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ON THE CHARACTERISTIC ROOTS OF THE PRODUCT
OF CERTAIN RATIONAL INTEGRAL
MATRICES OF ORDER TWO

LORRAINE L. FOSTER

This paper deals with a special case of the following
problem: Let A, B be matrices of order n over the rational
integers. Compare the algebraic number field generated by
the characteristic roots of AB with those generated by A, B.

We let M(r, s) denote the companion matrix of 22+ rx + s,
for rational integers » and s, and let N(r, s) = M(», s)(M(r, s))’.
Further let F'(M(r, s)) and F(N(r, s)) denote the fields generated
by the characteristic roots of M(r, s) and N(r, s) over the rational
field, K. This paper is concerned with F(N(r, s)), especially
in relation to F'(M(r,s)). The principal results obtained are
outlined as follows:

Let S be the set of square-free integers which are sums
of two squares. Then F(N(r, s)) is of the form R(V ¢ ), where
ceS. Further, F(N(r, s)) = R if and only if rs = 0. Suppose
ceS. Then there exist infinitely many distinct pairs of integers
(v, 8) such that F(N(r,s)) = RV ¢).

Further, if c€ S, there exists an infinite sequence {(7,, s.)}
of distinct pairs of integers such that F(M(r,, s.) = RV ¢)
and F(N(r,, s.)) = R(V ¢d, ) for some integers d, such that
(c,dn)y=1. If ¢ceS and c¢ is odd or ¢ = 2, there exists an
infinite sequence {(}, s.,)} of distinct pairs of integers such that
F(N(", s2) = RV ¢) and F(M(r.,s")) = R(V ¢d’,) for some in-
tegers d, such that (c,d,) = 1.

There are five known pairs of integers (7, s) with rs #= 0
and s = — 1 such that F(M(r, s)) and F'(N(r, s)) coincide. For
s = 2(mod 4) and for certain odd integers s the fields F'(M(r, s))
and F'(N(r, s)) cannot coincide for any integers 7.

Finally, for any integer 7 #+ 0 (or s = 0, —1) there exist
at most a finite number of integers s (or 7) such that the two
fields coincide.

Let A = (a;,) be a matrix of order n with elements in the complex
field. We say A is normal if and only if A’/A = AA’ where A’ =
(@;). It is known that if A is normal, with characteristic roots A, )
t=1, .-+, m, then' the characteristic roots of AA’ are given by
Nih;, © =1, --+, m., Conversely, if the characteristic roots of AA’ can
be written as M~X3i, 4=1,---,n, where {0, ---,d,} is some permuta-

t This follows immediately from Theorem 1, [1].
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tion of {1, --+, n} then A is normal.? Hence it seems of interest to
study the characteristic roots of AA’ in comparison with the charac-
teristic roots of A in the case of nonnormal matrices A. Results are
known which compare the magnitudes of these roots. Here a different
point of view is adopted. The matrices A are restricted to a set of
matrices of order two over the rational integers, I, and the algebraic
number fields in which the characteristic roots of A and AA’ lie are
compared.

Specifically, we let M(r, s) denote the companion matrix of the
polynomial 2* + r2 + s and consider the set {M(r,s)|r,scl}. We
define N(r, s) = M(r, s):-(M(r, s))’. We observe that M(0, 1) is normal
and M(r, —1) is normal (and in fact symmetric) for all reI. Other-
wise, M(r, s) is nonnormal.

We define functions d(r, s) and 4(r, s) as follows:

o(r,s) = r* — 4s
A(r,s) = (r* 4+ ¢ 4+ 1)* — 4¢* .

We note that 4(r, s) can also be expressed in the forms
4+ s+ 1)+ (s — 1)), 4r’s®+ (r* — s* 4+ 1),

and 47 + (* 4+ s — 1)>. We denote the fields which the characteristic
roots of M(r,s) and N(r,s) generate over the rational number field,
R, by F(M(r,s)) and F(N(r,s)), respectively. Then F(M(r,s)) =
R(V/6(r, s)) and F(N(r,s)) = R(V 4(r,s)). We definte gs(r,s) to be
the square-free part of (7, s) if d(r, s) # 0, and gs(r, s) = 1 otherwise.
Similarly, we define g,(r, s). This work is therefore concerned with
the relationships between g (r,s) and g,(r,s). Clearly F(M(r, s)) and
F(N(r, s)) coincide if and only if gs(r, s) = g.r, s).

