THE LACK OF SELF-ADJOINTNESS IN THREE-POINT BOUNDARY VALUE PROBLEMS

J. W. NEUBERGER

Suppose that a < c < b, $C_{[a,b]}$ is the set of all real-valued continuous functions on [a,b], each of p and q is in $C_{[a,b]}$, p(x) > 0 for all x in [a,b] and each of P, Q and S is a real 2×2 matrix. The assumption is made that the only member f of $C_{[a,b]}$ so that (pf')' - qf = 0 and

$$(\varDelta) \qquad P \begin{bmatrix} f(a) \\ p(a) f'(a) \end{bmatrix} + Q \begin{bmatrix} f(c) \\ p(c) f'(c) \end{bmatrix} + S \begin{bmatrix} f(b) \\ p(b) f'(b) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

is the zero function. It follows that there is a real-valued continuous function K_{12} on $[a,b] \times [a,b]$ such that if g is in $C_{[a,b]}$, then the only element f of $C_{[a,b]}$ so that (pf')' - qf = g and (Δ) holds is given by

$$f(x) = \int_a^b K_{12}(x,t)g(t)dt$$
 for all x in $[a,b]$.

In this note it is shown that if in addition it is specified that Q is not the zero 2×2 matrix, then K_{12} is not symmetric, i.e., it is not true that $K_{12}(x,t) = K_{12}(t,x)$ for all x,t in [a,b].

The union of (a,c) and (c,b) is denoted by R. The symbol j denotes the identity function on [a,b], i.e., j(x)=x for all x in [a,b]. If V is a function from $[a,b]\times [a,b]$ and x is in [a,b], then V(j,x) is the function h such that h(t)=V(t,x) for all t in [a,b]. If each of f and (pf')'-qf is in $C_{[a,b]}$, then (pf')'-qf is denoted by Lf.

Given an element g of $C_{[a,b]}$, one has the problem of determining a function f so that

(*)
$$\begin{cases} Lf = g \quad \text{and} \\ (\varDelta) \quad \text{holds} \; . \end{cases}$$

Denote
$$\begin{bmatrix} 0 & \int_a^t 1/p \\ \int_a^t q & 0 \end{bmatrix}$$
 by $F(t)$ and $\begin{bmatrix} 0 \\ \int_a^t g \end{bmatrix}$ by $G(t)$ for all t in $[a, b]$.

Then problem (*) may be reformulated as follows: find a function Y from [a, b] to E_2 such that

(**)
$$Y(t) = Y(x) + G(t) - G(x) + \int_x^t dF \cdot Y$$
 for all t, x in $[a, b]$ and

$$\int_a^b dH \cdot Y = N \quad ext{where}$$
 $H(x) = egin{cases} 0 & ext{if} & x = a \ P & ext{if} & a < x \le c \ P + Q & ext{if} & c < x < b \end{cases}$

The assumption is made for the rest of this paper that only the function Y which is constant at N satisfies (**) if G is constant at N. It follows that for each continuous function G from [a, b] to E_i , (**) has exactly one solution.

Consider the function M from $[a, b] \times [a, b]$ to the set of 2×2 matricies which has the following property:

$$M(t, x) = I + \int_x^t dF \cdot M(j, x)$$
 for all t, x in $[a, b]$

where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Using Theorem B of [2], one has that the unique solution Y of (**) is given by

$$Y(t) = \int_a^b K(t,j) dG$$
 for all t in $[a,b]$ where

$$K(t,\,x) = egin{cases} -\left[\int_a^b\!dH\!\cdot\!M(j,\,t)
ight]^{\!-1}\!\!\int_x^b\!dH\!\cdot\!M(j,\,x) + M\!(t,\,x) & ext{if } a \leqq x \leqq t \ -\left[\int_a^b\!dH\!\cdot\!M(j,\,t)
ight]^{\!-1}\!\!\int_x^b\!dH\!\cdot\!M(j,\,x) & ext{if } t < x \leqq b \;. \end{cases}$$

That $\left[\int_a^b dH \cdot M(j,t)\right]^{-1}$ exists for all t in [a,b] follows from the assumption that was made above.

Some straightforward calculation gives that

$$K(t, x) = egin{cases} M(t, b) \, U(x) M(b, x) \, + \, M(t, x) & ext{if } a \leq x \leq t \ M(t, b) \, U(x) M(b, x) & ext{if } t < x \leq b \end{cases}$$

where

$$U(x) = egin{bmatrix} u_{11}(x) & u_{12}(x) \ u_{21}(x) & u_{22}(x) \end{bmatrix} = -iggl[\int_{a}^{b} dH \cdot M(j\ b) iggr]^{-1} \int_{x}^{b} dH \cdot (j,\ b) \ & ext{for all } x ext{ in } [a,\ b] \ . \end{cases}$$

Note that $Y = \begin{bmatrix} f \\ pf' \end{bmatrix}$ where f is the unique solution to (*). Denote K by $\begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix}$. It follows that

$$f(t) = \int_a^b K_{12}(t,j)gdj$$
 for all t in $[a,b]$.

THEOREM A. If Q is not the 0-matrix (i.e., (*) is r three-point problem) then it is not true that $K_{12}(t,x)=K_{12}(x,t)$ for all x and t in R.

