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MINIMAL GERSCHGORIN SETS 1I

B. W. LEVINGER AND R. S. VARGA

The Gerschgorin Circle Theorem, which yields » disks
whose union contains all the eigenvalues of a given 7 X n
matrix A = (a;,;), applies equally well to any matrix B = (b;,;)
of the set 24 of n X n matrices with b;;=a;,; and | b;,;| = | a;,; ],
1<%, j<mn. This union of » disks thus bounds the entire
spectrum S(2,) of the matrices in 24. The main result of
this paper is a precise characterization of S(£2,), which can be
determined by extensions of the Gerschgorin Circle Theorem
based only on the use of positive diagonal similarity trans-
formations, permutation matrices, and their intersections.

Given any 7 X n complex matrix A = (a;,;), it is well known that
the simplest of Gerschgorin arguments, which depends upon row sums
of the moduli of off-diagonal entries of the matrix X—2AX, X a positive
diagonal matrix, yields the union of #» disks which contains all the
eigenvalues of A. It is clear that this union of % disks necessarily
contains all the eigenvalues of any 7 X » matrix in the set 2, defined
as follows: B=(b;,;)e 2, if b;,;=a;;,1 =¢=<mn, and |b;;| = |a,;| for
all 1 <4,7 <n,4=+j. Hence, this union of n Gerschgorin disks can
be viewed as giving bounds for the entire spectrum S(Q2,) =
{z|det (:I — B) = 0 for some Be 2,} of the set 2,.

It is logical to ask to what extent the spectrum S(2,) can be
more precisely determined by extensions of Gerschgorin’s original
argument [3]. In the previous paper [6], it was shown that

1.1) 0G(2,) C S(R,) C G(R) ,

where G(Q,) is the minimal Gerschgorin set deduced from A and
0G(2,) is its boundary. The first inclusion of (1.1) states that every
point of the boundary 0G(£2,) of the minimal Gerschgorin set is then
an eigenvalue of some Be 2,. We now extend the results of [6] by
making use of results of Schneider [4], and Camion and Hoffman [1].
In so doing, we shall precisely determine S(2,).

To begin, let Py, = (0;,4;;) be an n X n permutation matrix, where
¢ is a permutation of the integers 1 <¢ <= and J;,; is the Kronecker
delta funection, and let X = diag (%, «,, +--, &,), Where x > 0. Given
Be Q,, we define the » X n matrix M*(x) by

(1.2) Mé(x) = (X'BX — M)Py = (my,;) ,
so that
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(1.3) My, = b5, Tpi)/Ti — Mioisyy, 1=%,5=n.

Following Schneider [4], if N is an eigenvalue of B, then M¢%(x) is
surely singular and thus not strictly diagonally dominant. Hence,

(1.4) [m,: | = % [m;,; |

must be true for at least one 7, 1 <4 < n. Defining first

(L5) 440 = (51 auslos) for,  1Zizn,
I

then (1.4) implies that either

(1.6) IN— ;| = 4x) if ¢() =7,

or

(1.6") 2%p0) | Wiy [/ = N — @y, | + Ai(x) if (7)) =7

For any complex number ¢, we consequently define

(L.7) r¥0; x) = Adi(x) — |0 —a,,;| if ¢()=1,

and let

QA7) r¥o;x) =10 —a;;| + A(xX) — 2| @pe0 | Tow /s I G(3E) =0
With this, we next define the set G?(x) as

(1.8) Gi(x) = {o|rt(o; x) = 0}, 1si=sn.

If ¢() =14, then G?¥(x) reduces to the familiar Gerschgorin disk
|2 — a;;| < 4i(x). If ¢(¢) # 14, we observe from (1.7’) that G¢(x) is
the closed exterior of a disk, and is thus an unbounded set.