Many of the conjectures proven in this work were suggested by
calculations performed on the IBM 7090 computer. The question of
the number of pairs (r, s), with s # — 1 and rs # 0, such that F(M(r, s))
and F(N(r, s)) coincide is still unanswered. (We can easily see that
gs(r, —1) = g4(r, —1) and g;(r, 0) = gfr, 0) for all re I, Also, 950, s) =
940, s) if and only if* s = — [J.) The computer data and a number
of results lead us to conjecture that there exist only finitely many
pairs (r, s) satisfying these conditions.

1. The Nature of F(N(r,s)). We will conclude in this section
that the set of fields {F(N(r, s)) | rs # 0} is precisely the set {R(1¢) |c¢=
@'+ b* # 1}, We first note

2 This was proven by A.J. Hoffman and 0. Taussky, [2].
3 In this paper, ‘“‘[]”’ will always denote an integral square.



CHARACTERISTIC ROOTS OF PRODUCTS OF CERTAIN MATRICES 99
THEOREM 1.1. g,r,s) =1 &f and only &f rs = 0.

Proof. Without restricting generality, we assume »,s=0. We
observe that 4(r,s) =@+ s — 1P+ 4r = (r* + &)+ 2(r* —sH) + 1
and that (r* + s+ 1)) = (r* + $*)* + 2(r* + s*) + 1. Henceifr >s >0
we have (r* + $*) < 4(r, s) < (r* + §* + 1)%, while if 0 < r < s we have
(r* + 8 — 1) < A(r,s) < (r* + 8*).  Also, 4(r,r)=4r*+ 1. Hence
A(r,s) #= O for rs # 0 and the necessity of the condition is proven.
To prove sufficiency we observe that 4(0,s) = (s* — 1)* and 4(r, 0) =
(r* + 1)

Since g, (r,s) is the square-free part of 4r*s* + (r* — s* + 1)°, we
conclude that g,(r,s) is of the form a® + b*, where @ and b are rela-
tively prime integers, and, ab = 0 if and only if rs = 0. The next
theorem demonstrates that each form with ab # 0 is represented by
some g,(r,s). We prove, in fact, rather more. We first recall the

following lemma:

LEMMA.* Letd > 1 be an integer of the form ] P¥ where each
prime P; is of the form 4N + 1. Then there exists at least one pair
of imtegers (a, b) such that d = o’ + b* and (a, d) = 1.

THEOREM 1.2. (i) Let ¢=a*+ b % . Then there exists a
sequence {(r,,s,)}, 1 =n < o, such that r, < T,y S, < S+, and
4(r,, s,) = ¢+ 0.

(ii) Further, if ¢ is a product of primes of the form 4N + 1,
there exists a sequence {(r), )}, 1 £ n < oo, such that

7 < Py Sy < Shay, A(1), 87) = ¢- O

and o(r,, s,) = cd,- [0, where d, 1s some integer relatively prime to c.

Proof. Let f,+ g/ ¢ denote any solution of the equation
fP—cg*=1,f,9 >0. Write ¢ = [[,P? where the primes P; are
distinet and each B; > 0. Further, write g, = k [I™,P¢:, where each
«; 20 and (k,¢) = 1. Define ¢’ = g,/k and d = (¢)’c. Then we have

(1.1 fi—kd=fi—ge=1.

We define f, + g,V d = (fo+ kv d)* and @, + 4,V d = (f, + g,V d)’ =
Fi+gid + 2f9.V d, n=1,s0 that f2 — gid = 1 = a2 — yid, &, = fo,
and y, = ¢,,. Clearly z, >2,_, and y, > y,_,,n > 1. We can write
d = ai + b for some integers a,, b, > 0. If each P, = 1(mod4) then
by the lemma we can choose @, and b, to be relatively prime. We

4+ A proof of this result can be found in [3], pp. 164-6,
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now define

Uy + v,V d =(d+ bV d)(x, + vy, d)
= d(x, + by,) + b, + dy )V d,n=1.
It is clear that
(1.2) ul — vid = d* — bid .

