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EXISTENCE OF HALF-TRAJECTORIES IN PRESCRIBED
REGIONS AND ASYMPTOTIC ORBITAL STABILITY

W. E. JOHNSON

A theorem is proved concerning the existence of a half-
trajectory in the neighborhood of a semi-invariant set of a
general dynamical system. A corollary of this theorem
strengthens a result of P. Mendelson. The theorem is further
used to obtain a necessary and sufficient condition for a compact
positively invariant set to be positively asymptotically orbitally
stable, and the condition is compared with another one due
to S. Lefschetz.

Mendelson [3] applied a topological method due to Wazewski to
obtain a sufficient condition for a neighborhood of a rest point of an
autonomous system of differential equations to contain a half trajectory
other than the rest point. The condition is that all points of egress be
points of strict egress. Actually, as we show in §2, this condition is
redundant. Any neighborhood of a rest point of a dynamical system
defined on an open set in En contains a half trajectory other than
the rest point (possibly another rest point).

The purpose of this paper is twofold. First, in § 2 we prove a
theorem on the existence of a half trajectory in the neighborhood of
a semi-invariant set of a general dynamical system and from it deduce
three corollaries. Corollary 2 is a generalization of Mendelson's theorem
([3], p. 221). Corollary 3 gives a sufficient condition for a neighborhood
of a rest point to contain a half trajectory which is not a rest point,
and it is shown by example that, in a sense, the condition is the best
possible. Second, in § 3 Theorem 1 is used to obtain a necessary and
sufficient condition for a compact positively invariant set to be positively
asymptotically orbitally stable. This condition is compared with another
one due to Lefschetz [2],

An autonomous system of differential equations fails to generate
a dynamical system in the sense of Nemytskii-Stepanov [5, part II] if
the solutions do not exist for all values of the independent variable.
However, although the present discussion pertains to a dynamical
system, with minor modifications the results in § 2 can be extended
to autonomous systems of differential equations whose right hand sides
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are continuous and whose solutions are uniquely determined by their
initial values.

2* Existence of half trajectories in a neighborhood of a
semi-invariant set* Let R be a metric space with distance function
p, and denote the closure, complement, and boundary of a set AdR
by A, A', and dA respectively. The open ε-sphere about either a point
AeR or a set AaR will be written S(A, ε) = {pe R: p(p, A) < e}.
We denote the real intervals (—°°, °°), (—°°, 0] and [0, oo) by /, /~,
and I 1 respectively. Let / be a dynamical system on R, i.e., / is a
continuous transformation on R x / onto R such that f(p, 0) — p and
Λf(P, *'), t) = f(p, V + ί) for all peR,t,t'e I. The sets f(p, Γ) and

f(p, I~), for any peR, are called (positive and negative) half trajec-
tories. The α— and ω~ limit sets of a motion f(p, t) will be denoted
by Ap and Ωp respectively. A nonempty set AaR is said to be
positively {negatively) invariant if /(A, t) c A for all t ^ 0 (t <; 0),
invariant if /(A, I) = A.

THEOREM 1. Lei F be a closed positively (negatively) invariant
set and let G be an open set which contains F and has a compact
boundary. If there exist pn eG,pQe F, and tn e 7, n — 1, 2, , such
that pn -^ p0, tn > 0 (tn < 0), and f(pn, tn) e G', then G f] F' contains a
negative (positive) half trajectory.

Proof.1 We give the proof for the case in which F is positively
invariant. It follows from the hypothesis and well known properties
of dynamical systems that there exist Tn > 0 such that f(pn, t)eG if
0^t<Tn, f(pn, Tn) e dG and Tn ̂  ~ . Let qn = f(pn, Tn). Since dG is
compact, {qn} contains a convergent subsequence, and we can assume
qn—>qQedG. The inclusion F<zG implies qQ&F, and it follows from
the positive invariance of F that f(q0, I~) Π F = 0 . Given any r < 0,
f(pn, Tn + τ)= f(qn, τ) ->f(q0, τ ) . S i n c e Tn~> oo ,0^Tn + τ<Tn w h e n c e

/ ( P . , Γ » + T) e G f o r n s u f f i c i e n t l y l a r g e . T h e r e f o r e f(qQ, τ)eG f o r a l l

τ ^ 0 .