Defining G*(x) to be the union of the sets G¥(x):

(L.9) G(x) = U GH()

the inequalities of (1.6) and (1.6") show that if A € S(2,), then ) e G¥(x)
for some 4, and hence \ € G¥(x). Thus, S(2,) C G¥x) for every x > 0,
and we then have that

(1.10) G20 = N G¥(x)

called the minimal Gerschgorin set relative to the permutation ¢, is
such that
(1.11) SQ) cG*R,)

for every permutation ¢, It is clear that G*(2,) is a closed set for
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any permutation ¢. Since G¢(x) is a bounded set only when ¢(¢) = 1,
it follows that G*(2,) is a bounded set only when ¢ is the identity
permutation. We remark that the results of [6] are for the special
case when ¢ is the identity permutation.

Since (1.11) is valid for any permutation ¢, it then follows that

(1.12) S(Q)c HQY ,
where
(1.13) HQy = Q G*2,) .

In §2, we first characterize (Theorem 1) the minimal Gerschgorin sets
G*(2,), and then show (Theorem 2) that their boundaries 0G%(2,) are
subsets of S(2,). Finally, using a result of Camion and Hoffman [1],
we prove (Theorem 3) in §3 our main result that

(1.14) S(Q,) = H(R) .

Summarizing, the now elementary Gerschgorin Circle Theorem [3],
applied to a particular matrix A, actually gives eigenvalue bounds
for a set 2, of related matrices. Our main result is that the exact
spectrum S(2,) of £, can be determined from extensions of the
Gerschgorin Circle Theorem based only on positive diagonal similarity
transformations, permutation matrices, and intersections.

In §4, we include an extension of a result of [6] concerning the
number of eigenvalues of any Be 2, in a bounded component of
G*(Q2,. Finally, in §5 we include several examples to show how
S(2,) can be determined.

2. The Function vy(o). In order to determine G*(2,), let ¢ be
any complex number, and consider the real n X m» matrix @Q%(0) = (¢.,;)
whose entries are defined by

(2.1) Qs = (—1)%%3 | @405 — 000 | 1=4,57=n.

Since the off-diagonal entries of Q%(¢) are nonnegative, then Q%(cg) is
essentially monmegative [2; 5, p. 260], and hence we can associate
with the matrix Q*(o) the real number y4(o), where v,(g) is the
(possibly multiple) eigenvalue of Q%(¢) with largest real part. From
the Perron-Frobenius theory of nonnegative matrices [5, pp. 46-47],
v4(0) corresponds to a nonnegative eigenvector y = 0, i.e., Q%o)y =
vs(0)y, and it is further known that

(2.2) vs(0) = inf max {&E:)Eﬁ} .

u>0 1si=n i



202 B. W. LEVINGER AND R. S. VARGA
We remark that ys(o) is a continuous funection of .

THEOREM 1. Let A= (a;,;) be an n X n complex matrix, let ¢ be
any permutation, and let o be a complex number. Then, e G¥R2,)

of and only if vg(o) = 0.

Proof. From the definitions of @*(¢) in (2.1) and 7¥(c; x) in (1.7)-
(1.7), it follows that

(2.3) /r(f(o_; x) — (%b(«;) >[ (Qd)(:)z)z ] , Where zi = xdl(i) .

Now, if o€ G*2,), then oc G¥x) for every x > 0. But for every
x > 0, there is an ¢ such that oe G¥(x), so that »¥;x) = 0. Since
x >0, then (x4;/z;) is positive for all 1 <4 <mn, and it therefore
follows from (2.2) that

max [(Q%(0)z);/2;] = 0 for every x > 0.
1=si=n

Clearly, as x > 0 runs over all positive vectors, so does the corresponding
vector z > 0. Hence, v4(c) = 0 from (2.2). Conversely, assume that
v4(0) = 0. From (2.2) and (2.8), it follows that r¢(c; x) = 0 for some %
for every x >0. Hence, o€ G*(x) for every x >0, and thus o € G¥(2,),
which completes the proof.