Further, w, = 0, v, = b, (mod d), since 2, = f2 = 1(modd), n=1. It
follows that 2u,/d, 2(v, — b,)/d are integers which we shall denote by
m,, k,, respectively, » = 1. Clearly w, > w,_, so that k, > k,_,. From
(1.2) we have 4d* — 4bid = dm? — d(dk, + 2b,)*. Simplifying and divid-
ing by d?, we get

1.3) dk: + 4bk, + 4 = m? .
We now define
r.,=k,a,s,=kb, +1, n=1,

Then 7, < 7pi1y Sp < Spisy 75 + (8, — 1)) = kid, and 7} + (s, + 1)" = m},
from (1.3). Clearly 4(r,,s,) = d-[0 = ¢-, % = 1, so that (i) is proven.

Let us suppose that each P, = 1 (mod 4) and that we have chosen
a,, b, to be relatively prime. We observe that

1.4) fo=1l(modd), n=1.

For, f.=f,+ k*d=2kd + 1= 1(mod d) by (1.1). Also, if f,_,= 1(modd),
then f, = f,_.fi + 9._.9.d = 1 (mod d). We also observe that

(1.5) (9, d) = 2fik, d) = 2f,, D) =1,

by (1.1) and the fact that d is odd. Further, we show by induction
that

(1.6) 9, = ng,(modd), n=1.
We assume that g, ;= (n — 1)g, (mod d), n = 2. Then
90 = Gusfi + fosi0 = oy + 90 = NG, (mOd d)

by (1.4) and the induction is complete. We consider the equation
f=9v+1=0(modP;), t:=1, .-+, m. Since each P; = 1 (mod 4),
we can find a solution y; to this equation, for each 4. Then we can
choose’ integers ¥ such that y:= y; (mod P;), f(y}) = 0 (mod P:**Fi),
since f'(y;)) £0(mod P;),4 =1, ---,m. By the Chinese Remainder
Theorem we can choose z such that z = y] (mod P23*i*?) for all ¢, and

5 For a proof of this statement, see for instance [4], page 87.
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hence
(1.7 24+ 1= 0(modd) .

Since (2b,,d) =1, by (1.5) and (1.6) it is clear that the integers
20,9445, 2 = 1, - -+, d, represent a complete residue system modulo d,
for any integer ¢ = 0. Hence we can choose an integer N > 0 such
that 2b,gy = 20,901y = 2 — 1 (mod d), for every ¢ = 0. Then

(Zblgtd+N + 1)2 + 1= 0 (mod d)
by (1.7). Moreover

(1.8) 0Tz xy Starw) = — (Kegonb, + 2 + k2 nd
= — (kiq+xb: + 2)* (mod d)

In general, we can show that

k, = 2(bwx, + dy, — b)/d
= 2(b(f7 + g2d — 1)/d + 2f,9.) = 4,7 + g.) (mod d),

using (1.4). Hence
(1.9) kuynbi + 2= (20,9035 + 1 4+ 1 = 0 (mod d) ,

so that by (1.8), 6(74:x, Siasy) = 0(modd), £ = 0. We can show that
((0(7,q4 w5, Starn))/d,d) = 1. For, assume the contrary. Then

PiitPitt | 5(rasny Searn)

for some 4. By (1.9) we know that PX«+fd|(k,,.~b, + 2)°. Hence,
by (1.8), Pii+kitt | |2 od so that P;|k,,.y. This is however a contra-
diction by (1.9). Hence 6(7,44x, Siary) = dd,,, = cd,.,- 1 Where (d}.,, ¢) =
dyr,e)=1,t=0. If wesetm=(mn—1d+ N,r,=r,,s,=Ss,, the
proof of (ii) is complete.

2. Further relations between F(M(r,s)) and F(N(r,s)). The
following theorems are concerned with various comparisons of the
fields F(M(r, s)) and F(N(r,s)). We observe from Theorem 1.2 (ii)
that, for every square-free odd integer ¢ = @* + b* there exist infinitely
many pairs (r,s),rs#* 0, s=#* — 1, such that g,r,s)|gs;(r,s) and
g7, s) = ¢. In this section we will demonstrate that if ¢ = a* + b* is
a square-free integer then there exist infinitely many pairs (r, s), rs # 0,
s # — 1, such that g.(r, s)|gAr,s) and g¢s(r,s) =c¢. We first prove
the following theorem, which essentially states the conclusion of Theorem
1.2 (ii) for the case ¢ = 2.

