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DIVISIBILITY PROPERTIES OF CERTAIN FACTORIALS

J. CHIDAMBARASWAMY

It is well known that multinomial coefficients are integers;
i.e., if the integers aι are nonnegative and a — ̂ T=i ca, then
ΠS=i(α;)Hα!. This property may hold good in special cases
even though Σ ^ 1 α* > α * n ^act» ^ o r e a c n integer x ^ 0,
xl (x + 1)! I (2x)l, and it has been asked by Erdos, as a research
problem in the 1947 May issue of the Monthly, whether, for
a given c ^ 1, there exists an infinity of integers x such that
xl(x + c)\ I (2x)l. This problem has been gradually generalized
and improved upon by Mordell, Wright, McAndrew, the author,
and N. V. Rao. In particular, Rao considers the quotient
Q(x) — ((g(χ) + h(x))l)l((g(x) + k)l(h(x))l), where k is a positive
integer, and gix) and h(x) are integer coefficient polynomials
of positive degree with positive leading coefficients and proves
that some multiple of Q(x) is integral infinitely often: a result
which includes all the earlier results. In this paper, among
other things, this result of Rao has been generalised and
improved upon by taking the polynomials over the rationals
and by reducing the multiplying factor of Q(x) as obtained
by Rao.

Throughout the following i,j,k,r, and n denote positive integral

variables and all small letters, unless explicitly mentioned otherwise

denote positive integers. As usual, (α, b) and {α, b) denote respectively

the G. C. D. and L. C. M. of a and 6. For any polynomials X(x) and

Y(x) (not both zero) over the rationals, (X(x), Y(x)) denote their monic

G.C.D. over the rationals. m being ^ 1, tut2y « ,£ m are integers

each greater than 1. For 1 g i ^ m and 1 g j ^ ti9 fi3 (x) is a poly-

nomial of positive degree over the rationals with positive leading

coefficient; α^ and ci3 are nonnegative integers, ri5 is a positive rational

and ku is a positive integer. Also, r^ is a nonnegative integer for

each i in 1 ^ i ^ m. We use the following symbolism.

(1.1) fox) = Σfik(x) F{j(x) - ΣiAk(x)

k=l k=l

in = Zurik;
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5«(*) - (/„(») + l)(/«(a;) + 2) (/„(*) + &„)
Cw(») - ( ^ ( ^ ( ^ ( Λ ) - 1) . . - (Fax) - ktj + 1)

and

where Qij (a ) is defined for those values of x for which /«(#) are all
nonnegative integers.

Improving upon the results of Mordell [2], and Wright [7],
McAndrew [1], proved that (in our notation) if for a particular i,

(1.2) 0 < α β < A,

and

(1.3) ch=0,

then there exists an infinity of integers x for which

(1.4) (Atxy./Z (VirX + cir)\
I l

is an integer. In [6], the author and N. V. Rao improved upon this
result, by proving that, if, together with (1.2), the conditions

(1.5) r< < A,/(α4l, A,)

and

(1.6) either cu < aJia^ A%) or C« < AJ(aiu A{)

hold, then there exists an infinity of integers x such that

(1.7) (AiX - rt)\xm (airx + cir)\
I r = l

is an integer. In [5] and [4] respectively, the author considered the
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question of existence of an infinity of integers x which make the
expressions in (1.4) and (1.7) simultaneously integers for each i.
Recently, N. V. Rao, taking the polynomials over the domain of integers
and ti = 2 for each i, proved the existence of an infinity of integers
x such that

(1.8) Qn{x)Gjxj

is an integer for each i in 1 ^ i ^ m, where Gn(x) is the integer
coefficient G.C.D. with least positive leading coefficient of the integer
coefficient polynomials Aix(x) and Biλ(x). In fact if, for any rational
coefficient f(x), T(f) denotes the l.c.m. of the denominators of the
coefficients of f(x), GJx) = TiG^G^x).