Proof. Denote M by $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$. From [2] one has the following identities:

$$B(t,\,x) = A(t,\,b)B(b,\,x) + B(t,\,b)D(b,\,x) \quad \text{if x and t are in $[a,\,b]$}$$

$$(\text{since $M(t,\,b)M(b,x) = M(t,\,x)$ for all $t,\,x$ in $[a,\,b]$),}$$

$$A(t,\,x)D(t,\,x) - B(t,\,x)C(t,\,x) = 1 \quad \text{(i.e., det $M(t,\,x) = 1$)} \;,$$

$$A(t,\,x) = D(x,\,t) \;,$$

$$B(t,\,x) = -B(x,\,t) \;, \quad \text{and}$$

$$C(t,\,x) = -C(x,\,t) \quad \text{if x and t are in $[a,\,b]$.}$$

Note that LA(j, x) = LB(j, x) = 0 if x is in [a, b]. Suppose that

$$K_{\scriptscriptstyle 12}(t,\,x)=K_{\scriptscriptstyle 12}(x,\,t)$$
 for all x and t in R .

If a < x < t < b, then

$$K_{12}(t, x) = [A(t, b)u_{11}(x) + B(t, b)u_{21}(x)]B(b, x) + [A(t, b)u_{12}(x) + B(t, b)u_{22}(x)]D(b, x) + B(t, x)$$

and

$$egin{aligned} K_{\scriptscriptstyle 12}(x,\,t) &= [A(x,\,b)u_{\scriptscriptstyle 11}(t) + B(x,\,b)u_{\scriptscriptstyle 21}(t)]B(b,\,t) \ &+ [A(x,\,b)u_{\scriptscriptstyle 12}(t) + B(x,\,b)u_{\scriptscriptstyle 22}(t)]D(b,\,t) \;. \end{aligned}$$

Using the identities listed above,

$$egin{aligned} A(t,\,b)[&-u_{\scriptscriptstyle 11}(x)B(x,\,b)\,+\,u_{\scriptscriptstyle 12}(x)A(x,\,b)\,-\,B(x,\,b)]\ &+B(t,\,b)\,[&-u_{\scriptscriptstyle 21}(x)B(x,\,b)\,+\,u_{\scriptscriptstyle 22}(x)A(x,\,b)\,+\,A(x,\,b)]\ &=A(t,\,b)[u_{\scriptscriptstyle 12}(t)A(x,\,b)\,+\,u_{\scriptscriptstyle 22}(t)B(x,\,b)]\ &-B(t,\,b)[u_{\scriptscriptstyle 11}(t)A(x,\,b)\,+\,u_{\scriptscriptstyle 21}(t)B(x,\,b)] \;. \end{aligned}$$

An examination of this expression yields the fact that it remains true if x and t are interchanged or x is set equal to t.

Denote by x a number in R. Since u_{11} , u_{11} , u_{22} , u_{22} are constant on (a,c) and (c,b) and A(j,b) and B(j,c) are independent solutions v of Lv=0, it follows that

$$-u_{11}(x)B(x,b)+u_{12}(x)A(x,b)-B(x,b)=u_{12}(t)A(x,b)+u_{22}(t)B(x,b)$$

and

$$-u_{21}(x)B(x, b) + u_{22}(x)A(x, b) + A(x, b) = -u_{11}(t)A(x, b) - u_{21}(t)B(x, b)$$
for all x and t in R .

Similarly, it follows that

- (i) $-u_{11}(x)-1=u_{22}(t)$,
- (ii) $u_{12}(x) = u_{12}(t)$,
- (iii) $u_{21}(x) = u_{21}(t)$ and
- (iv) $u_{22}(x) + 1 = -u_{11}(t)$ for all x and t in R.

(ii) and (iii) imply that u_{12} and u_{21} are constant on R. (i) and (iv) give the same information so that only (i) need be considered. Denote $u_{11}(c-)$ by c_1 , $u_{22}(c-)$ by c_2 , $u_{11}(c+)$ by c_3 and $u_{22}(c+)$ by c_4 . Hence (i) gives that $c_1+c_2=-1$, $c_1+c_4=-1$, $c_3+c_4=-1$ and $c_3+c_2=-1$. But these equations imply that $c_2=c_4$ and $c_1=c_3$, i.e., that u_{11} and u_{22} are constant on R. Hence, U is constant on R. If t is in (a,c) and x is in (c,b), then

$$\left[\int_a^b dH \cdot M(j,b)\right]^{-1} \int_t^x dH \cdot M(j,b) = U(x) - U(t) = 0$$

so that

$$QM(c,b) = \int_t^x dH \cdot M(j,b) = 0$$
,

i.e., Q = 0, a contradiction. Hence the theorem is established.

If n is an integer greater than 3, this theorem can be extended to n point boundary value problems. This is the case in which H is a step function with n discontinuities (with one at a and another at b). What happens when H has points of change other than discontinuities is not at all clear to this author.

REFERENCES

- 1. J. W. Neuberger, Concerning boundary value problems, Pacific J. Math. 10 (1960), 1385-1392.
- 2. H. S. Wall, Concerning continuous continued fractions and certain system of Stieltjes integral equations, Rend. Circ. Mat. Palermo II 2 (1953). 73-84.

Received February 1, 1965.

EMORY UNIVERSITY