Our interest turns now to the boundary 0G¥(2,) of the minimal
Gerschgorin set G%(2,). As usual, it is defined by

(2.4) 0G*(Q,) = G* (L) NGH2Y)",

where G*(2,) is the closure of the complement G*(2,) of G¥(2,). It
follows from Theorem 1 that G%(2,) is the set of all ¢ which satisfy
vs(0) < 0. Similarly, the boundary 0G#(2,) of the minimal Gerschgorin
set is the set of all ¢ for which y,(c) = 0, and to which there exists
a sequence of complex numbers {z;}7., with lim;..z; = ¢ such that

v(2;) < 0.

As in [6], we now show that every point of the boundary 6G*(%2,)
is an eigenvalue of some matrix Be 2,.

THEOREM 2. Let A = (a;;) be an n X n complex matric, and let
o be amy permutation. If vy(c) =0, then o is an eigenvalue of
some matrix Be 2, and thus o< S(Q,).

Proof. 1If vy(o) = 0, then there exists a vector y = 0 with y = 0
such that @Q%o)y = 0. Writing (0 — ay,1) = |0 — @, | €Xp (3y,),
1<k <mn, let the n X n matrix B = (b,,;) be defined by
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(2.5) bk = Qs brs = |ag,;| €xp 4 {vy + T[—1 + Orptry + 0ol B # 7 .

It is evident that Be Q,, and if y; = z4), it can be verified (upon
considering separately the cases when ¢(7) =+¢ and ¢(z) # ¢) that
Q*o)y = 0 is equivalent to

(2.6) ﬁlbk,jzj' = 0% , 1Z5k=sn.

Since y #+ 0, then z == 0, and we conclude from (2.6) that ¢ is an
eigenvalue of B, which completes the proof.

In order to prove a somewhat stronger result, let oedG*(2,).
Then, y4(c) =0 and oeS(2,). But as S, cG*®, from (1.11),
we have the

COROLLARY 1. Let A be an n X n complex matrix. Then, for
any permutation ¢,

@.7) 0GH(Q,) = 3S(2,) .

In [6], an interesting geometrical property of the boundary aG*(Q,)
was given when ¢ was the identity permutation, and A was assumed
to be irreducible. In that case, each boundary point of G*%(2,) was
shown to be the intersection of # Gerschgorin circles. An analogous
result is true for an arbitrary permutation ¢, under slightly stronger
hypotheses.

COROLLARY 2, Let A be an n X n complex matrix, let ¢ be any
permutation, and let o¢coG*(Q,). If Q%) is irreducible, then there
exists a vector x>0 such that € dGi(x) for all 1 <1 =< n.

Proof. 1If Q*(0o) is irreducible, then Q%(o) is essentially positive
[5, p. 2567]. Thus, there exists a vector z >0 such that Q%o0)z =
vs(0)z. But, if 0edG*2,), then vy(o) =0, and Q*(g)z = 0. Letting
x >0 be defined component-wise by z; = %4, it then follows from
(2.8) that r¢(o; x) =0 for all 1 <+ =<n. Now, r%o0; x) is obviously a
continuous function of o from (1.7)—(1.7"), and from (1.8) we deduce
that 0G?(x) = {¢|r¥(z4; x) = 0}. Hence, o€ 0G¢(x) for all 1 <1 < n,
which completes the proof.

We remark that is ¢ if the identity permutation, then Q%(o) is
irreducible for any o if and only if A is irreducible, For general ¢,
it is not difficult to show that A irreducible implies that Q*(o) is
irreducible when ¢ # a,; for any 4.

