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BOUNDARY VALUE PROBLEMS FOR NONLINEAR
ORDINARY DIFFERENTIAL EQUATIONS

H. A. ANTOSIEWICZ

Conditions are given under which a quasi-linear differential
equation has at least one solution in a given compact interval
that satisfies a given system of homogeneous or nonhomogeneous
linear constraints. These conditions are not formulated in the
space in which the solutions take their values, as is usually
done; instead they involve the set of continuous mappings
subject to the constraints and the set of forcing terms for
which the associated nonhomogeneous linear differential equa-
tion has solutions satisfying the constraints. The latter set
is, under mild conditions, a topological direct summand of the
space of continuous mappings. This occurs in the problem of
the existence of periodic solutions which is discussed in detail
as illustration.

In the present note we derive simple sufficient conditions in order
that a differential equation

(1) x' = A(t)x + f(t, x)

have at least one solution u in a compact interval K which satisfies
a system of constraints of the form

( 2 ) ci(u) = ηi, i S i ^ m .

Here (ct) is a linearly independent family of continuous linear forms
on the Banach space C of continuous mappings of K into X, the
underlying real Banach space, and y — (rji) is an arbitrary point in Rm.

Our results are in the spirit of two very general theorems,
essentially due to Corduneanu [7], which Hartman and Onuchic [9]
have applied to the asymptotic integration of differential equations such
as (1). However, unlike these theorems, our considerations do not
depend upon the work of Massera and Schaffer (see, e.g., [11], [12])
but instead are based on some elementary facts concerning linear dif-
ferential equations that admit solutions for which (2) holds. An entirely
different treatment of boundary value problems has recently been given
by Conti [4], [5], [6].

For the sake of simplicity, we assume throughout that ί —> A(t) is
a continuous mapping of K into the normed space of continuous
endomorphisms of X and that / is a continuous mapping of K x K
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into X. Much less restrictive assumptions would suffice.

2. Let Γ be the mapping c —• (Ci(c))lύiύm of C into Rm and denote
by V the inverse image by Γ of any y e Rm. Since Γ is a continuous
linear surjection, Y is a closed linear variety of codimension m in C.

We first examine under what conditions a linear differential e-
quation

( 3) x' = A(i)a + δ(ί)

with be C has at least one solution which belongs to F.
Corresponding to some (fixed) toeK, define φ:C—*C to be the

mapping which associates with each be C the particular solution of (3)
that equals O e l a t ί0, and let ψ: X —> C be the mapping whose value
at each x e X is the solution of the homogeneous equation associated
with (3) which equals x at ί0. Clearly, φ and ψ are continuous linear
injections, and every solution v of (3) in K has the unique represen-
tation v — ψ(x) + φ(b) where x — v(t0). It follows that (3) has a solution
in V if and only if the equation

( 4 ) Γ o n/r(x) = 2/ - Γ o φ(b)

has a solution in X.
Set Y — Γ o ψ(X), Φ = —Γoφ, and define B as the inverse image

by Φ of the closed linear variety — y + Y in 12m. Then 2? is either
empty or a closed linear variety in C. Indeed, in the latter case, every
equation (3) with be B has at least one solution belonging to V.

Observe that the null space XQ of Γ o ψ is a closed linear sub-
space of X whose codimension is at most equal to m. Hence XQ admits
a topological supplement Xlf and there exists a continuous endomorphism
P of X which projects X along Xx onto Xo. Moreover, since the
restriction of Γ o ψ to Xί is obviously an isomorphism of X1 onto F,
there is a constant λ > 0 and, for each ze Y, a unique xx e Xx such
that Γoψ(Xl) = z and 11 a?x 11 g λ | | s | | .

LEMMA 1. 1/ Z? is nonempty, there exist positive constants a, β,
7 such that, given any xQ e Xo, (3) has for every be B a unique solution
v e V with Pv(t0) = x0 for which

( 5 ) I M I ^ α | | S o l l + /S||iH| + 7||δ||.

