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SIMPLE ^-ASSOCIATIVE RINGS

D. L. OUTCALT

This paper is concerned with certain classes of nonasso-
ciative rings. These rings are defined by first extending the
associator (α, 6, c) = (ab)c — aφc). The w-associator (alf , an)
is defined by

(au α2) = aχa2 ,
(1.1) n-2

(alf , an) — Σ (— l)fc(&i> , a>k, Uk+iak+2, , <O .

A ring is defined to be ^-associative if the ^-associator vanishes
in the ring. It is shown that simple 4-associative and simple
5-associative rings are associative; simple 2&-associative rings
are (2k — 1) associative or have zero center; and simple, com-
mutative ^-associative rings, 6 ^ n ^ 9, are associative. The
concept of rings which are associative of degree 2k + 1 is
defined, and it is shown that simple, commutative rings which
are associative of degree 2k + 1 are associative. The charac-
teristic of the ring is slightly restricted in all but one of these
results.

The concepts of the ^-associator and ^-associative rings were

defined by A. H. Boers [1; Ch. 3 and Ch. 4], Our results extend Boers'

main result that an ^-associative division ring is associative with minor

restriction on the characteristic [1; Th. 6]. We do not consider 2-

associative rings.

To obtain our results, it is necessary to extend the concept of the

?ι-associator. In a ring R, define S(2j + 1, 2k + 1), 1 ^ j ^ Jc, by

defining S(2j + 1, 2j + 1) to be the set of all finite sums of (2j + 1)-

associators with entries in R, and then by defining S(2j + 1, 2k + 1),

k > j, to be the set of all finite sums of (2j + l)-associators

(au , <hj+i) such that (aly , a2j+1) e S(2j + 1, 2k — 1) and such that

at least one of the 2k — 1 entries of (au •• ,α 2 i + 1 ) is in £(3, 3). For

example, (((aly α2, α3), α4, α5), α6, (α7, α8, α9)) e S(3, 9).

Clearly, a ring R is (2n + l)-associative if and only if

S(2n + 1 , 2n + 1) = 0 in R. This leads us to call a ring R(2n + 1)-

associative of degree 2k + 1 if S(2n + 1, 2k + 1) = 0 in i2. No mention

of degree will be made in case k = n.
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Of particular interest are rings which are associative (3-associative)
of degree 2k + 1. In the first place, this in itself is an interesting
extension of the concept of associativity. Consider the 4-dimensional
algebra A over an arbitrary field with basis aly α2, α3, α4 such that
a\ — α2, axa2 = a3 — α4, a2ax — α3, and all other products zero. It can
be verified that S(3, 5) = 0 in A but that A is not associative. Also,
it turns out that a ring which is associative of degree 2k + 1 is
(2k + l)-associative, but not conversely.

2. Preliminaries. We will need the following three identities
derived by Boers.

n-3

(2.1) (au , an) = Σ (<&!, , α Λ , (a>k+i, °>k+2, ^ + 3 ) , &k+*, ι an) ,

(2.2) (αlf , α.) = ' " Γ ( [ 1 / 2 ) % ^(α,, , a._^_J (an_Λ, , α.)

for even ^ where ( j denotes the binomial coefficient [1; Ch. 3], In

a commutative ring, we have

(2.3) (al9 , an) = ( - l)w/«-^(αΛ > , αx)

where [#] denotes the greatest integer ^ x [2; Th. Λ].
Next, we will need

LEMMA 2.1. S{2j + 1 , 2& + 1) c S(2m + 1, 2w + 1), 1 g m ^ i,

m g n ^ &.

Proof. It is immediate from the definition of S(2j + 1, 2& + 1)
that S(2j + 1, 2k + 1) c S(2i + 1, 2n + 1), j ^ n ^ k. Hence we need
only show that S(2j + 1, 2n + 1) c S(2m + 1, 2w + 1), 1 ̂  m g i . The
result is obvious if j = m. Assume that S(2j — 1, 2n + 1) c
S(2m + 1, 2w + 1), i > m. Then by (2.1), S(2j + 1, 2n + 1) c
S(2i - 1, 2w + 1) c S(2m + l,2n+ 1), and we are finished.

Let A and B be subsets of a ring. Define AB to be the set of
all finite sums of elements of the form ab such that ae A, be B.

Let 1(3, 2k + 1) = S(3, 2fc + 1) + S(3, 2& + 1)22. The next lemma
is a generalization of the fact that 7(3, 3) is an ideal of an arbitrary
ring R [4; p. 985].

