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COMMUTATIVE RINGS WHOSE HOMOMORPHIC
IMAGES ARE SELF-INJECTIVE

LAWRENCE S. LEVY

Dedekind domains are characterized among integral
domains by the property that every ideal be a projective
module, The most naive dual characterization—that every
homomorphic image of R be an injective module—is false. In
fact, a domain with this property would have to be a field.
An injectivity property that works, in the noetherian case,
is the property that every proper homomorphic image be a
self-injective ring. The main result of this note is:

THEOREM. Let R be a commutative, moetherian ring (with
tdentity). FEvery proper homomorphic image of R is a self-injective
ring ¢f and only tf

(1) R is a Dedekind domain, or

(2) R s a principal tdeal ring with descending chain condition,
or

(3) R s a local ring whose maximal ideal M has composition
length 2 and satisfies M*? = 0.

A more complete deseription of the rings of type (3) is given in
Remark (ii) below.

LEMMA. Suppose that M* = 0 for some maximal ideal M of a
self<injective, commutative ring R. Then 0 S M = R are all of the
ideals of R.

Proof. For z in R let ann x (the annihilator of x) be the ideal
of all b in R such that bx = 0. If x is a nonzero element of M, then
M < annx since M?®=0; and since R has an identity, R # ann z.
Maximality of M therefore shows that M = annx so that Rx =
R/ann ¢ = R/M (as modules). Hence, for any two nonzero elements
z,y of M we have Rx = Ry.

Injectivity of the R-module R implies that any isomorphism of Rx
onto Ry can be extended to a homomorphism of R into itself. Suppose
that, in such an extended map, 1 —%. Then Rxu = Ry so that Rx 2
Ry for every nonzero x and y in M. This shows that M has no proper
submodules.

Now let N be any ideal # 0 or M. Then since there are no ideals
between 0 and M, and since M is maximal, we have R = M + N.
Multiplying by M and recalling that M* =0 we get M = MN = N so
that N = R.
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Proof of the theorem. Suppose that all of the proper homomorphic
images of R are self-injective rings, and consider first the case that R
is a domain. If M is a maximal ideal of R, the ring R/M*® must be
self-injective and the image M of M in R/M* satisfies M* = 0; so by
our lemma, R has no ideals between M and M*. But a theorem of
I. 8. Cohen [2, Theorem 8] states that a noetherian domain with this
last property for every maximal ideal M must be a Dedekind domain,
Thus we have obtained rings of type(l).

Suppose next that R is not a domain. Then 0 is not a prime
ideal. Observe that every prime ideal P must be maximal: The
integral domain R/P is, by hypothesis, an injective, hence divisible
R/P-module [1, Chap. 7, Prop. 12]; that is, a field. But a noetherian
commutative ring in which every prime ideal is maximal must satisfy
the DCC (descending chain condition) [2, Theorem 1], and hence be
the direct sum R=R, @ --- @R, of local rings with DCC [6, Chap.
4, Theorem 3.3].

Let M, be the maximal ideal of R;. Again we consider two cases.
Suppose first that either # > 1, or » = 1 but M7 # 0. Then for each
1, R/(M} + >\;xR;) = R;/M} is a self-injective ring. The lemma (applied
to R;/M}) tells us that for any m,; in M; but not in M; we have
M, = Rm; + M} = Rym; + (rad R;,)M;; and Nakayama's lemma then
shows that M, = R/m,. Thus R; is a noetherian commutative
ring in which every maximal ideal is principal, and a theorem of
Kaplansky asserts that any such ring must be a PIR (principal ideal
ring) [3, Theorem 12,3]. Thus each R; and hence R itself is of type

(2).

Finally, suppose that R is a local ring with DCC whose maximal
ideal M satisfies M*= 0. We can suppose that M has composition
length at least 2, since otherwise R would be a PIR. By the DCC,
M contains a minimal ideal N of R. By the lemma, the nonzero ideal
M/N of the self-injective ring E/N has composition length 1. Hence
M has composition length 2. Thus R is of type (3) and the proof of
half of the theorem is done.

Conversely, suppose that R is of type (1), (2), or (3). Observe
that the proper homomorphic images of all three types of rings are all
PIR’s with DCC, and that every ring of this last type is the direct
sum of rings R which have exactly one composition series [3, Theorem
13,3]:

(4) R>Rm D>Rm* D Rm*> --- DRm* =0

It is therefore sufficient to show that the ring in (4) is self-injective.
To do this let f be a homomorphism of Rm® into R. Then the
composition length of f(Em*) cannot exceed that of Rm*, so that the
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fact that (4) contains all the ideals of R shows that f(Em®) & REm®.
Consequently, f(m®) = m*x for some x in E. The map » — rx (r in R)
is then an extension of f to a homomorphism of R into itself, showing
that R is an injective R-module and completing the proof of the
theorem,

The following consequence (actually, restatement) of the theorem
is the converse of an old lemma which is the starting point for some
accounts of the theory of finite abelian groups. We define the order
ideal of an element m of an R-module M to be {re R: rm = 0}, and
we say that M has bounded order if rM = 0 for some r # 0.