3. Main Result. We shall now show that S(2, = H(Q,) =
Ns G*(2,). Since S(2,)c H(2, by (1.12), it suffices to prove that
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S(Q,) c H(Q,), where S(2,) denotes the complement of S(2,). This
last inelusion will follow quite easily from the following theorem of
Camion and Hoffman [1]:

Given an arbitrary n X n complex matrix B = (b;,;), let .(33 be the
set of all matrices C = (¢;,;) with |¢;;| = |b,,;| for all 1 =<1, 5 < n.
Then, if all matrices Ce[cJB are nonsingular, there exists a positive
diagonal matrix X = diag (z,,---,%,), z; > 0, and a permutation matrix
Py = (0;,4;,) such that the matrix M = BXP, = (m;,;) is strictly diag-
onally dominant, i.e.,

3.1) [m;; | > > |mg;| forall 1<i=<mn,
JFi
We first prove

LEMMA 1. 0eS(2) if and only if each ReQ, ., is non-
singular.

Proof. It is clear that each Re .(QJA_(,, can be uniquely expressed
as R = D(B — oI), where D = diag (e¥1, - . ., ¢'¥=), +p; is real, and Be Q,.
Then, ¢ e S(Q,) implies that det (B — oI) # 0 for any Be 2,. But as
|det D| = 1, then det R = det D det (B — 6I) # 0 for any Re 2,. The
converse follows similarly.

Now, suppose o€ S(2,). From Lemma 1 and the result of Camion
and Hoffman applied to B = A — oI, there exists a positive diagonal
matrix X = diag (x,, -+, ,) and a permutation matrix Py = (0:4)
such that the matrix M = (A — o) XP, = (m,;,;) is strictly diagonally
dominant, where

(3.2) M5 = (@ip5) — 005,407 Tots) »

Comparing (3.2) with the definition of Q%(g) in (2.1) and setting z; =
Zoiy, 1 < J =< m, (3.1) can be equivalently expressed as

3.3) 0> ;‘mzu{ — [m;,;| = (Q%0)2); , l=st=n.

Since z >0, it follows from (2.2) that v,(g) < 0, and hence from
Theorem 1 we deduce that o ¢ G*(2,). Consequently, o ¢ S(2,) implies
that o ¢ G¥(Q,), which in turn implies that o ¢ H(2,), or

(3.4) S Cc HQ, .
This, coupled with the result that S(2,) < H(2,), gives us

THEOREM 3. Let A= (a;;) be any nx n complex matriz. Then
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S(2,) = H(2,).

4, Disconnected minimal gerschgorin sets., A familiar result
of Gerschgorin [3] states that if %k disks of the Gerschgorin set G*(x)
(where I is the identity permutation) are disjoint from the remaining
n — k disks, then these %k disks contain exactly k eigenvalues of any
matrix Be 2,. In this section, we give a generalization of this result
(cf. Theorem 5 of [6]). For a given » X n matrix A = (@;,;) and an
arbitrary permutation ¢, let G%(2,) denote the nonempty disjoint closed
connected components of the minimal Gerschgorin set G#(2,):
(4.1) GHQ,) = ("J GHQL) , l=m=n.

=

For each bounded component G%R2,), let the order s% be defined as
the number of diagonal elements a;; of A contained in G%2,) for
which ¢(2) =+¢. We shall show that each matrix B e 2, contains exactly
s%? eigenvalues in each bounded component G%2,) of the minimal
Gerschgorin set G%(2,).

To begin, we enlarge the set 2,. An » X n matrix B = (b;,;) is
defined to be an element of the extended set Q% if

bii =035 L=t =05 [bisn | = | Qs |, 9(8) # ¢,
10,;] = la;], 1<%, 5 =mn, for which 7+#+¢ and 7= ¢(2).

(4.2) {
Clearly, Q,c Q4.
LEMMA 2. Given Be 2%, then G*(2) C G¥(Q2),).

Proof. For any vector u > 0 and any complex number o, consider
the veetor Q%(c)u, where we are using an obvious subscript notation.
With Be 2%, one verifies from (4.2) and (2.1) that Q%(0)u < Q%(o)u
for any u > 0 and any o, from which it follows that

4.3) max {@M} < max {—(—lef)—} .