THEOREM 2.1. There exists a sequence {(r,,8,)}, 1 =< n < o, of
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patirs of integers such that g,.7r,, s,) = 2, gs(*., s.) = 2d,, where d, is
some odd integer and |s,| < |8, |, n = 1.

Proof. Define integers x,, y, by the relation z, + ¥,/ 2 =
@ +VvV2)y~, n=1 Thena—2y2-=—1andz, =y,=1(mod2). Also
define integers f,, s, by the relations: |f,|=2,, 18, =Y., fu=8,=
—1(mod 4), n=1. Further define »,= f, +s,. Then r2—si+1—2r,s,
0 so that 4(r,, s,) = (r2 — s% + 1)* + 4r2s? = 8ris:. Hence g,(7,, s,) =
2, m=1, Furthermore, d(r,,s,) = 4(f, + $.)*/4 — s,), and since
fu+ 8,= — 2 (mod 4), we have o(r,, s,)/4 = 2 (mod 4). Hence g,(7,, s,) =
2d,, where d, is odd, » = 1.

I

We will prove the following theorem:

THEOREM 2.2. Let ¢ = a*+ b* be a square-free integer. Then
there exist infinite sequences {r,}, {s.}, and {s;), such that r, < r,.,,
8, % 0, =1, g5(70s 84) = €, 9u(Tuy 8,) = C€Cyy G5(T, 81) = — €, AN g (7, 8}) =
ccl, where ¢, and c, are integers relatively prime to ¢, n=1,2, «--,

We first prove three lemmas:

LEMMA 1. Suppose ¢ = t*u > 0, w odd. Further suppose that
c|r*+ 4, for some imteger r > 0. Then there exists an integer
s # 0, —1 such that F(M(r,s)) = RV ¢) and F(N(r,s)) = R\ ¢c),
where ¢ s some integer relatively prime to c.

Proof. We define an integer f to be ¢ or ¢/4 according as c¢ is
odd or even. Now 7* + 4 = 0 (mod 16) so that it is clear tkat f=
1(mod 4). We define an integer d = (»* + 4)/f. Clearly d =0 or
1 (mod 4). We can therefore define a positive integer k as follows:

2fd + 1 if d =1 (mod4)
E=4fd+1)+1 if d = 0 (mod 8)
3fd+ 1)+ 1 if d=4(mod8).

Observe that k* = d (mod 4). Define the integer s = f((d — k%)/4) — 1.
Evidently s < — 1. Also, o(r, s) = fk*. Furthermore, since (f, rk) =1
it is clear that 4(r, s) = fc,, where ¢, = (k* + f((d — E*)/))(* + (s + 1))
and (¢, f) = 1. Hence F(M(r, s)) = RV ¢ ), F(N(r, s)) = R(V cc,), and
if ¢ is odd, (¢, ¢) = (f,¢,) =1 and the proof is complete. If ¢ is even
then &’ = d = 0 (mod 4), (d — k¥*)/4 = 0 (mod 2) and 7* = 0 (mod 4). Hence
¢, is odd and (¢, ¢,) = 1.

LEMMA 2. Suppose ¢ = t*u > 0, u odd. Suppose also that ¢|r*+4
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for some even integer r > 0. Then there exists an integer s > 0 such
that F(M(r, s)) = R(V' —¢) and F(N(r, s)) = R(V ¢cc,) for some integer
¢, relatively prime to c.

Proof. (Observe that the requirement that r be even is necessary
since ¢ >0, ¢|r*+ 4, and d(r,s) =0 or 1(mod4).) We define an
integer », = /2 and define integers f and d as in the preceding proof.
We also define an integer ¢ = d/4 and can choose an integer 7 > 0
such that (j7,f) =1 and e # j (mod2), since f is odd. The reader
may verify that if we choose s = f(e + j°) — 1, the lemma is proven.