The proof is an immediate consequence of our preceding remarks.
Lemma 1 shows that, if B is nonempty, (3) induces a mapping

σ: (a?0, 6) —> v of Xo x B into F which is continuous. For, whatever
(#o, δO, (#o, δ2) in Xo x 1?, the mapping w = σ(x0, bj — σ(x0, δ2) is a
solution of (3) with 6 = 6X — 62 such that Pw(t0) = x0 — xQ and JP(W) = 0,
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and this implies by (5)

( 6) II σ(x0, b,) - σ(x0, δ2) || £ a \\ x, - x01| + 7 || δ2 - δ21| .

It may happen that ye Y or, equivalently, that 2? is a closed linear
subspace of C. This occurs if and only if the homogeneous equation
associated with (3) has at least one solution which belongs to F. Of
course, this is always the case when y == 0.

LEMMA 2. If ye Y and Γ ° φo ψ is surjectίve, then B is a
topological direct summand of C.

Proof. Since Γ o φ o ψ is a continuous linear mapping of X onto
Rm whose null space is a topological direct summand of X, there exists
a continuous linear injection M: Rm —> X which is the right inverse of
Γ o φ o ψ% Define the injection Ψ = ~ψ o M of Rm into C and let Q
be the projection of Rm along Y onto any supplement of Y. We assert
that τ=ΨoQoφisa continuous projection of C for which r-^O) = B.
Clearly, r is a continuous endomorphism of C. It is idempotent, hence
a projection, because Φ o y is the identity mapping of i?w. Moreover,
r(c) = 0 for some c e C is equivalent to Qo <J)(c) = 0 which, in turn,
is equivalent to ce Φ~\Y). Since ye Y implies B = Φ~\Y), it follows
that τ-^O) = B.

3. We now turn our attention to the nonlinear differential e-
quation (1).

For convenience we introduce, for every be F, the injection
gb:t—*(t, b(t)) of K into K x X so that we may write f°gb for the
continuous mapping t—>/(*,&(*)) of K into X. The constants a,β,j
will always be those referred to in Lemma 1.

Evidently, a necessary condition for (1) to have a solution in K
belonging to F is that B be nonempty. Therefore we will make this
assumption in the sequel, without further mention. To obtain suf-
ficient conditions we proceed in the following way, which suggests
itself rather naturally.

Suppose there is a closed ball B in F such that fogbeBίor every
beB. Then (1) gives rise to the mapping Σ: (xo,b)—>σ(x0, fo gb) of
Xo x B into F; of course, Σ(x0, b) is the unique solution v of the linear
differential equation

(7) xr = A(t)x + f(t, b{t))

which belongs to F and satisfies Pv{Q = x0. It is easy to see that Σ
is continuous. For the continuity of / in K x X implies that the
mapping b-*fogb of B into B is continuous, and the continuity of
<r: XQ X B—*F was shown previously. Clearly, every ueB such that
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Σ(xQ, u) — u for some xQ e J o is a solution of (1) in V with Pu(t0) = xQ.
Thus, we only need to look for further conditions under which the
mapping b —•> Σ(xQ, b) of B into V has a fixed point for some xQ e Xo.

THEOREM 1. Let α ^ O , r > 0, σ > 0 be constants such that

aa + β | | y | | + jp ^ r and denote by Ho the closed ball in Xo with

center at 0 and radius a. If X has finite dimension and if be V

and | | 6 || g r implies f ° ghe B and \\fogb\\ <̂  p, then (1) admits, for

each xQeH0, at least one solution ueV with \\u\\ ^ r for which

Pu(t0) — xQ.

Proof. The ball B — {b e V: \ \ b \ | ^ r} is a convex closed subset of
C, because V is closed. Lemma 1 and our assumptions show that
Σ(x0, B)aB for any xQ e HQ. From this we deduce at once that the set
{v(t): ve Σ(x0, B)}, for each teK, is relatively compact in X. More-
over, since any ve Σ(xQ, B) is a solution of (7) for some be B and so
satisfies, for every t, s in K,

( 8 ) \\v(t)-v(s)\\ 5S +p\t-s

Σ(xQ, B) is equicontinuous and therefore, by Ascoli's theorem, relatively
compact in C. Thus, Schauder's theorem implies, for each x0 e Ho, the
existence of at least one ue B such that Σ(x0, u) = u.