COROLLARY. Let R be a commutative noetherian ring and suppose
whenever m ts an element with minimal order ideal in an R-module
M of bounded order, that Rm is a direct summand of M. Then R
is of type (1), (2), or (3).

For a proof, let the ring R be a proper homomorphic image of R,
and let M be any R-module which contains R. Then M has bounded
order as am R-module, and the identity of R is an element with
minimal order ideal in the R-module M. Hence, by hypothesis, B is a
direct summand of M. We have thus shown that R is a direct
summand of every R-module which contains it, and hence is self-
injective. The theorem now completes the proof of the corollary.

REMARKS. (i) The hypothesis that R be noetherian cannot be
dropped from the theorem. For an example, let F be a field and =
an indeterminate; and let W be the family of all well-ordered sets {i}
of nonnegative real numbers, the order relation being the natural
order of the real numbers. Then let R be the set of all “formal power
series”

with a; in F' and {¢} in W. Then R is a nonnoetherian domain whose
JSinitely generated ideals are principal and whose proper homomorphic
mages are self-injective,

We will need the facts that R is actually a ring and that every
element of K whose constant term is nonzero is invertible in R[4,
part I]. It follows that every nonzero element of R has the form z'uw
where % is invertible in R. This implies that R has only two types
of nonzero ideals: The principal ideals (x*), and those of the form
(>?) = {x°u: ¢ > b and u is invertible or zero}.
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Let S= R/J where J+#0 and let y =2+ J so that S can be
considered at the collection of “formal power series”
23 0y’
i€{s}
with a; in F, {g} in W, and (I) > =0 if J = (2°), or (II) y* =0 for
¢>bif J= (2>%). Observe that for ¢ <b

(5) (f J=(a") ann (y°) = (¥"~°) ann (y>°) = (¥"~°)
(6) (f J=(2*") amn(y)=(y"") anmn(y>)=(@u"").

From (5) and (6) it follows that whether S is of type (I) or (II), the
principal ideals of S satisfy ann ann (y°) = (¥°).

To see that S is self-injective, let f be an S-homomorphism of an
ideal K of S into S. If K = (y°), then (ann K) f(K) = f(0) = 0 so that
S(K) < ann ann K = K so that f(y°) = ¥°p for some p in S. Thus f
can be extended to the endomorphism s — sp of S.

Next, let K = (y¥>°), and choose an infinite sequence ¢(1) > ¢(2) >
¢(8) > --- such that lim, . ¢(¢) =¢. Then K= UZ,(y*"). For each
¢ the previous paragraph shows that we can choose a “power series”
p; such that f(y°®) = yep,. If j > so that g9 = yei—elilyeld) the
fact that f is an S-homomorphism shows that f(y°*") = y*"p; so that
(since also f(y“?) = y““p;,) we have p; — p;€ann (y°®). If (5) holds,
this means that all the terms of p; of degree < b — ¢(¢) are equal to
the terms of the same degree of p; while the terms of higher degree
do not affect the products y°*“p; and y*“p;. A similar statement is
true if (6) holds. Thus we can assemble a single “power series” p
such that (p — p;)y*® = 0 for all © (It must be verified that the col-
lection of exponents appearing in p is well-ordered so that p is in S).
Then the map s — sp extends f to an endomorphism of S. We have
now shown S to be self-injective.

(ii) The rings of type (3) in the theorem can be characterized as
the following type of combination of PIR’s: Let B be a field, and let
R; be a local PIR with maximal ideal M; # 0 such that R;/M; = R and
M? =0 (¢ =1,2). Note that M; is the only proper ideal of R;. Choose
pair of homomorphisms %;: R; onto R and let R = {(ry, r): ki(r) =
Eo(r2)}.
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To see that R is of type (3), note that an element (r,r,) of R is a
nonunit if and only if k(7)) = 0 (= ky(r,)). Hence R is a local ring.
Its maximal ideal is readily seen to be M = M, M, and hence has
composition length 2 and satisfies M* = 0.

Conversely, let B be of type (3). Then since M*=0, M is a
vector space over the field R = R/M, and this space has dimension 2.
Hence M is the direet sum of two minimal ideals M, and M, of R.
The map f: r — (r + M,, » + M,) of R into R, (= R/M,) & R, (= R/M,)
is a monomorphism (see the diagram). Finally, define k;: R; onto R by
kir + M;) =r + M. Then it is straightforward to verify that

R=f(R)={(r + My, s + My): v + M= s+ M}={(r,, r): ku(r,) = ku(7r)} .

(iii) Finally, it seems fitting to mention a related theorem by
Barbara Osofsky [5] which states that the only rings R (commutative
or not) having the property that all of their (left R-) homomorphic
images are injective R-modules are the semi-simple rings with DCC.
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