LEMMA 2.2. 1(3, 2k + 1) is a right ideal of an arbitrary ring
R for k = 1, 2, .

Proof. Let I = 7(3, 2k + 1), S = S(3, 2& + 1). We have
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IRaSR + SR-RczSR + (S, R, R) .

However, by Lemma 2.1, (S, R, R) a S. Hence IR c I.

The key to our results is

LEMMA 2.3. If R is a simple, commutative ring, and if A —
{aeR\aS(3, 2k + 1) = 0}, then A = 0 or S(3, 2k + 1) = 0.

Proof. We can assume that R ~ 1(3, 2k + 1), for otherwise we
are finished by Lemma 2.2. If K is the ideal generated by AR, then
K c S(3, 3). Indeed, AR - AJ(3, 2fc + 1) c S(3, 3). Define B. : # — ya.
Assume that we have shown that aRXχ RXn e S(S, 3) for ae A and
for every choice of n elements x19 , xn e R, n > 1. Then

aRXχ . R.nR.n+1 = ((aRXl •. i 2 ^ _ > > . + 1

- (αΛβl R.n_l9 xn, xn+1) + aRXl . . R.^R.^^ e S(3, 3) .

If K — 0, then AR = 0 which implies A = 0 and we are finished. Hence
assume K = R. Thus i2 = S(3, 3) which implies i2 = S(3, 2k + 1) by
induction since each element can now be replaced by a sum of asso-
ciators. Therefore AR ~ 0, and hence A = 0.

To ease the computations of the proofs which follow, we define

T ( n , i , j) = Σ ( α , , ., aM9 (am+1, am+2, a M + B ) , am+4, •••,«,)

where 0 g i ^ j ^ % - 3 . Note that (2.1) becomes (au , an) =
T(n, 0, n ~ 3). The next lemma, whose proof follows easily from the
definition of T(n,i,j) (with the use of (2.3) in the case of part (d)),
contains all the additional facts about T(n, i, j) that we will need.

LEMMA 2.4.

(a) T(n, i, j) - T(n, i, k) - T(n, k + 1, j), k < j;
(b) T(n, i, j) - T(n, k, j) = T(n, i,k-l),i< k;
(c) S(2k + 1, 2k + 3) consists of all finite sums of elements of

the form T(2k + 3, i, i), i' = 0,1, . , 2k; and

(d) if 0 = T(n, i, j)a is an identity in a commutative ring, then

so is 0 = T(n, n — 3 — j,n — 3 — i)a.

We will not cite Lemma 2.4 when we use it.
Finally, the nucleus N of a ring R is defined by N—{ue

R I (u, x, y) = (as, w, #) = (a?, y, u) = 0 for all α?, # e i2}. The center C
of iϋ is defined by C = {c e iV| ex = α c for all a? 6 #},
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3* n*Associative rings* In what follows, we will use the fact
t h a t (1.1) implies t h a t if R is an ^-associative ring, then R is A -asso-
ciative for all k ^ n.

T H E O R E M 3.1. If R is a simple ^-associative or ^-associative
ring of characteristic not 2, then R is associative.

Proof. By (2.2) with n = 6, we have

(3.1) 0 = S(3, 3)2 .

Since 7(3, 3) is an ideal of R, we can assume t h a t R = 7(3, 3), for
otherwise S(3, 3) = 0. Hence (3.1) yields S(3, S)R c S(3, 3). Therefore
R = 5(3, 3), but then we have S(3, 3)Λ = 0 = JBS(3, 3) by (3.1). Thus
S(3, 3) = 0.

Theorem 3.1 extends a result of Boers [ 3 ; p. 126] who has also
shown it to be false for characteristic 2.

T H E O R E M 3.2. Let R be a simple 2k-associative ring for k ^ 2.
Then C = 0 or R is (2k — ΐ)-associative where C is the center of R.

Proof. We first show t h a t if N is the nucleus of R, then any
(2j + l)-associator with an entry ueN vanishes. Indeed, if j — 1,
t h e result follows by t h e definition of N. Assume t h a t we have
established the result for j = i. By (2.1), (alf , a2ί+3) = Γ(2i + 3, 0, 2ϊ).
Each ^-associator in T(2i + 3, 0, 2i) is a (2i + l)-associator. Hence if
ueN is an entry of (αj, , α 2 ί + 3 ) , then (al9 , α 2 ί + 8 ) = 0.

Now, use (2.2) wi th n = 2fc. In the result ing identity, let a2k e C.
Then, since C a N, we have S(2k - 1, 2fc - 1) C = 0. Therefore C =
0 or S(2& — 1, 2k — 1) = 0 since i2 is simple and t h e annihilators of C
may be shown to form an ideal of R.