LeEmMMA 3. Suppose ¢ = 2t*u > 0 where u s a square-free odd
wnteger. Suppose also that ¢|r* + 4 and e = = 1. Then:

(i) If r* + 4 = 0 (mod 8) there exists an integer s = 0, —1 such
that F(M(r, s)) = R(V ec) and F(N(r,s)) = R(V ¢cc,) where ¢, is some
integer relatively prime to c.

(i) If * + 4 = 4 (mod 8) there exist no integers s and ¢, such
that F(M(r, s)) = R(V ec), F(N(r, s)) = RV cc)) and (c,, c¢/t?) = 1.

Proof. We can define an integer », = /2. To prove (i) we sup-
pose that 7* + 4 = 0 (mod 8) and define integers d and ¢ as in the
proof of Lemma 2. We also define f = ¢/4 or ¢ according as ¢ = 0 or
¢ =2(mod4). We can further define an odd integer f, = f/2 and
choose an even integer 5 > 0 so that (f,,5) =1, § > 2¢. To complete
the proof of (i) we define s = f(e — €j*) — 1 and note that f,=1=
e (mod 4), 7, = 1(mod 2). Details are left to the reader.

To prove (ii) we assume that 7* 4+ 4 = 4 (mod 8), and assume the
conclusion false. Then there exist integers s and ¢, (we may assume
¢, is square-free) such that

(2.1 gs(r, 8) = 2eu
(2.2) 94(r,8) = 2¢,u , (cy, 2u) = 1.

Define an odd integer g = (* + 4)/4u. Then, by (2.1),
o(r, sy = dug — A(s + 1) = 2k’uc ,

for some integer k > 0. We conclude that k/2 is an integer, m say,
since # is odd. We also conclude that

A(r, 8) = u(2k* + u(g — 2mPe)’) - (4r; + uX(g — 2m’e)’) = 1(mod 2) ,
which contradicts (2.2). Hence (ii) is proven.

Proof of Theorem 2.2. Write ¢ = []{., P; where the P; are distinct
primes of the form 4N + 1 or 2. Let x; be an integer such that
22+ 1=0(modP,), 1 =1, --+, ¢t and choose z such that z = x; (mod P,),
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=1, ---,t. Also, define r,=2(z+ (n—1)¢), n=1. Clearly 72 + 4=
4(2*+1)=0(modc), n=1. Assume c is odd. Then by Lemma 1 there
exists an integer s, = 0, —1 such that gs(7,, s,) = ¢ and g,(7,, s.) = cc,,
where c, is some integer relatively prime to ¢. Further, since 7, is even,
by Lemma 2 there exists an integer s, > 0 such that g;(r,, s,) = —¢
and g,(r,, s,) = cc,, where (¢, ¢,) = 1. Hence if ¢ is odd the theorem
is proven. We assume c is even. Then 2 is odd so that »,/2 = 1 (mod 2)
and hence 2 + 4= 0(mod8), #=1. We take ¢ =1, —1 sucessively
in Lemma 3 and the theorem is proven.

Taking a different viewpoint we have:

THEOREM 2.3. For every integer r > 0 there exist infinitely many
distinct integers s such that gs(r,s)|gsr,s), | gs(r,s) | # 1.

Proof. Assume first that » #+ 2. Then, since 7* + 4 %= 0 (mod 16),
we know that 7* 4+ 4 has an odd square-free divisor ¢, say, ¢ > 1.
We define d = (+* + 4)/c and choose an integer e > 0 such that ¢ =
d (mod 4) and (¢, ¢) = 1. We then define k, = 2cn + ¢, n = 0. Clearly
k2 = d (mod 4) and (k,, ¢) = 1. Hence we can define s, = (¢(d — k2)/4)—1,
n = 0, and, as in the proof of Lemma 1 (with f = ¢), we conclude that
os(r, 8,) = ¢, 94r,8,) = cc,, where c, is some integer relatively prime
to ¢. Hence if 7 # 2 the theorem is proven. In the case r =2
we define s, = 1 — 2n*, » = 1, and observe that 4(2, s,) = 32¢}, §(2,s,) =
2.1, where ¢, is odd.

3. On the coincidence of F(M(r,s)) and F(N(r,s)). The fol-
lowing known theorem, which is a special case of a theorem by C.L.
Siegel [5], will be applied frequently in this section.®

THEOREM A. Let f(x) be a polynomial of degree n =3 with
integral coeffictents and distinct zeros and let A be a nmonzero integer.
Then the equation f(x) = Ay* has at most a finite number of integral
solutions (x, ).