THEOREM 2. Let a i> 0 and positive constants k,r, p be so chosen
that aa + β \\ y \\ + Ίp ^ r, (kj < 1), 2kr < p, and denote by H the
closed ball in X with center at 0 and radius r. Suppose

( i ) f is Lipschitzian in K x H for the constant k;
(ii) fogbeB for every be V with \\b\\ ^ r
(iii) there is a boe V with \\bo\\ ^ r such that | | / ° # & 0 | | ^ p-2kr»

Then (1) admits, for each x0 e Ho, a unique solution uX(j e V with
| |^*0 II = r for which PuXQ(t0) — x0. Moreover, the mapping XO-^UXQ>

is continuous in Ho.

Proof. The ball B = {6 e V: \ \ b 11 g r} is a complete subspace of C.
Since, by our assumptions, \\fogh\\<Lp for every beBf Lemma 1
permits us to define a sequence (vn) of points in B such that vQ = 60

and vn = J(a?0, v ^ ) for w ^ 1. By induction we may write vn — un(x0)
where each un; Ho-+ B is continuous. From (6) we infer then that

( 9 ) || un(x0) - uu^(x0) || ^ Λrγ || u . . ^ ) - u._2(a;0) || ^ 2r(A:7)w-1

for any x0 e HQ, and this implies that (un) converges uniformly in H^
Thus UXQ = lim uw(aj0) exists for every x0 e HQ, and cc0 —• uXQ is continuous
in Ho. It immediately follows that uXo e B and J ^ o , uXo) = ^Xo for every
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x0 e HQ. Clearly, uXQ is unique. If w would be another solution of (1)
in F, satisfying \\w\\ ^ r and Pw(t0) — x09 then v = w — uXQ is a
solution of the linear equation (3) with b = / o gw — / o gUχ such that
Pv(t0) = 0 and /"(?;) = 0. Since, by Lemma 1, there is only one such
solution, we conclude that v = σ(0, 6), and this implies by (6)

(10) || w - u x o \ \ ^ Ύ \ \ f o g w - f o g U χ Q \ \ ^ k y \ \ w - uXo\\ .

Hence w = uXQ because krt < 1, which completes the proof.
These theorems are, in a sense, concrete versions adapted to our

setting, of the two very general theorems in [9] which are used
there for a completely different purpose.

We can say more when yeY and B is a topological direct summand
of C. For in this case, there exists a continuous projection τ of C
with τ-^O) = B and, for every b e C, and unique hb e C such that
f ° 9b - h b e B . O b v i o u s l y , h b = τ(fΌ gh) s o t h a t \\hb\\ g | | τ | | \ \ f ° gb\\
and | | / o ^ 6 - hb || g 2 || τ || \\fogh\\. Thus, even if fogb does not be-
long to B for any be V, the linear equation

(11) xr = A(t)x + /(ί, 6(ί)) - /&6(ί)

still admits, for each xQ e Xo, a unique solution v e Ffor which Pv(to)
%=xQ.

This yields immediately the following result.

COROLLARY 1. Suppose X has finite dimension, yeY and B is
a topological direct summand of C. Let τ be a continuous projection
of C with r-^O) = B and let a Ξ> 0, r > 0, p > 0 6β constants such
that aa + β\\y\\ + 2yp \\T\\ g r . // | |/°#&| | ^ p for every be Vwith
\\b\\ S r, then there exists, for each xoeHo, at least one differentiate
mapping ue V with \\u\\ ^ r for which Pu(t0) — x0 and

(12) u\t) = A(t)u(t) + f(t, u(t)) - hu(t)

at every te.K.
It follows that u will be a solution of (1) in V if and only if

hu — 0. Of course, hu(t) = 0 is the familiar bifurcation equation.
Theorem 2 admits a similar corollary; we leave its precise formu-

lation to the reader because we will state a special case of it presently.