Theorems 3.1 and 3.2 imply

COROLLARY 3.1. If R is a simple ^-associative ring of charac-
teristic not 2, then C — 0 or R is associative.

We now t u r n our attention to commutative r ings.

T H E O R E M 3.3. If R is a simple, commutative 6-associative or 7-
associative ring of characteristic not 2 or 3, then R is associative.

Proof. By Theorem 3.1, i t is sufficient to show t h a t S(δ, 5) = 0,
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Let n = 8 and 10 in (2.2) to obtain

(3.2) 0 = (au • , αB) (α8, a7y a8) + (α^ α2, a3) (α4, , α8)

and

(3.3) 0 - S(5, 5)2.

Next, use (2.1) and (3.3) to obtain Γ(5, 0, 2) S(5, 5) = 0 which yields
T(7, 0, 2) S(3, 3) = 0 upon application of (3.2). Hence we may assume
that T(7, 0, 2) = 0, for otherwise S(3, 3) = 0 by Lemma 2.3. Using
(2.1), we compute 0 - T(7, 0, 4) - T(7, 0, 2) = Γ(7, 3, 4); hence
T(7, 0, 1) = 0 by (2.3). Thus Γ(7, 2, 2) = 0 since Γ(7, 2, 2) = T(7, 0, 2 ) -
ϊτ(2, 0, 1). Hence we have Γ(5, 2, 2)S(5, 5) = 0 using (3.2). Thus
S(3,5)S(5,5) = 0 upon using (2.3), (2.1) with n = 5, and (3.3), in that order.
Application of Lemma 2.3 and then Lemma 2.1 completes the proof.

THEOREM 3.4, If R is a simple, commutative ^-associative or 9-
associative ring of characteristic not 2, 3, or 5, then R is associative.

Proof. By Theorem 3.3, it is sufficient to show that S(7,7) = 0.

If we let n = 10, 12, and 14 in (2.2), we get

(3.4) 0 = 2(alf , α7) (α8, α9, α10) + S(al9 , α5) (αβ, α10)

+ 2(αu α2, α8) (α4, •• ,α1 0),

(3.5) 0 = (alf , α7) (α8, , α12) + (αu . , α5) (α6, . , αI2) ,

and

(3.6) 0 = S(7, 7)2.

Our first goal is to establish

(3.7) S(7, 9)S(5, 5) = 0 = S(7, 7)S(5, 7) .

Applying (2.1) to (3.6) yields T(Ί, 0, 4)S(7, 7) = 0, to which we apply
(3.5) to obtain T(9,0,4)S(5,5) = 0. Using (2.1), we compute
0 = (Γ(9, 0, 6) - T(9, 0, 4))S(5, 5) = T(9, 5, 6)S(5, 5) which implies
T(9, 0, 1)S(5, 5) = 0. Then 0 = (Γ(9, 0, 4) - Γ(9, 0, 1))S(5, 5) =
T(9, 2, 4)S(5, 5), to which we apply (3.5) to obtain Γ(7, 2, 4)S(7, 7) = 0.
Hence we have T(7,0,2) S(7,7) = 0. Using (3.5) again yields
Γ(9,0,2)S(5,5) = 0. Thus we can compute 0 = (T(9,0,2) - Γ(9,0,1))S(5,5)
to obtain

(3.8) Γ(9, 2, 2) S(5,5) = 0 = Γ(9, 4, 4) S(5, 5) .

Computing 0 = (Γ(9, 2, 4) - Γ(9, 2, 2) - Γ(9, 4, 4)) S(5, 5) yields
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(3.9) 0 = Γ(9, 3, 3) S(5, 5) .

Applying (3.5) to (3.9), we have T(7, 3, 3) S(7, 7) = 0, from which we

obtain Γ(7,1, 1) S(7, 7) = 0, and hence (3.5) implies

(3.10) 0 = T(9, 1, 1) S(5, 5) = 0 .

Computing 0 - (Γ(9, 0, 1) - Γ(9, 1, 1)) S(5, 5) yields Γ(9, 0, 0) S(5, 5) =

0 which, along with (3.8), (3.9), and (3.10), implies (3.7) after using

(3.5).

Our next goal is to establish

(3.11) 0 = S(5, Ίf .