Computations for pairs of integers (r, s) satisfying the inequalities
0=<|r| =600, 0=<|s| =800 revealed five pairs (r,s) with rs = 0,
s # — 1 such that the fields F(M(r, s)) and F(N(r, s)) coincide. These
are: (r, s) = (6, 7), (14, 47), (11, -76) (141, -236) and (40, 81). The cor-
responding values of g, (r,s) are: 2, 2, 17, 17, 41. In this section we
will prove several theorems which resulted from a study of these five

fpairs, and which in some sense, limit the number of pairs (r,s) for

6 A proof of this theorem is given in [6], pp. 155-7.
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which coincidence occurs.

We first observe that in three cases of coincidence we have
o(r, s) = 8. This leads us to inquire if any additional pairs (r, s) exist
with these properties. We find

THEOREM 3.1. Suppose gs(r,s) = g,(r,s), d(r,s) =8, and r = 0.
Then (7‘) S) = (2y _1)y (6y 7)1 or (14y 47).

Proof. Under the above hypotheses, »* — 4s =18, »* 4+ (s + 1)) =
(s+38)? "+ (s—1P=(s+1°+8, and 4(r,s) =2-0 # 0. Hence
there exists an integer k£ > 0 such that (s + 1)* + 8 = 2k*. Define an
integer xz = »/2. Clearly (x* — 1)* + 8 = 2k* so that z is odd and k is
even. Define y = k/2 and observe that

(3.1) ((@* =Dy = (v - 1)/8.

We can then define’ integers w and v by . =2u — 1, y = 2v — 1 so

that (3.1) becomes <g>2 = (g) The only solutions® of this equation

are (w,v) = (1,1), (2,2) and (4,9) and these solutions correspond to
(r,s) = (2, —1), (6,7), and (14, 47), respectively.

In the preceding theorem we required that d(r,s) = 8. We now
suppose that d(r,s) = K, a constant. We have:

THEOREM 3.2. There exist at most a finite number of pairs (r, s)
such that gs(r, s) = g.r, s) and i(r,s) = K, a constant.

Proof. If K = 0 the fields coincide only for (7, s) = (0, 0). Hence
we assume K #= 0. We may also assume K = 8, by Theorem 3.1. We
write K = k*Q where @ is square-free. Suppose gs(7, s) = g.(r, s).
Then we must have 4(r,s) = h*Q for some integer k. Since do(r,s) =
r* — 4s = k*Q, this implies

(3.2 FQ+4s+ (s + 1) (FQ + (s + 1) =1Q.
The left-hand side of (3.2) is a polynomial in s of degree four with
roots s = — 3 + (s — k'Q)"*, —1 + kv —@Q, and, under our hypotheses,

these four roots are distinet. Hence by Theorem A we conclude that
(3.2) has at most a finite number of solutions (s, z). This proves the
theorem since K and s determine | 7| uniquely.

We apply a similar argument to prove the following more interest-
ing result:

7 The author is indebted to H. Hasse for this transformation.
8 For a proof of this assertion, see [7], pages 202-7.
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THEOREM 38.3. For any integer s + —1, 0, there exist at most a
finite number of integers r such that gs(r, s) = gi(r, s).

We require the following lemma:

LEMMA. gs(r, 1) # g7, 1) for all r.

Proof. Suppose the lemma false. Then, for some r > 0 there
exist integers A, k& such that »* — 4 = £*Q, (r* + 4)r* = h’Q, where Q =
gs(r, 1) = g,(r,1) > 0. We observe that we must have hk # 0, » # 0,
Since @ is square-free, r |h. Hence we can define an integer j =
h/r. Thus we conclude that 8 = (> — k*)Q and @ =1 or 2. If Q =
1 then »*=k*>+ 4 and if @ = 2 then 52 = k* + 4 and both equations
are impossible since k # 0.

Proof of Theorem 3.3. By the lemma we may assume s # 1.
Hence let s and @ be fixed integers such that s = 0, =1and @ > 0 is
square-free. Observe that the equation g,(r,s) =@ has at most a
finite number of solutions ». For this equation implies that

(3.3) 4(r,s) = h*Q .