COROLLARY 1. Given a closed positively or negatively invariant
set F, let H •=. f(F, I). If (dH) Π F Φ 0 , and if G is an open set
which contains F and has a compact boundary, then GΓ\F' contains
a half trajectory.

Proof. Let F be positively invariant and suppose Gf)F' contains
no positive half trajectory. Choose poe F Π (dH). Then there exist
pneG Π H' such that pn —> pOj and it follows from the invariance of

1 I am indebted to the referee for pointing out a simplification of this proof.
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H that f(pn, I+) f]F = 0 . Hence, by assumption, there exist tn > 0
such that f(pn, tn) e G', and it follows from Theorem 1 that G Π F'
contains a negative half trajectory.

A simple example shows that the hypothesis (dH) Π F Φ 0 is
essential to Corollary 1. Let R be the closed unit interval, and consider
a dynamical system which has rest points at 0 and 1 and for which the
motion through any point in the open interval (0, 1) has {0} as its it-
limit set and {1} as its ω-limit set. If F= [1/2,1] and G = (1/4,1],
then H = (0,1] and (dH) Π F = {0} Π [1/2,1] = 0 . The rest of the
hypothesis of Corollary 1 is fulfilled but the conclusion fails to hold.

COROLLARY 2. // R is locally compact, if F is a compact
positively or negatively invariant set such that (dH) Π F Φ 0 where
H = f(F, I), and if G is an open set which contains F, then G Π F'
contains a half trajectory whose closure is compact.

Proof Since R is locally compact and F is compact, there exists
an open set U such that Fall, UaG, and U is compact. By corollary
1, Ff Π U contains a half trajectory; its closure is contained in Ό and
is therefore compact.

COROLLARY 3. If R is connected, if G is an open set which
contains a rest point, and if dG is compact, nonempty and contains
no rest point, then G contains a half trajectory which is not a rest
point.

Proof. Let F be the set of all rest points in G; obviously F is
invariant. Since the set of all rest points in R is closed and disjoint
from dG, F is closed. Since R is connected and dGΦ0, FΠ(dF)Φ0,
and the result follows from corollary 1.

Corollaries 1 and 2 are valid if dG = 0 . This follows from the
fact that any finite are f(p, [τu τ2]) is connected and so if dG = 0 ,
f(p, I)czG for all peG. Thus if (dH) ΠFΦ0, there exists p e GΠF'
and it follows from the one-side invariance of F that either f(p, I+)aF'
or f(p, I~) c Fr. However, the hypothesis dG Φ 0 is essential to
Corollary 3. For example, let every point of R be a rest point and
take G — R. An example which shows that Corollary 3 is not valid if
dG is permitted to have even one rest point is the dynamical system
in the plane determined by the autonomous system of differential
equations
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* = V

x if x<0

0 if x ^ 0 .

The semi-axis y — 0, x ^ 0 consists of rest points. All other motions
χ(t)> y(t) traverse semi-circles above the origin in the left half plane
and x(t) —> co as t —> °o and as ί —> — co. Thus the boundary of any
sphere about the origin contains precisely one rest point, but no such
sphere contains a half trajectory which is not a rest point.

3* Asymptotic orbital stability• A compact positively invariant
set F is said to be positively orbitally stable is given ε > 0 there
exists δ > 0 such that for all qeS(F,δ), f(q, /+) c S(F, ε). Because
of the compactness of F, this is equivalent to the requirement that
given ε > 0 and pe F, there exist δ > 0 such that for all qe S(p, δ),
f(q, 1+) c S(F, ε). A compact positively invariant set F is said to be
positively asymptotically orbitally stable if it is positively orbitally
stable and if there exists δ' > 0 such that for all qeS(F, 3'), ΩqczF.
This implies that f(q, t) is positively Lagrange stable for all q e S(F,δ'),
and it is a consequence of [5, Theorem 3.07, p. 341] that the condition
ΩqdF is equivalent to the more usual condition l i m ^ p(f(q, £), F) = 0.1