Let ax — (xu xz, x3), a{ = xί+2, i > 1 in (3.4); then let ax = xu a2 —

(x2, a?3, £c4), α* = # i + 2 , i > 2 in (3.4); and then let αx = ^ x, α2 = a?2, α3 =

(sc3, #4, as5), tti = xii2y i > 3 in (3.4). Add the resulting identities and

apply (2.1) to obtain

(3.12) 0 = 2T(9, 0, 2) (x1Q, xιl9 xιs) + 3Γ(7, 0, 2) (a?8, . . . , χlz)

+ 2(^2, , ί̂ 5) (x6, , #12)

where the T's are now written in terms of the x\s. Substitute

(x10, £cu, x12) for iijjo, ^i3, for xlu and α;14 for .τ12 in (3.12); then substitute

(xn, x12, x13) for xn and xu for x12 in (3.12); and then substitute

(x12, ίc13, xu) for x12 in (3.12). Add the resulting identities, and use (2.1)

and (3.7) to obtain

11

(3.13) 0 = Γ(7, 0, 2) Σ (*8, , (**+» *,-+=, iβί+s), , *M) .

Applying (2.1) and (3.7) to (3.13) and then using (2.3), we get, after

subtracting the resulting identity from (3.13) with subscripts relabeled,

(3.14) 0 = Γ(7, 0, 2) (x8, x9, (xlQ, xlu x12), x13, xu) .

If we apply (3.4) to (3.14), then (2.1) with n = 5 and (3.7), we obtain

0 = T(9, 0, 2) ((xI0, ί»π, 1̂2), »i3, ^H) which yields

(3.15) 0 = T(9, 0, 2) S(3, 5)

upon using (2.3) and then (2.1) and (3.7).

Application of (3.4) to (3.15); then use of (2.1) and (3.7) followed

by (2.3) yields Γ(7, 0, 2)S(5, 7) - 0. Hence using (2.1) and (3.7) we

compute 0 - (T(7, 0, 4) - Γ(7, 0, 2))S(5, 7) = Γ(7, 3, 4)S(5, 7) which yields

(3.16) 0 = 2X7,0,1)5(5,7) .
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Computing 0 = (T(7, 0, 2) - T(7, 0,1)) S(5, 7), we obtain

(3.17) 0 = 7(7,2,2)5(5,7) .

Returning to (3.15), we can assume that T(9, 0,2) = 0, for
otherwise S(7, 7) = 0 by Lemma 2.3 and Lemma 2.1. Hence we have
Γ(9, 4, 6) - 0. Computing 0 - Γ(9, 0, 6) - T(9, 0, 2) - Γ(9, 4, 6), we
obtain Γ(9, 3, 3) = 0 which we apply to (3.4) to get

(3.18) 0 = 2(xl9 x21 xΛ) c + 3Γ(7, 3, 3) (βlf . . . , sδ)

where c — ((a?4, x5, a?β), x7, su , s6) and where at least one of su s2, s3,
s4, or s5 G S(3, 3). Let x3 = z e S(3, 3) in (3.18) and use (3.17) to obtain
0 = (χu x2, z)c, to which we apply (2.3) and then (2.1) and (3.7) to
get S(3, 5) c = 0. Since ceS(3, 5) by Lemma 2.1, Lemma 2.3 implies
that c = 0 . Hence (3.18) yields Γ(7, 3, 3) S(5, 7) = 0, and therefore
Γ(7, 1, 1) S(5, 7) = 0. Now, recalling (3.16), we compute 0 =
(T(7, 0, 1) - Γ(7, 1, 1))S(5, 7) to obtain Γ(7, 0, 0)S(5, 7) = 0, but then
T(7, 4, 4)S(5, 7) = 0, and we have established (3.11).

Equations (3.4) and (3.11) yield

0 = ( ( # 4 , Xξ,, XQ), Xγy ^8/ (^9> ^10> Sl> ^ 2 , Xlf X2y X3)

where sλ or s2 e S(3, 3) since c = 0, to which we apply (2.3) and then
(2.1) and (3.7) to obtain 0 = (x9, x10, sl9 s2, xu x2, x3) S(3, 5) which in turn,
using (3.4) and (3.11), yields 0 = (xQ, x10, s) T(9, i, i) for % = 4, 5, and
6 and where seS(3, 3). Thus, by (2.3) and then (2.1) and (3.7), we
have S(3, 5) Γ(9, i, i) = 0 for ΐ = 4, 5, and 6. Therefore, we have
S(3, 5) S(7, 9) = 0 since Γ(9, 3, 3) = 0. Lemmas 2.3 and 2.1 then imply
that

(3.19) 0 = S(7, 9) .