Now 4(r, s) is a polynomial of degree four in #» with distinet roots
r= +i(s +1), (i =1"—1) and hence for fixed s # =+ 1,0, equation
(8.3) has at most a finite number of pairs of solutions (r, k), by

Theorem A.
Now observe that for fixed s # — 1 there exist at most a finite

number of square-free integers @ such that
(3.9 95(r, 8) = gu(r,8) = Q .

For this equation implies, by (3.2), that (s + 1)*(s* + 6s + 1) = 0 (mod Q).
Combining these results, we have the theorem.

A similar theorem for fixed 7 is true:

THEOREM 3.4. For a given integer r # 0 there exist at most a
finite number of integers s such that gs(r,s) = g.(r, s).

Proof. We observe that for fixed square-free integers @ and » > 0
equation (3.3) has at most a finite number of solutions (s, z). For, the
roots s = &+ 1 =+ ir (4 =V —1) are distinet and Theorem A applies. Further
it is clear that if (3.4) is satisfied then Q| (r* + 24r® + 16)(r* + 4).
Hence, as above, the theorem is proven.

We observe that the pairs (r, s) such that gs(r, s) = g,r,s) have
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the property that s = 2 (mod 4). This must always be the case as is
seen by the following theorem

THEOREM 3.5. Suppose gs(r, s) = g(r,s). Then s = 2 (mod 4).

Proof. Suppose the theorem is false, for some (r, s), s = 2 (mod 4).
Then there exist integers # and % such that

(3.5) or,s) =r* — 4s = k'Q
(3.6) Adrys) = (r* + (s + 1)) (r* + (s — 1)) = h'Q

where @ = gs5(7, 8) = g«r,s) > 0. We can see by Theorem 1.1 and the
fact that s = 2(mod 4) that hk = 0. Now @ is a square-free product
of primes of the form 4N + 1 or twice such a product. Hence Q =1,
2 or 5(mod 8). We show that @ is odd. For, (3.5) and (8.6) imply
(3.2) which yields:

#'Q + 1)-(k'Q + 1) = h*Q (mod 2)

since s is even. Hence @ =1 or 5(mod8). We assume first that
@ = 5 (mod 8). Equation (3.5) implies 7* = 5k* (mod 8) so that 7 is even
and (” + (s + 1)9)-(*+ (s — 1)) =1(mod 8). This contradicts (3.6).
Hence we can assume @ = 1(mod 8). We can write

(3.7) r*+ (s + 1)’ = BiQn
(3.8) r* 4+ (s — 1) = BQ.n

where £, 5., @, ., n are integers such that Q,Q, = Q and % is square-
free. Combining (3.5) and (3.7) we have 4s + k°Q.Q. + (s + 1)’ = BiQ.n
so that

(3.9 4s + (s + 1)* = 0 (mod Q,) .

Similarly, (s + 1)* = 0(mod @,) so that Q,|s+ 1. Now Q,=IIP,,
where the P, are distinet primes of the form 4N 4 1. We assert that
each P, =1(mod8). For, let x be the integer s/2 and observe that
(3.9) implies (2¢ + 3)* = 8 (mod P;).
1%W(€%>:<é>:—&dfﬂz5mw&.

Hence P; =1 (mod 8) so that @, =1 = @, (mod 8). Now from (3.5) we
have r* = k* 4+ 8 or 9%* + 8 (mod 16) so that »* = 1 or 9(mod 16). Clearly
(s + 1) # (s — 1)* (mod 16). Hence there are four possible cases

1. s+1p=1 (s—12=9, 7 =1 (mod16)
2. (s+12=9, (s—1F=1 2 =1 (mod16)

9 For a proof of this result see for instance [9], p. 75.
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3. s+1)2=1 (s—12=9, r*=9 (mod16)
4, (s+12=9, (s—1*=1 r*=9 (modl6)

In cases 1 and 4 we have 7 + (s + 1)* = 2, »* + (s — 1)* = 10 (mod 16).
Hence from (3.7) and (3.8) we have

(3.10) BRmn = 2, B2Q.m = 10 (mod 16) .