The purpose of this paper is, among other things, to improve upon
the above result of Rao, simultaneously 1, by allowing the polynomials
to have their coefficients from rationale and 2, by replacing the factor
GJx) in (1.8) by one of its divisors namely L^x). That La(x) can be

a proper divisor of G{1(x) is seen if we take m == 1, ^ = 2, fn(x) =
f12(x) = x2 — x and kn = 2 in which case Gn(x) — x2 — x + 1 while
Ln(x) — 1. Incidentally, the result in [6] is slightly improved by
increasing the possible values of r{ (see Cor. 1) and it turns out that
McAndrew's result ((1.4)) in [1] and our result in [5] are particular
cases obtainable from a more general result (Theorem IV) by taking
x for an arbitrary polynomial g(x) over the rationale with the property
that there exists an integer x0 such that g(x0) is an integer.

In order to guarantee the existence of integers x for which fi3{x)
are integers, we make the following Assumption A: There exist
integers yi5 such that f^ya) are integers and the system of congruences

x = y i S ( m o d T(fiS)) l ^ i ^ m , 1 ^ j S tx

admit a common solution y0.
We note that all such common solutions are represented by

(1.9) x = »o(Γ)

where

(1.10) T = {Γ(/u), Γ(/12), , T(fMtJ]

and we observe that

(1.11) T(fi) \ T for each i in 1 ^ i ^ m .

We need some further notation. Let



218 J. CHIDAMBARASWAMY

(2.1) A{j(x) = (/,(*) + !)(/*(*) + 2)
Bu(x) = (F(j(x) + l)(Ftj(x) + 2) (F«(») + Ki5)

Cd*) = (/«(*))(/</(*) - 1) (/«(») - iζ, + 1)
G{j(x) = (£,(»), £w(a;)) #tf(a!) = (^,(χ), £
£„(«) = (G^x), Htj(x)) di3(x) = (J?w(!c),

A5ΐ(«) = (Ux) + t, fti(x) + u, Ftj(x) -u + t)

D\%x) - (Ux) + t, Fu(x) + u, fi}(x) -u + t)

Qdx) = (Uχ))lK(Mχ))l(Ftj{χ) + κi3)\)

and finally

Now, we are in a position to state our results

THEOREM I. Under the Assumption A, there exists an infinity
of integers x such that

( i ) QuWLvix),
(ii) Qiά(x)Li5(x),
(iii)

and
(iv)

are all simultaneously integers for each i in 1 ^ i <L m and each j
in 1 ^ j ^ ti.

THEOREM II. Under the Assumption A, if for each i inl^i^m,
there is a j(i) in 1 ^ j(i) ^ t{ such that for any integers t, u, e, b
satisfying

(2.2) 1 S t, u ^ kij(i) , OSu-tS kij{i) - 1

and

(2.3) 1 ^ e , 6 ^ iΓ i i ( ί ) , 0 ^ 6 - β ^ ίΓ i i ( ί ) - 1 ,

eccisίs an infinity of integers x such that
( i ) Qij{i)(x),
(ii) 4iu)W,
(iii) Wij{i){x)dij{i){x),

and
(iv) Wi(a?)d*i(«(ίc)

are all simultaneously integers for each i in 1 g i ^ m.
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In particular, we have:

THEOREM III. (a) If, for 1 ^ i ^ m, gt(x) is a polynomial over
the rationals with positive leading coefficient and if the Asssumption
A is satisfied for all the polynomials r^g^x), then there exist an
infinity of integers x such that

( i ) (RMΦMn^ix) + ktJ)i(Rtiβt(χ))i),
(ii) {Rigi{x))\l{(riίgi{x))\(Rijgi(x) + Ki3)\),
(iii)

and

(iv) (Rai(χ))W^)lτL (nate) + K)\

are all simultaneously integers for each i in 1 g i ^ m and each j
in 1 S 3 S ti, where

(b) 7/ in (a) ίfce integers ki5 and the rational numbers ri3- are
such that for each i in 1 ^ i ^ m, ίfeβrβ is α i(i) in 1 S i(l) ^ ίi

(2.4) r<yί<)fc - Rij{i)n Φ 0

/or

(2.5) 1 £ Jc ^ KijU) , H ^ fc<i(<) ,

there exists an infinity of integers x such that

is an integer for each i in 1 ^ i ^ m.