Equations (3.4) and (3.19) imply 0 = S(5, 5) Γ(7, i, i), ί = 0, 1,
which yields

(3.20) 0 = S(5, 5) Γ(7, i, i), i = 0,1, 3, 4 .

Using (2.3), (3.4), and (3.19), we compute

3Γ(7, 2, 2) S(5, 5) c - 2Γ(5, 2, 2) S(7, 7) c 2T(5, 0, 0) S(7, 7) = 0 ,

the equality by (3.4), (3.19), and (3.20). Hence

(3.21) S(5, 7) S(5, 5) = 0 .

Finally (3.4), (3.19), and (3.21) imply that S(3,5) S(7,7) = 0.
Lemma 2.3 and Lemma 2.1 then imply S(7, 7) = 0, and we are finished.

Theorems 3.2, 3.3, and 3.4 imply
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COROLLARY 3.2. If R is a simple, commutative 10-associative
ring of characteristic not 2, 3, or 5, or if R is a simple, commutative
^-associative ring of characteristic 5, then R is associative or C — 0
where C is the center of R.

4* Rings which are n-associative of degree 2k + 1* An imme-
diate corollary of Lemma 2.1 is

LEMMA 4.1. If R is (2m + T)~assocίative of degree 2n + 1, then
R is (2k + l)-associabive for all k such that m g k and n ^ k.

The converse of Lemma 4.1 is false as can be seen by the follow-
ing example. Let A be the 13-dimensional commutative algebra with
basis uu u2, , u13 satisfying u\ = u4, uxu2 — uz, UjU3 — u8, uxub = u7,

U^Uj ^^ U±Q, UjUg •— ^ i i y U-ι —— Us, U2U% : z : r ^9 j U2U^ =ZZ: UQ, U^U^ :=Z1 ^ I O "ι ^ n ?

u2u i0 = u12, UgUH — u12 — u13, the commutative law, and all other pro-
ducts zero. It can be verified that A is 5-associative, but that
((uu uu u2), u2, u2) = u13 Φ 0, and hence A is not associative of degree 5.

THEOREM 4.1. If R is a simple, commutative ring of character-
istic not a prime ^ k which is associative of degree 2k + 1, then R
is associative.

Proof. Assume that k > 1. We have S(3, 2k + 1) = 0. We will
show that this implies that S(3, 2k — 1) — 0, from which the proof is
completed by an obvious induction.

Applying Lemma 2.1 to S(3, 2k + 1) — 0, we have

(4.1) 0 = S(2j + 1, 2m + 1) for j ^ 1 and m ^ k .

Let n = 2k + 2 in (2.2). Then by (4.1) with i = m = ky we have

fc-2 /^.\

Aίtti, α 2 , α3) (α 4, , α 2 f c + 2 ) = - Σ ( (au , α 2 A ; _ 2 ί f J ( α 2 / c _ 2 ί + 2 , , a2k+2) ,

to which we apply (4.1) with j = k ~ i and m — 2k — i — 2, ΐ — 1, ,
A - 2, to obtain 0 = S(3, 2fc - 1) S(2k ~l,2k - 1). Therefore, by
Lemma 2.3, S(3, 2k - 1) = 0 or S(2k - 1, 2k - 1) = 0. Assume that
we have shown that S(3, 2k - 1) = 0 or S(2& - 2j + 1, 2fc - 2 i + 1) =
0. Assume that

(4.2) 0 = S(2k - 2j + 1, 2k - 2j + 1) .

Let n = 2k — 2j + 2 in (2.2). Then, as above, we apply (4.2) and
(4.1) with m = 2& - j - i - 2, i = 1, . -, k - j - 2, to obtain 0 =
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S(3, 2k - 1) S(2k - 2j -1,2k- 2 i - 1). Therefore, as before,
S(3, 2ft - 1) = 0or S(2k - 2j-1,2k- 2j - 1) = 0. Hence, S(3, 2ft - 1) =
0 or S(3, 3) = 0, and we are finished.

In view of Lemma 4.1, Theorem 4.1 is an extension of the results
of §3 for a more restricted class of rings.

Finally, define S(3, 2k + l)n = S(3, 2& + l ) - 1 ^ , 2fc + 1), n > 1.
We have

COROLLARY. If R is a simple, commutative ring of characteristic
not a prime <Ξ k in which S>(3, 2/b + 1)% = 0 for some n, then R is
associative.

Proof. Because of Theorem 4.1, we need only show that
S(S,2k + l) = 0inR. Assume n>l. Then 0 - S(3, 2k + 1)—^(3,2Λ + 1).
Lemma 2.3 and an easy induction yield S(3, 2ft + 1) = 0.
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