1SiEn s 1ZiZn w

Thus, from (2.2), v4,(0) < Y4,.(0). Hence, by Theorem 1, g G*(2y)
implies that o€ G*(2,), which completes the proof.

For this extended set 2%, we remark that it can be further shown
that S(2%) = G¥(2,) for any permutation ¢. This generalizes another
result (Theorem 6) of [6].

In the spirit of Gerschgorin’s original continuity argument [3],
we prove
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THEOREM 4. Let A = (a;;) be any m X n complex matrixz, and
let ¢ be any permutation. If G¥(2,) has a bounded component
G%2,) of order s, then, for any matrix Be 2,, B contains exactly
st eigenvalues in G%2,).

Proof. For any B = (b;;)€2,, consider the family of matrices
B, (a) = (b;,;(®)) defined by

bii(@) = b5, L =0 = m;
(4.4)1bs,40(@) = big0[m(l — a) + a] when ¢(3) # 1 ;
b;, (@) = ab;,; for any 1 < 4,5 < n for which 5+ ¢ and § # ¢(%) .

By definition, B, (a) € 2% for all 0 <a <1 and all m = 1, and B,,(1) = B.
Moreover, B, (@) € 2% ., for all 0 =a <a’ <1. Thus, from Lemma 2,
G*(23,()) C G?(2,) for all 0 =a =1 and all m =1, and it is clear that the
set G*(2;_ (o)) increases monotonically with . We shall show that B,,(0)
has exactly s% eigenvalues in the bounded component G%(2,), and the
theorem will follow by continuously increasing a from zero to unity.

From (4.4), the only possibly nonzero entries of the matrix B, (0)
are b;,;(0) and b,,4;(0) where ¢(%) # ¢. Hence, by considering the dis-
joint cycles of the permutation ¢, we can find an % X # permutation
matrix P such that

(4.5) PB,(0)P* =| DB . 1=N<n.

Here, B,, is a diagonal matrix corresponding to all disjoint cycles
with ¢(¢) = 4. The other matrices B, ; have the cyclic form

bil b} 0

N :
(4.6) B;;= i, |, 2=J=N,
0 ’rj y'rj

C

where the off-diagonal entries of B; ; are, from (4.4), given by mb; 4.,
#(i) #= ©. Obviously, the eigenvalues of all the B;,; are the eigenvalues
of B,(0).

The spectrum of matrices of the form (4.6) is discussed in Example 1
of the next section, and in § 6 of [6]. We now assert that

(4.7) |30+ -+ bs| # 0 for any 2=j=N.

Otherwise, b4 = 0 for some integer k, where ¢(k) # k, and, as shown
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in the next section, this implies that G%(2,) is the entire complex
plane. This contradicts the hypothesis that G*(2, has a bounded
component. From (4.4), we can write the product in (4.7) as m"/ - K;,
where K; is independent of m and a. Then, it is readily verified
that the eigenvalues ) of B, ; satisfy

(4.8) 184, — | = mi- K, 2<j=N,
k=1

for any B, (0) derived from Be 2,. Since B,(0)e 2% for all m = 1,
we may choose m to be arbitrarily large, and it is clear from (4.8)
that the eigenvalues of B,; must lie in an unbounded component of
G*(Q2,) for any 2 <37 < N. Hence, the number of eigenvalues of B, (0)
which lie in the bounded component G%2,) is just the number of
diagonal entries of B,, in G%%,), which by definition is precisely s%.

Now, increasing « continuously from zero to unity, it follows that B
has exactly s? eigenvalues in G%(2,), which completes the proof.

We remark that the order s? of a bounded component G%(2,) is a
positive integer., For, if s% were zero, no Be £, would have an
eigenvalue in G%Q,), so that S(2,) N G%2,) would be empty, which
is a contradiction.