As an immediate consequence of Theorem III we have:

THEOREM IV. If aiS and c{i satisfy respectively (1.2) and (1.3)
araZ ί/ r̂(α ) is a polynomial of positive degree over the rationals with
the property that there is an integer xQ such that g(xQ) is an integer,
then there exists an infinity of positive integers x such that

(2.6) (Aa/(a?))l/n (aiάg(x) + ci3)\

is an integer for each i in \^i tkm.

Also from Theorem I, we have the following:
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COROLLARY I1. If ai3, ci3 and i\ are such that for each i in
1 :g i <Ξ m, there is a j in 1 ^ j g t{ satisfying

(2.7) ( i ) 0 < α ί i < A ί ,
(i i ) Ti ^ Ai/(aij9 Ai)f

(iii) either ci3 < aj(ai3; A,) or
Ci3 < Ai3\(Aih A,)

then there exists an infinity of positive integers x such that (1.7) is
an integer for each i in 1 ^ i ^ m.

As remarked earlier, we observe that (1.4) is obtained from (2.6)
by taking g(x) — x and Cor. I is an improvement of our result in [6],
since, taking m — 1, j — 1, we are increasing the range of values of
r1 (compare (1.5) and (ii) of (2.7)) and the condition (iii) of (2.7) is a
consequence of (1.6) but not conversely; for example, our theorem in
[6] does not help us to conclude that

(Sx)ϊ/((2x + 3)!(4a + l)!(2s + 1)!)

is an integer infinitely often whereas our corollary does. We omit the
easy verification of this statement.

LEMMA I. For each i in 1 ^ i ^ m and each j in 1 ^ j ^ tiy

there exists integer coefficient polynomials Pij(x), <ϊij(%), Tij(x), siό{x),
tij{x)y ui5(x), vί3(x), pί3{x), , Vij(x) and positive integers Xi3-, μih vid,
XίjΊ uijy viό, and ζi3- such that

( i ) Ai5(x)pu(x) + Bi3{x)qί3{x) - \3Gί3(x)
( ii) Bi3{x)ri3{x).+ Ci3(x)si3(x) = μi3Hi3{x)
(iii) Giά(x)ti3 (x) + Hi3(x)ui3(x) = vi3Li3(x)
{iv) Άiβ{x)pi3{x) + Bί3(x)qi3(x) = Xi3Gi3(x)
( v ) BiS(x)riά{x) + Cj^s^x) = βijHisix)
(vi) Gi3{x)ti3(x) + Hi3(x)ui3(x) = vί3Li3{x)
(vii) Bi5{x)viά(x) + Bi3{x)vi0{x) = ζiάdiό{x)

Proof. ( i ) There exist rational coefficient polynomials ai3-(x) and
βi3{x) such that

(3.1) Aί3(x)ai3(x) + Bi3{x)βi3(x) = Gi3(x) .

Multiplying both sides of (3.1) by Xί3 = {T(ai3)y T{βi3)} and writing
pi3{x) — Xiάai3{x) and qi3(x) = Xί3βi3{x) we get (i). The proof of the

other parts is similar.

LEMMA 2. For each i in 1 g i ^ m and each j in 1 g j ^ ί4

1 This corollary could also be obtained from the result of [3] but no mention
of this was made in [3],
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i )

λ ί iu i i(x){β i i(x)Q ί i(x)r ί j(x)

( i i ) X a β i f l L

(iii) ζtjdvWLijWLtάx) Wid(x)

Proof. ( i ) follows directly from (i) (ii) (iii) of Lemma I; similarly
for (ii) and (iii).

LEMMA 3. If fr(x) denotes the rth derivative of the rational
coefficient polynomial f(x), then for r Ξ> 0 {T(f)fr(x)}jr\ is a poly-
nomial with integer coefficients.

Proof. Each coefficient of fr(x) is a product of a coefficient of
f(x) and a product of r consecutive integers.

LEMMA 4. For each sufficiently large integer x for which each
fij(x) is a positive integer,

W, Bij(x)Qij(x)f Cu

Ai5{x)Qiά{x), Biό{x)Qiό{x), OiS

are all positive integers.

