equations (3.4) and (3.19) imply $0=S(5,5) T(7, i, i), \quad i=0,1$, which yields

$$
\begin{equation*}
0=S(5,5) T(7, i, i), \quad i=0,1,3,4 \tag{3.20}
\end{equation*}
$$

Using (2.3), (3.4), and (3.19), we compute

$$
3 T(7,2,2) S(5,5) \subset-2 T(5,2,2) S(7,7) \subset 2 T(5,0,0) S(7,7)=0
$$

the equality by (3.4), (3.19), and (3.20). Hence

$$
\begin{equation*}
S(5,7) S(5,5)=0 \tag{3.21}
\end{equation*}
$$

Finally (3.4), (3.19), and (3.21) imply that $S(3,5) S(7,7)=0$. Lemma 2.3 and Lemma 2.1 then imply $S(7,7)=0$, and we are finished.

Theorems 3.2, 3.3, and 3.4 imply

Corollary 3.2. If R is a simple, commutative 10-associative ring of characteristic not 2,3 , or 5 , or if R is a simple, commutative 8-associative ring of characteristic 5 , then R is associative or $C=0$ where C is the center of R.
4. Rings which are n-associative of degree $2 k+1$. An immediate corollary of Lemma 2.1 is

Lemma 4.1. If R is $(2 m+1)$-associative of degree $2 n+1$, then R is $(2 k+1)$-associative for all k such that $m \leqq k$ and $n \leqq k$.

The converse of Lemma 4.1 is false as can be seen by the following example. Let A be the 13 -dimensional commutative algebra with basis $u_{1}, u_{2}, \cdots, u_{13}$ satisfying $u_{1}^{2}=u_{4}, u_{1} u_{2}=u_{3}, u_{1} u_{3}=u_{8}, u_{1} u_{5}=u_{7}$, $u_{1} u_{7}=u_{10}, u_{1} u_{9}=u_{11}, u_{2}^{2}=u_{5}, u_{2} u_{3}=u_{9}, u_{2} u_{4}=u_{6}, u_{2} u_{8}=-u_{10}+u_{11}$, $u_{2} u_{10}=u_{12}, u_{2} u_{11}=u_{12}-u_{13}$, the commutative law, and all other products zero. It can be verified that A is 5 -associative, but that $\left(\left(u_{1}, u_{1}, u_{2}\right), u_{2}, u_{2}\right)=u_{13} \neq 0$, and hence A is not associative of degree 5 .

Theorem 4.1. If R is a simple, commutative ring of characteristic not a prime $\leqq k$ which is associative of degree $2 k+1$, then R is associative.

Proof. Assume that $k>1$. We have $S(3,2 k+1)=0$. We will show that this implies that $S(3,2 k-1)=0$, from which the proof is completed by an obvious induction.

Applying Lemma 2.1 to $S(3,2 k+1)=0$, we have

$$
\begin{equation*}
0=S(2 j+1,2 m+1) \text { for } j \geqq 1 \text { and } m \geqq k \tag{4.1}
\end{equation*}
$$

Let $n=2 k+2$ in (2.2). Then by (4.1) with $i=m=k$, we have $k\left(a_{1}, a_{2}, a_{3}\right)\left(a_{4}, \cdots, a_{2 k+2}\right)=-\sum_{i=1}^{k=2}\binom{k}{i}\left(a_{1}, \cdots, a_{2 k-2 i+1}\right)\left(a_{2 k-2 i+2}, \cdots, a_{2 k+2}\right)$,
to which we apply (4.1) with $j=k-i$ and $m=2 k-i-2, i=1, \cdots$, $k-2$, to obtain $0=S(3,2 k-1) S(2 k-1,2 k-1)$. Therefore, by Lemma 2.3, $S(3,2 k-1)=0$ or $S(2 k-1,2 k-1)=0$. Assume that we have shown that $S(3,2 k-1)=0$ or $S(2 k-2 j+1,2 k-2 j+1)=$
0 . Assume that

$$
\begin{equation*}
0=S(2 k-2 j+1,2 k-2 j+1) \tag{4.2}
\end{equation*}
$$

Let $n=2 k-2 j+2$ in (2.2). Then, as above, we apply (4.2) and (4.1) with $m=2 k-j-i-2, \quad i=1, \cdots, k-j-2$, to obtain $0=$
$S(3,2 k-1) S(2 k-2 j-1,2 k-2 j-1)$. Therefore, as before, $S(3,2 k-1)=0$ or $S(2 k-2 j-1,2 k-2 j-1)=0$. Hence, $S(3,2 k-1)=$ 0 or $S(3,3)=0$, and we are finished.

In view of Lemma 4.1, Theorem 4.1 is an extension of the results of $\S 3$ for a more restricted class of rings.

Finally, define $S(3,2 k+1)^{n}=S(3,2 k+1)^{n-1} S(3,2 k+1), n>1$. We have

Corollary. If R is a simple, commutative ring of characteristic not a prime $\leqq k$ in which $S(3,2 k+1)^{n}=0$ for some n, then R is associative.

Proof. Because of Theorem 4.1, we need only show that $S(3,2 k+1)=0$ in R. Assume $n>1$. Then $0=S(3,2 k+1)^{n-1} S(3,2 k+1)$. Lemma 2.3 and an easy induction yield $S(3,2 k+1)=0$.

Bibliography

1. A. H. Boers, Généralisation de l'Associateur, Thèse 1956, Ed.: J. v. Tuyl, Antwerpen-Zaltbommel.
2. Le n-associateur dans un anneau commutatif, Proc. Kon. Ned. Akad. v. Wet., A62, Indag. Math. 21 (1959), 39-44.
3. L'anneau n-associatif, Proc. Kon. Ned. Akad. v. Wet., A68, Indag. Math. 27 (1965), 122-128.
4. Erwin Kleinfeld, Assosymmetric rings, Proc. Amer. Math. Soc. 8 (1957), 983-986. University of California, Santa Barbara

[^0]: Received November 19, 1964. Presented to the American Mathematical Society, August 28, 1964. This research was supported by United States Air Force Grant No. AFOSR-698-65.