These definitions of stability agree with the terminology of Auslander-
Seibert [l] and Lefschetz [2] except that they omit the prefix "orbital."
The qualifier will be retained here in order to avoid confusion with
other types of stability and because it conforms with the terminology
usually applied to limit cycles. A necessary condition2 for F to be
positively orbitally stable is that Aq f] F ~ 0 for all q e F\ For if
qeFf and p e Aq Π F, then there exist tn < 0 such that tn —> — ĉ  and
Qn — AQ, tn)^P Since F is closed, p(q, F) — ε > 0. Hence given any
δ > 0, there exists n for which qn£S(p, δ) and p(f(qn, —tn), F) —
p(qf F) ~ ε. Therefore F is not positively orbitally stable. That F
can fail to be positively orbitally stable in precisely this way is indi-
cated in [4], where there is sketched (Figure 1) a dynamical system
in the plane for which the origin 0 is a rest point and Aq — Ωq = {0}
for all qe R. In the next theorem we show that the requirement
AqπF—0 for qeFr together with a weaker requirement than ΩqaF
for q in some neighborhood of F constitute a necessary and sufficient
condition for positive asymptotic orbital stability. Because of the
compactness of F, any open set containing F contains S(F, ε) for some
ε > 0, and therefore it is only a matter of notational convenience to

1 This is also observed [1], p. 459.
2 This condition is explicitly stated in [2, (15.2)] for the case where F is a rest

point of an autonomous system of differential equations.
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make use of arbitrary open sets containing F rather than sets of the
specific form S(F, ε).

THEOREM 2. Let F be a compact positively invariant set which
is contained in an open set G with compact closure. A necessary
and sufficient condition for F to be positively asymptotically orbit-
ally stable is that there exist an open set Gλ containing F such that
AqΓιF =; 0 and Ωq Π F Φ 0 for all qeGλn Ff.

Proof. In view of the remark in the preceding paragraph, the
necessity is obvious. To prove the sufficiency we first show that F is
positively orbitally stable. Assuming the contrary we obtain pe F,
pn e G, tn > 0 and ε > 0 such that pn -> p and p(f(pH, tn), F) ^ ε. Thus,
letting G2 = S(F, ε)nGιΠG, f(pn, tn) e G'2 and it follows from Theorem 1
(note that pn e G2 for n sufficiently large) that there exists q e G2 such
that f(qy I~) c G 2 Π F'. Since G2 is compact, AqΦ 0 , say q1eAq, and
Aq(zG2. Since Aq is closed and invariant, i 3 ? i c 4 ? ; by hypothesis,
ΩQi Π F Φ 0 and so Aq f] F Φ 0 . But this contradicts the other part
of the hypothesis and therefore F is positively orbitally stable.

Now assume F is not positively asymptotically orbitally stable.
Then there exists q e Gx such that Ωq Π Ff Φ 0 and, by hypothesis,
Ωq Π F Φ 0 . Choose poeΩqΠ F, qoeΩqf] F', and let p(q0, F) = e. Then
ε > 0 and, given any o > 0, there exist t > 0 and V > t such that

, t) G S(p0, δ) and f(q, V) e S(q0, ε/2). Hence

v) - /(/(?, ί), v -1) ί S(F, ±

and V — t > 0. This contradicts the positive orbital stability of F and
the proof is complete.

Another set of necessary and sufficient condition for positive
asymptotic orbital stability of an invariant set F is given in [2, (14.3)].
These conditions comprise a necessary and sufficient condition for
positive orbital stability together with the requirement that there
exist a neighborhood of F which contains no entire trajectory other
than those in F. On the other hand, no part of the hypothesis of
Theorem 2 is both a necessary and sufficient condition for positive
orbital stability alone, and in this respect the two results are es-
sentially different.
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