5. Some examples. We now give three examples to illustrate
our results concerning the sets S(Q,), G¥(2,), and H(Q,).

ExaMpPLE 1. It was previously shown [6] for the matrix

al,l a’l,Z

0
0 055 Qs
(5.1) A= N,
a'll:—-l}‘n
0
a’n,l an,n
where
(5.2) | @y, 00,5 =« * a,.|=1,

that 0G*(2,) = S(2,), I being the identity permutation. Let + be the
permutation® (123 ... 7). If ¢ is any permutation other than + or
I, there is a positive integer k, 1 < k < n, such that 4(k) = k, and
(k) #= (k), so that a,4u = 0. Thus, from (1.7,

(5.2) ’)“,1,’(0'; x) = ]0' —_ ak,kl + Iak,q/(k) I ﬂ'/'-;b(k)/xk > 0
for all x >0, and for all complex numbers ¢. Hence, we deduce from

1 That is, in this section we are describing a permutation by its disjoint cycles.
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(2.2), (2.3), and Theorem 1 that G*(2,) is the entire complex plane.

This argument shows more generally for an arbitrary matrix A that

any permutation ¢ which places a zero on the diagonal of @Q%(c) yields

a minimal Gerschgorin set G*(2,) which is the entire complex plane.
For ¢ = I, it was shown [6] for the matrix of (5.1) that

(5.3) G0, = {o

ﬁ o —ai:| = 1}

i=1

and in an identical fashion, we can show that

(5.4) 6129 = {o|Tl 10 - aul 21}
=1

Hence, it follows that

(5.9) S(Q,) = H(Q,) = G'(2,) N G¥(2,) = 0G"(2) .

ExAaMpPLE 2. Consider the matrix

2 0 1
(5.6) A=10 1 1
1 1 2

In this case, there are only three permutations, corresponding to ¢ =
I, ¢ = (13), and ¢ = (23), for which G*(2,) is not the entire complex
plane, and it is readily verified that

G'Q)={ol|2—0o|l-0|=|l—0|+[2—0]},
(5.7) GPQRy)={ol|2—0|l—0|z|l—0|—|2—0]},
G®QR)={o]|2—0c|l—0|=—|l—0c|+|2—0].
The boundaries 0G*(2,) are obviously determined by choosing the

equality signs in (5.7). The spectrum S(£2,) in this case is a multiply
connected region and is illustrated in Figure 1.

I

(23) as)

Fig. 1
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ExaMPLE 3. Consider the matrix

0 1 0 0

(5.8) A= )
-1 -5 —-1 -1

which is the companion matrix of the polynomial

p(Ry=2"+2+2+5z+ 1,

As previously shown, any permutation ¢ which places a zero on the
diagonal of Q%(o) yields a minimal Gerschgorin set G*(2,) which is the
entire complex plane. Consequently, we need consider only the permu-
tations I, (1234), (234), and (34). The associated minimal Gerschgorin

sets are given by

G'Q)={ollof[1+0ol=1+5]c[+ |0},
G(Q) ={ollol[1+ao|z=z1—5]c|— |0},
G Q) ={ol|lol|1+0|=—-1+5]c|—|a},
GH(Q)={olloP|1+0|= —-1—=5]c|+ |0of}.

(5.9)

The last minimal Gerschgorin set G“*(2,) is the entire complex plane,
and thus yields no boundary components of S(2,). The set G*9(Q,)
yields, however, two separate boundaries, and G*%(2,) has a bounded
component. Applying Theorem 4, we can assert that each matrix of
the set 2, has exactly one eigenvalue in this component, and hence
each matrix of £, has exactly one eigenvalue in the inner annular
region of Figure 2.

These examples have interesting common features., In each ex-

(1234)&/ 1 ’

Fig. 2
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ample, the minimum number of permutations necessary to define all
the boundary components of S(2,) does not exceed the order n of the
matrix A, Similarly, the total number of boundary components of
S(2,) does not exceed 2n. We conjecture this to be true in general.
We do point out that examples can be constructed where these upper
bounds are attained.
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