Proof. Each of them can be expressed as a binomial coefficient.
Before proceeding to the next lemma, we introduce, for convenience,

the following notation: for any positive integers α, 6, and c, h(a, b)
stands for the exponent of the highest power of b that divides a and
D(a/b, c) stands for h(a, c) — h(b, c).

LEMMA 5. For any positive integer a, and any prime p,
h(a\, p) = (α — S)l(p — 1), where S is the sum of the digits of a in
the representation of a in the scale of p.

This is well known and we omit the proof.

LEMMA 6. Under the assumption A, given any pair of positive
integers M and N, there exists an infinity of positive integers x
such that for each i in 1 ̂  i ^ m and each j in 1 :g j ^ t{ and each
prime p dividing M,

(3.2) D(Wdx),p)>N.
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Proof. We prove that from among the integers satisfying (1.9),
for which by the Assumption A all fi3 (x) are integers, we can select
an infinite number of them for which (3.2) is satisfied. z0 being any
arbitrary integer, choose xQ such that

(3.3) ( i ) xo>zo, (ii) xo = Vo(T) and (in) fiά{%,)

and fij{x0) are all positive. Let P be the product of all the distinct
prime factors of M and π the smallest of them. Let

(3.4) A = N + 1 + Max | D( Wid(x0), p)

PIP

Choose /So to be the least positive integer such that

(3.5) π*> > Max (ffa) + K<) .

Observing that any positive integer n in 1 5g n ^ mA can be uniquely
expressed in the form

n= (i — 1)A + k, l ^ i ^ m , 1 ^ k £ A ,

we define, starting with the integers x0 and /30, recurrently the integers
T», K, xn and βn for 1 ^n ^ mA as follows: τ» is the least positive
integer such that

(3.6) 7Γy- > Max

dn is the least positive integer so chosen that

(3.7) (i) δ.>β_lt

(iii)
φ being Euler's totient function;

(3.8) xn - xn^

And finally βn is the least positive integer such that

(3.9) π"-

We observe that, by virtue of (3.8), (ii) of (3.3), xn satisfies (1.9) and
so all the fu(xn) are positive integers and the proof of lemma will be
complete, if it is proved that Z± = xmΛ satisfies (3.2). From now on
the proof consists of reformulating the lemmas 2, 3, and 4 of [3] (in
our notation) and adjusting their proofs.

For consideration of space, we omit the details.
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4. Proof of Theorem I. In the first place let us observe that,
if f(x) is a polynomial over the rationale, then for any integer x, the
denominator of f(x) can contain only primes p in T(f) to a power at
most h(T(f)y p). Now, taking

(4.1) I-ΠΠ TiL^Tiί

and

N =

in Lemma 6, we are guaranteed of the existence of an infinity of
integers x (= y0(modT)) for which (3.2) is satisfied.

For all these integers, by Lemma 4, Aij(x)Qij(x), Bij(x)Qij(x),
Cij(x)Qij(x) are all positive integers and so by the first part of Lemma 2,
^ijfίijVijQίji^Lijix) is an integer for each i and each j . Since each
prime factor of \3fiijVi3 is necessarily a prime factor of M and since
for any prime p, D(Qi3(x), p) ^ D(Wi3(x), p), the remark at the begin-
ning of the proof and the choice of N in (4.1) show that for all these
integers Qi3 (x)Li3'(x) is an integer.

A similar argument, taking into consideration the second and
third parts of Lemma 2, shows that for all these integers,

Qi3 (x)Li3{x) and Wi3 {x)di3'{x)Li3'(x)Li3'(x)

are also integers. Further, since

(4.2) W(x)d -(x)L • '(x)L -(x)

and since for all the integers under consideration, the expression in
brackets on the R.H.S. of (4.2) is an integer the L.H.S. of the same
is so. Hence Theorem I.

Proof of Theorem II. Theorem II follows from Theorem I and
the following lemma:

LEMMA 7. (a) For each ί in 1 ^ i ^ m and each j in 1 g j ^ tίr

Lί3{x) — 1 if and only if for any t, u satisfying

(4.3) lSt,uS kij9 O^u-t^kij-1

(b) For each i in 1 ^ i ^ m and each j in 1 ^ j ^ tiy Liά(x) — 1
if and only if for any e, b satisfying
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l^e,b£Kiί; O^b-e^ Ki3- - 1 , ϋή(x) = 1 .