4. We conclude by illustrating our foregoing considerations on an
important example which we discussed in [1] without giving details.
It has been treated by various other methods of different generality
(see, e.g., [2]46], [8], [10]).

Suppose X is the real normed space Rn, K the compact interval
[0, T], and let us inquire into the existence of a "periodic" solution u
of (1) in K such that u(0) = u(T).
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Here Γ is simply the mapping c—>c(0) — c(T) of C into Rn and
hence V is the Banach space of "periodic" mappings ceC for which
c(0) — c(T) ~ 0. If we choose tQ = 0 and denote by U the particular
solution of the homogeneous matrix equation associated with (3), which
equals the identity matrix I at t = 0, then we may write the mappings
ψ: Rn —* C and ψ: C —* C explicitly in the form

(13) φ(x): t -> U(t)x , φ(b): t -> U(t)\'
Jo

Thus, XQ is the null space, and Y the range, of the mapping I — U(T).
The mapping Γ o φ o ^ i s immediately computed to be the bijection

x —> — TU{T)x, and so the assumptions of Lemma 2 are satisfied.
ΓAe seί B of mappings be C for which the linear differential

equation (3) has at least one "periodic" solution ve V is a topological
direct summand of C.

A topological supplement to B may be constructed by choosing Q
(in the proof of Lemma 2), for example, as the projection of Rn onto
the null space Yo of the adjoint of I — U(T), which is a (orthogonal)
supplement to the range of I ~ U(T). Then B is the null space of
the continuous projection τ = Ψ o Q o φ where Φ:C—*Rn is the mapping

(14) 6 -> U{T)\TU-\s)b{s)ds
Jo

and Ψ; Rn —> C the mapping such that

(15) Ψ(xYΛ->±

It follows that B is precisely the set of those be C for which Qyb = 0
where

(16) yb = ±;
1

This reduces to the well-known statements concerning the mean values
of b when the matrix A(t) in (1) is a constant matrix of the form
diag (0, C) and C has no characteristic multipliers equal to 1.

From Theorem 2 and its proof we deduce the following result.

COROLLARY 2. Let a ^ 0 and positive constants k, r, p be chosen
such that aa + yp ^ r, (Ary < 1), kr < p. Iff is lipschitzian in K x H
for the constant fe/(2||τ||) and \\f(t, 0) || g (p - kr)/(2 \\ τ ||) αί any
te K, there exists, for each xQ e HOj a unique continuously differ-
entiate mapping uXQe V with \\uXQ\\ g r for which PuXQ(0) = x0 and

(17) Kit) = A(t)uXΰ(t) + f(t, uXΰ(t)) - h,Jt)
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at every te K. Moreover, the mapping xQ —> uXQ is continuous in HQ.
A sequence (vn) of successive approximations to uXQ is easily deter-

mined by putting ΐ/0 = 0 and defining each vn, n ^ 1, to be the unique
solution of (3) with b = / o gVn_i — Kn__χ such that vne V and P^(0) = α?0.

The successive approximations which are used, for example, in [3]
and [8] for proving results similar to Corollary 2 are chosen so as to
belong to both B and F. Though perhaps less convenient, such a
choice is possible because (3) has for every b e B a unique solution in
B Π F. This results at once, in our setting, from the following more
general fact.

The projection τ(v) of any solution ve F of (3) with be B is the
solution of the homogeneous equation associated with (3) whose value
at t = T is

(18) a?Γ = Q ϊv(0) - -1

Conversely, each xTe Yo determines for every be B one and only one
solution ve Voί (3) for which τ(v) has the value xT at t = T. Hence
v e F is uniquely determined by either #0 e Xo or xτ e YQ; in particular,
xτ — 0 implies i e B Π F.
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