Clearly 5, and B, are odd and = is even so that £iQ, = 1 = BiQ, (mod 8)
and n(8iQ, — BiQ,) = 0 (mod 16) which is impossible by (3.10). Similarly
in cases 2 and 4 we deduce a contradiction.

We recall from the lemma to Theorem 3.3 that gs(r, 1) # g.(r, 1) for
all r. For certain other odd integers s we can also demonstrate
that gy(r, s) # gu(r, s) for all ». We have

THEOREM 3.6. Suppose gs(r,s) = g,(r,s). Then s #1,3,5, 11,15,
—3, —5, and —13,

Proof. Let s+ 1 be one of the values listed and assume the
theorem is false. Then from (3.2),

g(s) = (s + )((s + 1)* + 4s) = 0 (mod Q)

where gs(r, 8) = g«(r,s) = @ > 0 is square-free and g(s) is defined by
this equation. We tabulate g(s) for each s # 1 in the statement of the
theorem and find that in each case @ can only be 1 or 2. It is clear
by (3.5) and Theorem 1.1 that @ #= 1 for the given values of s. Hence
@ can only be 2 so that (3.5) becomes

(3.11) P —2=s -

where r, = s/2 and k, = k/2 are integers. Now the fundamental solu-
tion of the equation 2* — 2y =1 is 3 + 21/ 2 . Hence, if (3.11) has
solutions,” one of them must satisfy

0k =Vs2ifs>0,0<k=<Vs| ifs<0.
For each s = 1 listed we test all possible & and discover that in fact

(3.11) has no solutions and thus the theorem is proven.

We recall that g¢;(6, 7) = ¢,(6,7). We ask if there are other in-
tegers » such that gs;(r,r + 1) = g,(r, r + 1) or such that gs(r,7) =
g9.,(r, 7). The following two theorems answer these questions.

THEOREM 3.7. ¢gs(r,r + 1) = gu(r,r + 1) 2f and only if r = — 1,

10Here we have used Theorems 108, 108a, [4].
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—2 or 6.

Proof. Sufficiency is clear. - Hence we assume
(8.12) gs(ry v + 1) = gyr,r + 1)

for some r = 0. Let s =7 + 1. Then there exist positive integers
h, k and @ such that @ is square-free and

(3.13) or,s) =8 —6s+1=FkQ
(3.14) A(r, s) = 2r¥(s® + 1) = 2r*h°Q .
Hence

(3.15) s+ 1=hrQ

(3.16) 6s = (k* — h)Q .

Equation (3.16), together with (3.13) and (3.14) implies @ =1 or 2.
If @ =1 then » =0 or —1 by Theorem 1.1, If » = 0, equation (3.12)
is not satisfied.

Hence we assume @ — 2. Then, combining (3.15) and (3.16) we have

(3.17) (W — &)/3) = 2h* — 1.

We will show that (3.17) has only two solutions which correspond to
r=—2,6, Lety=|h — k|, x = (h* — k*/3 and suppose % = 30. We
consider the cases y =5, y =4, y =3 and find that in each case
x2* > 2h* — 1, Also, if y =1 or 2 then z* < 2A* — 1 so that for 2=30
equation (3.17) has no solutions. Equation (3.17) implies that 2A* — 1 =
O and the solutions of this equation such that ~ < 30 are o~ =1,5,
29. Substituting in (3.17) we find solutions (%, k) = (1, 2), (5, 2), so
that » =—2, 6,

THEOREM 3.8. gs(r,T) = g.r,7) if and only if |r| = 6.

Proof. Suppose g5(r, 7) = g«r,T) = Q for some » > 0. Then there
exist positive integers % and k such that
(3.18) o(r,7) = r* — 28 = k*Q
(3.19) A(r, ) = (r* + 36)(r* + 64) = L*Q

so that @ |32-23. Hence @ =1 or 2. By Theorem 1.1, @ = 2. By
(3.18), * = 4 (mod 8) so that r* + 64 = 4 (mod 8). Hence from (3.19) we
can easily see that »* + 64 = [J and * + 36 = 2-[J. Hence 7/2 is an
integer, x, and «*+ 9 = 2y* for some y > 0. Hence, from (3.18),
y* — 2* = 8, where z is the integer k£/2. Hence y = 3, z =1 so that
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r = 6.
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