Proof. That Lί3(x) cannot be one if for same t, u satisfying (4.3)
Dlj(x) contains as irreducible factor of positive degree, follows from
the fact that D%(x) divides Li3(x).

If Li3(x) contains an irreducible factor of positive degree, say a(x),
then for some integers ί, u, and v satisfying 1 ^ t, u g ki3, 0 ^ v ^
ki3 — 1, a(x) divides fi(x) + t, fi3(x) + u, and Fi3(x) — w; hence divides
ί — u + v. However, since a(x) is of positive degree, t — % + v — 0
and so it divides D${x).

The proof of (b) is similar.

Proo/ of Theorem III. (a) It is easily seen that Liό(x) and Liά(x)
(as related to the notation of this theorem) are 1 for each i and j and
hence (a).

(b) The condition (2.4) ensures DijU)(x) — 1 and so (b) follows
from (iv) of (a).

Proof of Theorem IV. If, for a particular i in 1 g i ^ m, C^ = 0,
then (2.6) is an integer for all sufficiently large x for which g(x) is
a nonnegative integer. So, there is no loss of generality in assuming
CH > 0 for each i in 1 g i g m.

If, in Theorem III (a), we take 2 for £* for each i, αί]L for ril9

Ait for rΐ2, Cϋ for feί2, any positive integer for fcίL, and ̂ (x) for g^x),
the hypothesis of that theorem is satisfied and so by (ii) of that theo-
rem, there exists an infinity of integers x for which

is an integer. From this, the theorem follows in the same way as
(iv) of Theorem I followed from (iii) of it.

Proof of Corollary I. For each i in 1 ^ i ^ m, fix a j" for which
(2.7) is satisfied.

CASE ( 1 ) . Suppose both r{ and Ci3 are not zero for each i in
1 ^ i ^ m.

In Theorem I, let us take for each i, tt = 2, fn(x) = ai5x — ri9

fi2(x) = Aijx, Jc{1 = Ti + cίjy and ki2 = Cij9 so that

F^x) - Mx) - Ai3{x) and Ktl = kί2 - Ci3- .

It is easily seen (a proof similar to that of Lemma I [6] works) that
(ii) of (2.7) implies L{1{x) = x and (iii) of (2.7) implies d^x) = 1;
further clearly Ln{x) — 1 and so Corollary I follows from (iv) of
Theorem I in this case.
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CASE (2). Suppose one or both of rt and Cfl are zero. In this
case, the result follows trivially from case (1).

We close with a consideration of sequences of positive integers
possibly more general than the sequences of positive integers represented
by integer coefficient polynomials for integer values of the variable.

§ 5. Let fij: 1 g i <Ξ m, 1 ^ j ^ tt, n ^ 1 be a sequence of posi-
tive integer satisfying
(5.1) (i) for each i and each j

flj —> oo as n —•> oo

(ii) there exist sequences oϊ positive integers

such that nx > π2 implies

Defining analogously the various sequences of integers At?', BιJ, Ci\
<?iy, Hi\ L*y, Aj/, , Lly and d̂ " and the sequences of rational numbers
Wi, Wi\ Qlf\ and Qi\ (for example A^ - (fi + 1)(/* + 2) . . . (/: + kiά)
where fi == YfjLxfΐ3", etc), we can prove the following theorem (Theorem
S below) and deduce from that all the theorems of § 2 when the poly-
nomials fi3 (x) are taken over the domain of integers.

THEOREM S. Given any positive integer Zf there exists an in-
βnity of positive integers n, such that

(i) qj[L«,z],
(ii) Qiφj,Z],
(iii) WϋWJ, Z][UJ, Z]ψj, Z], and
(iv) WψJ, Z][W, Z][UJ, Z]

are all positive integers simultaneously for each i and each j where
the symbol [a, b] denotes the largest divisor prime to b of a.

A natural question in this context is whether, given a sequence
fίj satisfying (5.1), there exists an integer coefficient polynomial say
fij(x) such that

ft* = fu(n) .

The author is greatly indebted to his thesis advisor Professor D. H.
Lehmer for his encouragement and advice.
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